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Multiommodity �ow

problems

In this setion we onsider a speial ase of the networkdesign with linear separable osts, but note that this isstill NP-hard, so we need a heursiti solution. The �rstwe try is Minoux's greedy method.
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Notation reap

Mostly as beforeA network is a graph G(N,E), with nodes
N = {1,2, . . .n} and links E ⊆ N×NOffered traf� between O-D pair (p,q) is tpqThe set of all paths in G(N,E) is P = ∪[p,q]∈KPpqEah link e∈ E hasa apaity, denoted by re(≥ 0)a distane de(≥ 0)a load fe(≥ 0)The vetor x = (xµ : µ∈ P) is alled the routing

fe = ∑
µ∈P:e∈µ

xµ
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A simpli�ed problem

There are some interesting speial ases of theminimum ost, multiommodity �ow problem, whihwe now onsider.lets us start a little simplersimilar to earlier presentationhoose apaities to arry required loads withoverhead

re = γ fe for some γ > 1separable linear ost model (with two omponents)a �xed ost for provision of the link βea ost proportional to the apaity re (i.e. αe fe)distanes ome in through βe and αe
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Separable linear ost model
ce( fe) =

{

0 if fe = 0
βe+αe fe if fe > 0Note that C(f) = ∑

e: fe>0

(βe+αe fe) is onave:

concave

 ec

fe

 e

eslope α

β
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Complete topology

For a given node set N, the ompletely onnetedtopology has

|E|=
|N|(|N|−1)

2possible links and 2|E| possible networks.

Only those links with fe > 0 will be inluded in the �naldesign, so put

L(f) = {e∈ E : fe > 0}

L(f) is the set of links used in the network design.
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Problem formulationFormal optimization problem

(P) min. C(f) = ∑
e∈L(f)

(βe+αe fe)s.t. fe = ∑
µ∈P:e∈µ

xµ ∀e∈ E.

xµ ≥ 0 ∀µ∈ P

∑
µ∈Pk

xµ = tk ∀k∈ K

where βe,αe, tk,N are all givens, and the link apaitieswill be re = γ fe.
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An asideReall (from SPF routing) that

∑
e

αe fe = ∑
e

αe

(

∑
µ∈P:e∈µ

xµ

)

= ∑
µ∈P:e∈µ

(

∑
e∈µ

αe

)

xµ

= ∑
µ∈P

lµxµ

where lµ = ∑e∈µαe is the length of path µ, so

C(f) = ∑
e∈L(f)

(βe+αe fe) = ∑
e∈L(f)

βe+ ∑
µ∈P

lµ(L(f))xµ
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Simpli�ation

For a given set of links L, we an solve this problem byrouting the traf� tpq on a shortest path in the networkwhih has link set L, for all O-D pairs, k∈ K. So
C(f) = ∑

k∈K

l̂k(L)tk + ∑
e∈L

βe = v(L)

where l̂k(L) represents the length of the shortest pathfor O-D pair k, in the network with link set L.ost of the network only depends on the hoie of Lbeomes integer programming problem: hoosewhih links to inlude or exludealways using SPF routing (linear ost is also onvex)
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Heuristi MethodsProblem we wish to solve is minimise {v(L) : L⊆ E}Deision variables

ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

dif�ult problemeah link an be in one of two statesthere are 2|E| possible hoies for LNP-hard (see travelling salesman problem)NP-hard⇒ heuristi methodsMinoux's greedy method [1℄branh and bound (next letures)
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Greedy Methods

heuristi = a rule of thumb (unprovable, but reasonable)Greedy heuristiat eah step we make the best hoiedon't ever go bake.g. Dijkstra, Minoux's greedy methodadvantagegenerally pretty simpledisadvantagedoesn't reah true optimum in many asesresults are still sometimes quite goodDijkstra does �nd an optimum
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Minoux's Greedy Method

(a) Initialise: k = 0, L(0) = E, and f(0) is the initial load(b) For eah link e= (i, j) ∈ L(k) suh that f (k)
e > 0,determine l̂µi j (L−e), the length of the shortestpath µi j from i to j, in the network with link eremoved from Lompute ∆e = l̂µi j (L−e) f (k)

e − (αe f (k)
e +βe)

∆e is the inrease in ost of rerouting load onlink e to the shortest path µi j , when link e isremoved.By onvention, ∆e = ∞ if there is no path from

p to q, for e= (p,q).
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Minoux's Greedy Method (ont)

() If there exists e suh that ∆e < 0we an improve the network. Let
∆e = min{∆g : ∆g < 0,g∈ L(k)}, L(k+1) = L(k)−{e}For all g∈ L(k),
f (k+1)
g =











f (k)
g if g 6∈ µi j ,g 6= e

f (k)
g + f (k)

e if g∈ µi j

0 if g = e

k← k+1. Goto (b)

Else (∆e≥ 0 for all e∈ L(k)) STOP
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Minoux's Greedy Method

When it �nishes, the greedy solution has been foundannot be bettered by this method.might not be optimalReall the proposition: Use only ONE path at (),beause osts are onave.Costs linear, so also onvex, so shortest pathrouting is minimal (for a given network).
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Minoux's Method: Example 1

The network G(N,E) and data for the �xed hargemodel (αe,βe) and offered traf�, tpq
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Minoux's Method: Example 1
C(f) = ∑

e∈L

ce( fe) = ∑
e∈L

αe fe+βe, where L⊆ EAssume initially diret routing i.e. fe = tpq for all
e= (p,q), and L(0) = E.
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Total ost initially is 55 units.
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Minoux's Method: Example 1

Iteration 1: Calulate all ∆e

∆e = lµ̂(f)− (αe fe+βe)

= ∑e′∈µ̂αe′ fe′− αe fe−βeFor example ∆12 is the hange in ost, if link (1,2) isremoved, and f12 is rerouted onto the remaining shortestpath, here 1-4-2.
∆12 = (α14+α42−α12) f12−β12

= (1+1−1)×4−3
= 1
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Minoux's Method: Example 1

Iteration 1: Calulate all ∆e

∆12 = (α14+α42−α12) f12−β12 = (1+1−1)×4−3= 1
∆13 = (α14+α34−α13) f13−β13 = (1+1−2)×4−6=−6
∆14 = (α12+α42−α14) f14−β14 = (1+1−1)×3−5=−2
∆23 = (α24+α34−α23) f23−β23 = (1+1−2)×5−3=−3
∆24 = (α12+α14−α24) f24−β24 = (1+1−1)×2−6=−4
∆34 = (α23+α24−α34) f34−β34 = (1+2−1)×2−3= 1Therefore min∆e=-6, for e= (1,3).
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Minoux's Method: Example 1

Iteration 1: Remove link (1,3) from the network,e.g. put L(1) = L(0) \{(1,3)}Reroute f13 onto the path 1-4-3.The new network and loads are:
4
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4 3
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The new ost is old ost +∆13=55-6=49 units.
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Minoux's Method: Example 1

Iteration 1: Remove link (1,3) from the network,e.g. put L(1) = L(0) \{(1,3)}Reroute f13 onto the path 1-4-3.The new network and loads are:
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Minoux's Method: Example 1

Iteration 2: Working with this latest network L(1),re-alulate all ∆e

∆12 = (α14+α42−α12) f12−β12 = (1+1−1)×4−3= 1
∆14 = (α12+α42−α14) f14−β13 = (1+1−1)×7−5= 2
∆23 = (α24+α34−α23) f23−β23 = (1+1−2)×5−3=−3
∆24 = (α12+α14−α24) f24−β24 = (1+1−1)×2−6=−4
∆34 = (α23+α24−α34) f34−β34 = (1+2−1)×6−3= 9Therefore min∆e =−4, for e= (2,4).
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Minoux's Method: Example 1

Iteration 2: Put L(2) = L(1) \{(2,4)}; reroute f24 onto thepath 2-1-4.The new network and loads are:
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The new ost is 49−4 = 45 units.
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Minoux's Method: Example 1

Iteration 2: Put L(2) = L(1) \{(2,4)}; reroute f24 onto thepath 2-1-4.The new network and loads are:
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Minoux's Method: Example 1

Iteration 3: Working with this latest network L(2),re-alulate all ∆e

∆12 = (α14+α34+α24−α12) f12−β12 = (1+1+2−1)×6−3> 0
∆14 = (α12+α23+α34−α14) f14−β13 = (1+2+1−1)×9−5> 0
∆23 = (α21+α14+α34−α23) f23−β23 = (1+1+1−2)×5−3> 0
∆34 = (α14+α12+α23−α34) f34−β34 = (1+1+2−1)×6−3> 0

Therefore ∆e > 0, ∀e∈ L(2) so STOP.
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Minoux's Method: Example 1

So the �nal network design and loads are(as in interation 2):
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Minoux's Method: Example 1

This is atually the optimal design for the network withthe given data, but obviously the method itself has a�aw in that one a link is deleted, it is deleted for good:there is never a hane for it to be reinstated.
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Minoux's Method: Example 2 (i)

The network G(N,E) and relevant data for the �xedharge model (αe,βe) and offered traf�, tpq, are as givenin the �gure below.
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ce( fe) = αe fe+βe.Initially, assume diret routing i.e. fe = tpq for all

e= (p,q), and L = E.
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Minoux's Method: Example 2 (ii)
∆e = lµ̂(f)− (αe fe+βe) = ∑e′∈µ̂αe′ fe−αe fe−βe.Iteration 1 Calulate all ∆es:

e l (l −α) f −β > 0?

(1,2) 2 (2−1)4−3 > 0
(1,3) 3 (3−1)4−6 > 0
(1,4) 2 (2−1)3−5 −2
(2,3) 2 (2−2)5−3 −3
(2,4) 2 (2−1)2−6 −4
(3,4) 2 (2−2)2−6 −6Therefore min∆e=-6, for e= (3,4).So delete link (3,4) and reroute its load onto theshortest path, 3-1-4.
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Minoux's Method: Example 2 (iii)

Iteration 2: New loads are and ∆e are
26

55

4
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 3 4

21
e l (l −α) f −β > 0?

(1,2) 2 (2−1)4−3 > 0
(1,3) 3 (3−1)6−6 > 0
(1,4) 2 (2−1)5−5 = 0
(2,3) 2 (2−2)5−3 −3
(2,4) 2 (2−1)2−6 −4Therefore min∆e=-4, for e= (2,4).So delete link (2,4) and reroute its load onto theshortest path, 2-1-4.
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Minoux's Method: Example 2 (iv)

Iteration 3: New loads are and ∆e are
6
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21 e l (l −α) f −β > 0?

(1,2) 3 (3−1)6−3 > 0
(1,3) 3 (3−1)6−6 > 0
(1,4) ∞
(2,3) 2 (2−2)5−3 −3Therefore min∆e=-3, for e= (2,3).So delete link (2,3) and reroute its load onto theshortest path, 2-1-3.
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Minoux's Method: Example 2 (v)

Iteration 4: New loads are
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No further links an be deleted without disonnetingthe network. Cost is 22+9+12=43.Question: Is this optimal?
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