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The leture introdues the onept of a greedy heuristi in the form of Minoux's greedymethodfor solving the network design problem.
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Multiommodity �ow

problems

In this setion we onsider a speial ase of the networkdesign with linear separable osts, but note that this isstill NP-hard, so we need a heursiti solution. The �rstwe try is Minoux's greedy method.
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Notation reap

Mostly as before

◮ A network is a graph G(N,E), with nodes

N = {1,2, . . .n} and links E ⊆ N×N

◮ Offered traf� between O-D pair (p,q) is tpq

◮ The set of all paths in G(N,E) is P = ∪[p,q]∈KPpq

◮ Eah link e∈ E has

⊲ a apaity, denoted by re(≥ 0)

⊲ a distane de(≥ 0)

⊲ a load fe(≥ 0)

◮ The vetor x = (xµ : µ∈ P) is alled the routing

fe = ∑
µ∈P:e∈µ

xµ
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A simpli�ed problem

◮ There are some interesting speial ases of theminimum ost, multiommodity �ow problem, whihwe now onsider.

⊲ lets us start a little simpler
⋆ similar to earlier presentation

◮ hoose apaities to arry required loads withoverhead

⊲ re = γ fe for some γ > 1

◮ separable linear ost model (with two omponents)

⊲ a �xed ost for provision of the link βe

⊲ a ost proportional to the apaity re (i.e. αe fe)

⊲ distanes ome in through βe and αe
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Separable linear ost model

ce( fe) =

{

0 if fe = 0
βe+αe fe if fe > 0Note that C(f) = ∑

e: fe>0

(βe+αe fe) is onave:

concave

 ec

fe

 e

eslope α

β
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Complete topology

For a given node set N, the ompletely onnetedtopology has

|E|=
|N|(|N|−1)

2possible links and 2|E| possible networks.

Only those links with fe > 0 will be inluded in the �naldesign, so put

L(f) = {e∈ E : fe > 0}

L(f) is the set of links used in the network design.
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Problem formulationFormal optimization problem

(P) min. C(f) = ∑
e∈L(f)

(βe+αe fe)s.t. fe = ∑
µ∈P:e∈µ

xµ ∀e∈ E.

xµ ≥ 0 ∀µ∈ P

∑
µ∈Pk

xµ = tk ∀k∈ K

where βe,αe, tk,N are all givens, and the link apaitieswill be re = γ fe.
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An asideReall (from SPF routing) that

∑
e

αe fe = ∑
e

αe

(

∑
µ∈P:e∈µ

xµ

)

= ∑
µ∈P:e∈µ

(

∑
e∈µ

αe

)

xµ

= ∑
µ∈P

lµxµ

where lµ = ∑e∈µαe is the length of path µ, so

C(f) = ∑
e∈L(f)

(βe+αe fe) = ∑
e∈L(f)

βe+ ∑
µ∈P

lµ(L(f))xµ
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Simpli�ation

For a given set of links L, we an solve this problem byrouting the traf� tpq on a shortest path in the networkwhih has link set L, for all O-D pairs, k∈ K. So

C(f) = ∑
k∈K

l̂k(L)tk + ∑
e∈L

βe = v(L)

where l̂k(L) represents the length of the shortest pathfor O-D pair k, in the network with link set L.

◮ ost of the network only depends on the hoie of L

◮ beomes integer programming problem: hoosewhih links to inlude or exlude

◮ always using SPF routing (linear ost is also onvex)
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Heuristi MethodsProblem we wish to solve is minimise {v(L) : L⊆ E}Deision variables

ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

◮ dif�ult problem

⊲ eah link an be in one of two states
⊲ there are 2|E| possible hoies for L

⊲ NP-hard (see travelling salesman problem)

◮ NP-hard⇒ heuristi methods
⊲ Minoux's greedy method [1℄

⊲ branh and bound (next letures)
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Greedy Methods

heuristi = a rule of thumb (unprovable, but reasonable)Greedy heuristi

◮ at eah step we make the best hoie

⊲ don't ever go bak

◮ e.g. Dijkstra, Minoux's greedy method

◮ advantage

⊲ generally pretty simple

◮ disadvantage

⊲ doesn't reah true optimum in many ases

⋆ results are still sometimes quite good

⊲ Dijkstra does �nd an optimum
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Minoux's Greedy Method

(a) Initialise: k = 0, L(0) = E, and f(0) is the initial load(b) For eah link e= (i, j) ∈ L(k) suh that f (k)
e > 0,

⊲ determine l̂µi j (L−e), the length of the shortestpath µi j from i to j, in the network with link eremoved from L

⊲ ompute ∆e = l̂µi j (L−e) f (k)
e − (αe f (k)

e +βe)

⋆ ∆e is the inrease in ost of rerouting load onlink e to the shortest path µi j , when link e isremoved.
⋆ By onvention, ∆e = ∞ if there is no path from

p to q, for e= (p,q).
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Minoux's Greedy Method (ont)

() If there exists e suh that ∆e < 0we an improve the network. Let

∆e = min{∆g : ∆g < 0,g∈ L(k)}, L(k+1) = L(k)−{e}For all g∈ L(k),

f (k+1)
g =











f (k)
g if g 6∈ µi j ,g 6= e

f (k)
g + f (k)

e if g∈ µi j

0 if g = e

k← k+1. Goto (b)

Else (∆e≥ 0 for all e∈ L(k)) STOP
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Minoux's Greedy Method

◮ When it �nishes, the greedy solution has been found
⊲ annot be bettered by this method.
⊲ might not be optimal

◮ Reall the proposition: Use only ONE path at (),beause osts are onave.
◮ Costs linear, so also onvex, so shortest pathrouting is minimal (for a given network).

Communications Network Design: lecture 11 – p.14/30

Communications Network Design: lecture 11 – p.14/30



Minoux's Method: Example 1

The network G(N,E) and data for the �xed hargemodel (αe,βe) and offered traf�, tpq
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Minoux's Method: Example 1
C(f) = ∑

e∈L

ce( fe) = ∑
e∈L

αe fe+βe, where L⊆ EAssume initially diret routing i.e. fe = tpq for all
e= (p,q), and L(0) = E.
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Total ost initially is 55 units.
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Minoux's Method: Example 1

Iteration 1: Calulate all ∆e

∆e = lµ̂(f)− (αe fe+βe)

= ∑e′∈µ̂αe′ fe′− αe fe−βeFor example ∆12 is the hange in ost, if link (1,2) isremoved, and f12 is rerouted onto the remaining shortestpath, here 1-4-2.

∆12 = (α14+α42−α12) f12−β12

= (1+1−1)×4−3
= 1
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Minoux's Method: Example 1

Iteration 1: Calulate all ∆e

∆12 = (α14+α42−α12) f12−β12 = (1+1−1)×4−3= 1
∆13 = (α14+α34−α13) f13−β13 = (1+1−2)×4−6=−6
∆14 = (α12+α42−α14) f14−β14 = (1+1−1)×3−5=−2
∆23 = (α24+α34−α23) f23−β23 = (1+1−2)×5−3=−3
∆24 = (α12+α14−α24) f24−β24 = (1+1−1)×2−6=−4
∆34 = (α23+α24−α34) f34−β34 = (1+2−1)×2−3= 1Therefore min∆e=-6, for e= (1,3).

Communications Network Design: lecture 11 – p.18/30

Communications Network Design: lecture 11 – p.18/30



Minoux's Method: Example 1

Iteration 1: Remove link (1,3) from the network,e.g. put L(1) = L(0) \{(1,3)}Reroute f13 onto the path 1-4-3.The new network and loads are:
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The new ost is old ost +∆13=55-6=49 units.
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Minoux's Method: Example 1

Iteration 2: Working with this latest network L(1),re-alulate all ∆e

∆12 = (α14+α42−α12) f12−β12 = (1+1−1)×4−3= 1
∆14 = (α12+α42−α14) f14−β13 = (1+1−1)×7−5= 2
∆23 = (α24+α34−α23) f23−β23 = (1+1−2)×5−3=−3
∆24 = (α12+α14−α24) f24−β24 = (1+1−1)×2−6=−4
∆34 = (α23+α24−α34) f34−β34 = (1+2−1)×6−3= 9Therefore min∆e =−4, for e= (2,4).
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Minoux's Method: Example 1

Iteration 2: Put L(2) = L(1) \{(2,4)}; reroute f24 onto thepath 2-1-4.The new network and loads are:
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The new ost is 49−4 = 45 units.
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Minoux's Method: Example 1

Iteration 3: Working with this latest network L(2),re-alulate all ∆e

∆12 = (α14+α34+α24−α12) f12−β12 = (1+1+2−1)×6−3> 0
∆14 = (α12+α23+α34−α14) f14−β13 = (1+2+1−1)×9−5> 0
∆23 = (α21+α14+α34−α23) f23−β23 = (1+1+1−2)×5−3> 0
∆34 = (α14+α12+α23−α34) f34−β34 = (1+1+2−1)×6−3> 0

Therefore ∆e > 0, ∀e∈ L(2) so STOP.
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Minoux's Method: Example 1

So the �nal network design and loads are(as in interation 2):
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Minoux's Method: Example 1

This is atually the optimal design for the network withthe given data, but obviously the method itself has a�aw in that one a link is deleted, it is deleted for good:there is never a hane for it to be reinstated.
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Minoux's Method: Example 2 (i)

The network G(N,E) and relevant data for the �xedharge model (αe,βe) and offered traf�, tpq, are as givenin the �gure below.
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ce( fe) = αe fe+βe.Initially, assume diret routing i.e. fe = tpq for all

e= (p,q), and L = E.
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Minoux's Method: Example 2 (ii)

∆e = lµ̂(f)− (αe fe+βe) = ∑e′∈µ̂αe′ fe−αe fe−βe.Iteration 1 Calulate all ∆es:

e l (l −α) f −β > 0?

(1,2) 2 (2−1)4−3 > 0
(1,3) 3 (3−1)4−6 > 0
(1,4) 2 (2−1)3−5 −2
(2,3) 2 (2−2)5−3 −3
(2,4) 2 (2−1)2−6 −4
(3,4) 2 (2−2)2−6 −6Therefore min∆e=-6, for e= (3,4).So delete link (3,4) and reroute its load onto theshortest path, 3-1-4.
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Minoux's Method: Example 2 (iii)

Iteration 2: New loads are and ∆e are
26

55

4

:ef

 3 4

21
e l (l −α) f −β > 0?

(1,2) 2 (2−1)4−3 > 0
(1,3) 3 (3−1)6−6 > 0
(1,4) 2 (2−1)5−5 = 0
(2,3) 2 (2−2)5−3 −3
(2,4) 2 (2−1)2−6 −4Therefore min∆e=-4, for e= (2,4).So delete link (2,4) and reroute its load onto theshortest path, 2-1-4.
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Minoux's Method: Example 2 (iv)

Iteration 3: New loads are and ∆e are
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(1,2) 3 (3−1)6−3 > 0
(1,3) 3 (3−1)6−6 > 0
(1,4) ∞
(2,3) 2 (2−2)5−3 −3

Therefore min∆e=-3, for e= (2,3).So delete link (2,3) and reroute its load onto theshortest path, 2-1-3.
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Minoux's Method: Example 2 (v)

Iteration 4: New loads are
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No further links an be deleted without disonnetingthe network. Cost is 22+9+12=43.Question: Is this optimal?
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