Communications Network Design

lecture 11

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 23, 2009

Multicommodity flow problems

In this section we consider a special case of the network design with linear separable costs, but note that this is still NP-hard, so we need a heursitic solution. The first we try is Minoux's greedy method.

Notation recap

Mostly as before

- A network is a graph $G(N, E)$, with nodes
$N=\{1,2, \ldots n\}$ and links $E \subseteq N \times N$
- Offered traffic between O-D pair (p, q) is $t_{p q}$
- The set of all paths in $G(N, E)$ is $P=\cup_{[p, q] \in K} P_{p q}$
- Each link $e \in E$ has
- a capacity, denoted by $r_{e}(\geq 0)$
- a distance $d_{e}(\geq 0)$
- a load $f_{e}(\geq 0)$
- The vector $\mathbf{x}=\left(x_{\mu}: \mu \in P\right)$ is called the routing

$$
f_{e}=\sum_{\mu \in P: e \in \mu} x_{\mu}
$$

A simplified problem

- There are some interesting special cases of the minimum cost, multicommodity flow problem, which we now consider.
- lets us start a little simpler
- similar to earlier presentation
- choose capacities to carry required loads with overhead

$$
r_{e}=\gamma f_{e} \text { for some } \gamma>1
$$

- separable linear cost model (with two components)
- a fixed cost for provision of the link β_{e}
- a cost proportional to the capacity r_{e} (i.e. $\alpha_{e} f_{e}$)
- distances come in through β_{e} and α_{e}

Separable linear cost model

$$
c_{e}\left(f_{e}\right)=\left\{\begin{array}{cc}
0 & \text { if } f_{e}=0 \\
\beta_{e}+\alpha_{e} f_{e} & \text { if } f_{e}>0
\end{array}\right.
$$

Note that $C(\mathbf{f})=\sum_{e: f_{e}>0}\left(\beta_{e}+\alpha_{e} f_{e}\right)$ is concave:

Complete topology

For a given node set N, the completely connected topology has

$$
|E|=\frac{|N|(|N|-1)}{2}
$$

possible links and $2^{|E|}$ possible networks.
Only those links with $f_{e}>0$ will be included in the final design, so put

$$
L(\mathbf{f})=\left\{e \in E: f_{e}>0\right\}
$$

$L(\mathbf{f})$ is the set of links used in the network design.

Problem formulation

Formal optimization problem

$$
\begin{aligned}
\text { (P) } \quad \operatorname{min.} \quad C(\mathbf{f}) & =\sum_{e \in L(\mathbf{f})}\left(\beta_{e}+\alpha_{e} f_{e}\right) & & \\
\text { s.t. } f_{e} & =\sum_{\mu \in P: e \in \mu} x_{\mu} & & \forall e \in E . \\
x_{\mu} & \geq 0 & & \forall \mu \in P \\
\sum_{\mu \in P_{k}} x_{\mu} & =t_{k} & & \forall k \in K
\end{aligned}
$$

where $\beta_{e}, \alpha_{e}, t_{k}, N$ are all givens, and the link capacities will be $r_{e}=\gamma f_{e}$.

An aside

Recall (from SPF routing) that

$$
\begin{aligned}
\sum_{e} \alpha_{e} f_{e} & =\sum_{e} \alpha_{e}\left(\sum_{\mu \in P: e \in \mu} x_{\mu}\right) \\
& =\sum_{\mu \in P: e \in \mu}\left(\sum_{e \in \mu} \alpha_{e}\right) x_{\mu} \\
& =\sum_{\mu \in P} l_{\mu} x_{\mu}
\end{aligned}
$$

where $l_{\mu}=\sum_{e \in \mu} \alpha_{e}$ is the length of path μ, so

$$
C(\mathbf{f})=\sum_{e \in L(\mathbf{f})}\left(\beta_{e}+\alpha_{e} f_{e}\right)=\sum_{e \in L(\mathbf{f})} \beta_{e}+\sum_{\mu \in P} l_{\mu}(L(\mathbf{f})) x_{\mu}
$$

Simplification

For a given set of links L, we can solve this problem by routing the traffic $t_{p q}$ on a shortest path in the network which has link set L, for all O-D pairs, $k \in K$. So

$$
C(\mathbf{f})=\sum_{k \in K} \hat{l}_{k}(L) t_{k}+\sum_{e \in L} \beta_{e}=v(L)
$$

where $\hat{l}_{k}(L)$ represents the length of the shortest path for O-D pair k, in the network with link set L.

- cost of the network only depends on the choice of L
- becomes integer programming problem: choose which links to include or exclude
- always using SPF routing (linear cost is also convex)

Heuristic Methods

Problem we wish to solve is minimise $\{v(L): L \subseteq E\}$ Decision variables

$$
z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use e) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use e) }\end{cases}
$$

- difficult problem
- each link can be in one of two states
- there are $2^{|E|}$ possible choices for L
- NP-hard (see travelling salesman problem)
- NP-hard \Rightarrow heuristic methods
- Minoux's greedy method [1]
\square branch and bound (next lectures)

Greedy Methods

heuristic = a rule of thumb (unprovable, but reasonable)
Greedy heuristic

- at each step we make the best choice
- don't ever go back
- e.g. Dijkstra, Minoux's greedy method
- advantage
- generally pretty simple
- disadvantage
- doesn't reach true optimum in many cases - results are still sometimes quite good
- Dijkstra does find an optimum

Minoux's Greedy Method

(a) Initialise: $k=0, L^{(0)}=E$, and $\mathbf{f}^{(0)}$ is the initial load
(b) For each link $e=(i, j) \in L^{(k)}$ such that $f_{e}^{(k)}>0$,

- determine $\hat{l}_{\mu_{j}}(L-e)$, the length of the shortest path $\mu_{i j}$ from i to j, in the network with link e removed from L
- compute $\Delta_{e}=\hat{\mu}_{\mu_{i j}}(L-e) f_{e}^{(k)}-\left(\alpha_{e} f_{e}^{(k)}+\beta_{e}\right)$
$-\Delta_{e}$ is the increase in cost of rerouting load on link e to the shortest path $\mu_{i j}$, when link e is removed.
- By convention, $\Delta_{e}=\infty$ if there is no path from p to q, for $e=(p, q)$.

Minoux's Greedy Method (cont)

(c) If there exists e such that $\Delta_{e}<0$ we can improve the network. Let

$$
\Delta_{e}=\min \left\{\Delta_{g}: \Delta_{g}<0, g \in L^{(k)}\right\}, \quad L^{(k+1)}=L^{(k)}-\{e\}
$$

For all $g \in L^{(k)}$,

$$
\begin{aligned}
& f_{g}^{(k+1)}=\left\{\begin{array}{lll}
f_{g}^{(k)} & \text { if } & g \notin \mu_{i j}, g \neq e \\
f_{g}^{(k)}+f_{e}^{(k)} & \text { if } & g \in \mu_{i j} \\
0 & \text { if } & g=e
\end{array}\right. \\
& k \leftarrow k+1 \text {. Goto (b) }
\end{aligned}
$$

Else ($\Delta_{e} \geq 0$ for all $e \in L^{(k)}$) STOP

Minoux's Greedy Method

- When it finishes, the greedy solution has been found
- cannot be bettered by this method.
- might not be optimal
- Recall the proposition: Use only ONE path at (c), because costs are concave.
- Costs linear, so also convex, so shortest path routing is minimal (for a given network).

Minoux's Method: Example 1

The network $G(N, E)$ and data for the fixed charge model (α_{e}, β_{e}) and offered traffic, $t_{p q}$

$C(\mathbf{f})=\sum_{e \in L} c_{e}\left(f_{e}\right)$

$c_{e}\left(f_{e}\right)=\alpha_{e} f_{e}+\beta_{e}$.

Minoux's Method: Example 1

$C(\mathbf{f})=\sum_{e \in L} c_{e}\left(f_{e}\right)=\sum_{e \in L} \alpha_{e} f_{e}+\beta_{e}$, where $L \subseteq E$
Assume initially direct routing i.e. $f_{e}=t_{p q}$ for all $e=(p, q)$, and $L^{(0)}=E$.

Cost

 C_{e}

Total cost initially is 55 units.

Minoux's Method: Example 1

Iteration 1: Calculate all Δ_{e}

$$
\begin{array}{rlr}
\Delta_{e} & =l_{\hat{\mu}}(\mathbf{f})- & \left(\alpha_{e} f_{e}+\beta_{e}\right) \\
& =\sum_{e^{\prime} \in \hat{\mu}} \alpha_{e^{\prime}} f_{e^{\prime}}- & \alpha_{e} f_{e}-\beta_{e}
\end{array}
$$

For example Δ_{12} is the change in cost, if link $(1,2)$ is removed, and f_{12} is rerouted onto the remaining shortest path, here 1-4-2.

$$
\begin{aligned}
\Delta_{12} & =\left(\alpha_{14}+\alpha_{42}-\alpha_{12}\right) f_{12}-\beta_{12} \\
& =(1+1-1) \times 4-3 \\
& =1
\end{aligned}
$$

Minoux's Method: Example 1

Iteration 1: Calculate all Δ_{e}

$$
\begin{aligned}
& \Delta_{12}=\left(\alpha_{14}+\alpha_{42}-\alpha_{12}\right) f_{12}-\beta_{12}=(1+1-1) \times 4-3=1 \\
& \Delta_{13}=\left(\alpha_{14}+\alpha_{34}-\alpha_{13}\right) f_{13}-\beta_{13}=(1+1-2) \times 4-6=-6 \\
& \Delta_{14}=\left(\alpha_{12}+\alpha_{42}-\alpha_{14}\right) f_{14}-\beta_{14}=(1+1-1) \times 3-5=-2 \\
& \Delta_{23}=\left(\alpha_{24}+\alpha_{34}-\alpha_{23}\right) f_{23}-\beta_{23}=(1+1-2) \times 5-3=-3 \\
& \Delta_{24}=\left(\alpha_{12}+\alpha_{14}-\alpha_{24}\right) f_{24}-\beta_{24}=(1+1-1) \times 2-6=-4 \\
& \Delta_{34}=\left(\alpha_{23}+\alpha_{24}-\alpha_{34}\right) f_{34}-\beta_{34}=(1+2-1) \times 2-3=1
\end{aligned}
$$

Therefore $\min \Delta_{e}=-6$, for $e=(1,3)$.

Minoux's Method: Example 1

Iteration 1: Remove link $(1,3)$ from the network, e.g. put $L^{(1)}=L^{(0)} \backslash\{(1,3)\}$

Reroute f_{13} onto the path 1-4-3.
The new network and loads are:

The new cost is old cost $+\Delta_{13}=55-6=49$ units.

Minoux's Method: Example 1

Iteration 1: Remove link $(1,3)$ from the network, e.g. put $L^{(1)}=L^{(0)} \backslash\{(1,3)\}$

Reroute f_{13} onto the path 1-4-3.
The new network and loads are:

The new cost is old cost $+\Delta_{13}=55-6=49$ units.

Minoux's Method: Example 1

Iteration 2: Working with this latest network $L^{(1)}$, re-calculate all Δ_{e}

$$
\begin{aligned}
& \Delta_{12}=\left(\alpha_{14}+\alpha_{42}-\alpha_{12}\right) f_{12}-\beta_{12}=(1+1-1) \times 4-3=1 \\
& \Delta_{14}=\left(\alpha_{12}+\alpha_{42}-\alpha_{14}\right) f_{14}-\beta_{13}=(1+1-1) \times 7-5=2 \\
& \Delta_{23}=\left(\alpha_{24}+\alpha_{34}-\alpha_{23}\right) f_{23}-\beta_{23}=(1+1-2) \times 5-3=-3 \\
& \Delta_{24}=\left(\alpha_{12}+\alpha_{14}-\alpha_{24}\right) f_{24}-\beta_{24}=(1+1-1) \times 2-6=-4 \\
& \Delta_{34}=\left(\alpha_{23}+\alpha_{24}-\alpha_{34}\right) f_{34}-\beta_{34}=(1+2-1) \times 6-3=9
\end{aligned}
$$

Therefore $\min \Delta_{e}=-4$, for $e=(2,4)$.

Minoux's Method: Example 1

Iteration 2: Put $L^{(2)}=L^{(1)} \backslash\{(2,4)\}$; reroute f_{24} onto the path 2-1-4.
The new network and loads are:

The new cost is $49-4=45$ units.

Minoux's Method: Example 1

Iteration 2: Put $L^{(2)}=L^{(1)} \backslash\{(2,4)\}$; reroute f_{24} onto the path 2-1-4.
The new network and loads are:

The new cost is $49-4=45$ units.

Minoux's Method: Example 1

Iteration 3: Working with this latest network $L^{(2)}$, re-calculate all Δ_{e}

$$
\begin{aligned}
& \Delta_{12}=\left(\alpha_{14}+\alpha_{34}+\alpha_{24}-\alpha_{12}\right) f_{12}-\beta_{12}=(1+1+2-1) \times 6-3>0 \\
& \Delta_{14}=\left(\alpha_{12}+\alpha_{23}+\alpha_{34}-\alpha_{14}\right) f_{14}-\beta_{13}=(1+2+1-1) \times 9-5>0 \\
& \Delta_{23}=\left(\alpha_{21}+\alpha_{14}+\alpha_{34}-\alpha_{23}\right) f_{23}-\beta_{23}=(1+1+1-2) \times 5-3>0 \\
& \Delta_{34}=\left(\alpha_{14}+\alpha_{12}+\alpha_{23}-\alpha_{34}\right) f_{34}-\beta_{34}=(1+1+2-1) \times 6-3>0
\end{aligned}
$$

Therefore $\Delta_{e}>0, \forall e \in L^{(2)}$ so STOP.

Minoux's Method: Example 1

So the final network design and loads are (as in interation 2):

$O-D$	$t_{p q}$	routing
$1-2$	4	$1-2$
$1-3$	4	$1-4-3$
$1-4$	3	$1-4$
$2-3$	5	$2-3$
$2-4$	2	$2-1-4$
$3-4$	2	$3-4$

The cost is still 45 units.

Minoux's Method: Example 1

This is actually the optimal design for the network with the given data, but obviously the method itself has a flaw in that once a link is deleted, it is deleted for good: there is never a chance for it to be reinstated.

Minoux's Method: Example 2 (i)

The network $G(N, E)$ and relevant data for the fixed charge model (α_{e}, β_{e}) and offered traffic, $t_{p q}$, are as given in the figure below.

$c_{e}\left(f_{e}\right)=\alpha_{e} f_{e}+\beta_{e}$.
Initially, assume direct routing i.e. $f_{e}=t_{p q}$ for all $e=(p, q)$, and $L=E$.

Minoux's Method: Example 2 (ii)

$\Delta_{e}=l_{\hat{\mu}}(\mathbf{f})-\left(\alpha_{e} f_{e}+\beta_{e}\right)=\sum_{e^{\prime} \in \hat{\mu}} \alpha_{e^{\prime}} f_{e}-\alpha_{e} f_{e}-\beta_{e}$.
Iteration 1 Calculate all $\Delta_{e} s$:

e	l	$(l-\alpha) f-\beta$	$>0 ?$
$(1,2)$	2	$(2-1) 4-3$	>0
$(1,3)$	3	$(3-1) 4-6$	>0
$(1,4)$	2	$(2-1) 3-5$	-2
$(2,3)$	2	$(2-2) 5-3$	-3
$(2,4)$	2	$(2-1) 2-6$	-4
$(3,4)$	2	$(2-2) 2-6$	-6

Therefore $\min \Delta_{e}=-6$, for $e=(3,4)$.
So delete link $(3,4)$ and reroute its load onto the shortest path, 3-1-4.

Minoux's Method: Example 2 (iii)

Iteration 2: New loads are and Δ_{e} are

Therefore $\min \Delta_{e}=-4$, for $e=(2,4)$.
So delete link $(2,4)$ and reroute its load onto the shortest path, 2-1-4.

Minoux's Method: Example 2 (iv)

Iteration 3: New loads are and Δ_{e} are
(2

Therefore $\min \Delta_{e}=-3$, for $e=(2,3)$.
So delete link $(2,3)$ and reroute its load onto the shortest path, 2-1-3.

Minoux's Method: Example 2 (v)

Iteration 4: New loads are

No further links can be deleted without disconnecting the network. Cost is $22+9+12=43$.

Question: Is this optimal?

References

[1] M.Minoux, "Network synthesis and optimum network design problems: Models, solution methods and applications," in Networks, vol. 19, pp. 313-360, 1989.

