Communications Network Design

lecture 12
Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 2, 2009

This lecture introduces an simplified network design problem (the budget constraint model) and the concept of branch and bound optimization.

Budget constraint model and branch and bound

Branch and bound is a standard technique for solving integer programs, by relaxing the problem to the non-integer problem to find bounds, and using these to prune a tree of the possible solutions (rather than evaluating all possible solutions).

Budget Constraint Model

- separable linear cost model
$C(\mathbf{f})=\sum_{e \in L(\mathbf{f})}\left(\beta_{e}+\alpha_{e} f_{e}\right) \quad$ where $L(\mathbf{f})=\left\{e \in E: f_{e}>0\right\}$

$$
=\sum_{e \in L(\mathbf{f})} \beta_{e}+\sum_{\mu \in P} l_{\mu}(L(\mathbf{f})) x_{\mu}
$$

- separate costs into
\triangleright initial investment costs (of laying optical fibre)

$$
C_{\mathrm{inv}}(L)=\sum_{e \in L} \beta_{e}
$$

\triangleright operations cost of lighting up the link

$$
C_{\mathrm{op}}(\mathbf{f}, L)=\sum_{e \in L} \alpha_{e} f_{e}
$$

Given $L(\mathbf{f})=\left\{e \in E: f_{e}>0\right\}$

$$
\begin{aligned}
C(\mathbf{f}) & =\sum_{e \in L(\mathbf{f})}\left(\beta_{e}+\alpha_{e} f_{e}\right) \\
& =\sum_{e: f_{e}>0}\left(\beta_{e}+\alpha_{e} f_{e}\right) \\
& =\sum_{e: f_{e}>0} c_{e}\left(f_{e}\right) \\
c_{e}\left(f_{e}\right) & =\left\{\begin{array}{cc}
0 & \text { if } f_{e}=0 \\
\beta_{e}+\alpha_{e} f_{e} & \text { if } f_{e}>0
\end{array}\right.
\end{aligned}
$$

Budget Constraint Model (BCM)

- ealier, we considered the problem

$$
\min C(\mathbf{f})=\min \left[C_{\mathrm{inv}}(L)+C_{\mathrm{op}}(\mathbf{f}, L)\right]
$$

subject to the appropriate constraints

- budget constraint model
\triangleright have a budget constraint on the investment costs

$$
C_{\mathrm{inv}}(L) \leq B
$$

\triangleright consider the optimization problem

$$
\min C_{\mathrm{op}}(\mathbf{f}, L) \text { subject to } C_{\mathrm{inv}}(L) \leq B
$$

with additional constraints as above.

Formulation: of BCM

$z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use } e \text {) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use } e \text {) }\end{cases}$

BCM and Branch and Bound

- this is an old, well studied problem, e.g. see [1]
- NP-hard
- look for heuristic solutions
\triangleright branch and bound [2]
- Branch and Bound is the topic of this lecture.

Notation

We can write an optimization problem several different ways

- integer linear programming problem, called (IP)
(IP) $\left\{\begin{array}{rll|}\text { maximize } & \mathbf{c}^{T} \mathbf{x} & \\ \text { subject to } & A \mathbf{x} & \leq \mathbf{b} \\ & \mathbf{x} & \geq 0 \\ & \mathbf{x} & \in \mathbb{Z}^{n}\end{array}\right.$
- short form

$$
\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}
$$

\mathbb{Z} is the set of integers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
\mathbb{Z}^{n} is the n-dimensional integer lattice, e.g. a segment of Z^{2} is shown at the points in the figure below.

Integer programming

- Take an integer linear programming problem

$$
\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}
$$

\triangleright some of our variables are real (e.g. link loads)
\star we have a mixed-integer linear programming problem
$\triangleright \mathbb{Z}^{n}$ is the set of n-dimensional vectors of integers
\star we will restrict to $\mathbf{x} \in\{0,1\}^{n}$
\triangleright Many other classic examples

* travelling salesman problem
* knapsack problem
* set covering problem
* machine scheduling problem

Converting BCM into integer program

Variables are

$$
z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use } e \text {) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use } e \text {) }\end{cases}
$$

Write optimization objective

$$
\begin{align*}
C(\mathbf{f}) & =\sum_{e} \alpha_{e} f_{e} \tag{1}\\
& =\sum_{e} \alpha_{e} \sum_{\mu: e \in \mu} x_{\mu} \tag{2}\\
& =\sum_{e} \sum_{\mu} \alpha_{e} A(e, \mu) x_{\mu} \tag{3}\\
& =\left[\alpha^{t} A\right] \mathbf{x} \tag{4}
\end{align*}
$$

More information on integer programming can be found at
http://mat.gsia.cmu.edu/orclass/integer/integer.html
(2) follows from the fact that in the BCM $f_{e}=\sum_{\mu: e \in \mu} x_{\mu}, \forall e \in E$.
(3) we defined the routing matrix A by

$$
A(e, \mu)= \begin{cases}1, & \text { if path } \mu \text { uses link } e, \text { i.e. } e \in \mu \\ 0, & \text { otherwise }\end{cases}
$$

(4) is just a vector/matrix representation of (3), and can be rewritten in the familiar form

$$
C(\mathbf{f})=\sum_{\mu \in P} l_{\mu} x_{\mu}=\mathbf{l}^{\mathbf{t}} \mathbf{x}
$$

Converting BCM into integer program

We derive the routing vector \mathbf{x} from the \mathbf{z} by solving the shortest path problem (with linear costs) on the graph determined by the z .

Converting BCM into integer program

Obvious constraints given in the BCM are

$$
\begin{align*}
& \sum_{\mu: \mu \in P_{k}} x_{\mu}=t_{k}, \quad \forall k \in K \tag{5}\\
& \sum_{e \in E} \beta_{e} z_{e} \leq B \tag{6}
\end{align*}
$$

we just need to write these in matrix form, but there is a less obvious contraint

$$
\begin{equation*}
\left(1-z_{e}\right) f_{e}=\left(1-z_{e}\right) \sum_{\mu: e \in \mu} x_{\mu}=0 \tag{7}
\end{equation*}
$$

which says we cannot put traffic on absent links.

Communications Network Design: lecture 12 - p.12/38

[^0]
Relationship to linear programming

For each integer program:
(IP) $\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}$
there is an associated linear program:
(LP) $\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0\right\}$
Now (LP) is less constrained than (IP) so

- If (LP) is infeasible, then so is (IP)
- If (LP) is optimized by integer variables, then that solution is feasible and optimal for (IP)
- The optimal objective value for (LP) is greater than or equal to the optimal objective for (IP)

Remember we can always convert a constraint such as

$$
A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0 .
$$

into an equality by including slack variables s such that

$$
A \mathbf{x}+\mathbf{s}=\mathbf{b}, \mathbf{x} \geq 0, \mathbf{s} \geq 0
$$

Bounds

- call the (LP) a relaxation
\triangleright because we have relaxed some constraints
- it is easy to solve (usually)
\triangleright its a standard linear program
\triangleright can use simplex, or interior point methods
- rounding off the solution to the relaxation might work badly
\triangleright it could even produce a partitioned graph
\triangleright not all traffic can get through!
- but the (LP) relaxation does provide a bound \triangleright we can use this to prune branches

Branching

- the above gives us bounds for solutions
- we also need to branch
\triangleright at each point where we don't have an integer solution, we can branch by splitting the possible solutions into two partitions
\triangleright for example, we require $x_{1} \in\{0,1\}$, but the relaxation solution was $x_{1}=0.2$, we then subdivide the problem into two parts
$\star x_{1}=0$
$\star x_{1}=1$
\triangleright then solve each of these subproblems

Branching example

For the network problem, we have decision variables

$$
z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use } e \text {) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use } e \text {) }\end{cases}
$$

Branch and Bound

- key: if upper bound of a subproblem is less than objective for a known integer feasible solution, then
\triangleright the subproblem cannot have a solution greater than the already known solution
\triangleright we can eliminate this solution
\triangleright we can also prune all of the tree below the solution
- it lets us do a non-exhaustive search of the subproblems
Δ if we get to the end, we have a proof of optimality without exhaustive search

More information and examples of Branch and bound can be found at
http://mat.gsia.cmu.edu/orclass/integer/integer.html
http://en.wikipedia.org/wiki/Branch and bound
http://mathworld.wolfram.com/BranchandBoundAlgorithm.html

An instructive paper is
http://www.rpi.edu/~mitchj/papers/leeejem.html

A list of implementations can be found at
http://www.mat.univie.ac.at/~neum/glopt/software_g.html

Branch and Bound: algorithm

1. Initialization: initialize variables, in particular, start a list of subproblems, initialized with our original integer program.
2. Termination: terminate the program when we reach the optimum (i.e. the list of subproblems is empty).
3. Problem selection and relaxation: select the next problem from the list of possible subproblems, and solve a relaxation on it.
4. Fathoming and pruning: eliminate branches of the tree once we prove they cannot contain an optimal solution.
5. Branching: partition the current problem into subproblems, and add these to our list.

Branch and Bound: example

Consider the problem (from [2])
$I P^{0}\left\{\begin{array}{lrl}\text { maximize } & 13 x_{1}+8 x_{2} & \\ \text { subject to } & x_{1}+2 x_{2} & \leq 10 \\ & 5 x_{1}+2 x_{2} & \leq 20 \\ & x_{1} \geq 0, x_{2} \geq 0 \\ & x_{1}, x_{2} \text { integer } & \\ & \end{array}\right.$

Branch and Bound: algorithm

Initialization:

- initialize the list of problems \mathcal{L}
\triangleright set initially $\mathcal{L}=\left\{I P^{0}\right\}$, where $I P^{0}$ is the initial problem
\triangleright often store/picture L as a tree
- incumbent objective value $z_{i p}=-\infty$
- initial value of upper bound on problem is $\bar{z}_{0}=\infty$
- constraint set of problem IP ${ }^{0}$ is set to be $S^{0}=\left\{\mathbf{x} \in \mathbb{Z}^{n} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0\right\}$

The incumbent objective value $z_{i p}$ represents the "best" solution we have found so far. If any solution does worse than this we can ignore it. Its intial value $-\infty$ is chosen to be the worst possible, so that any feasible solution will be better than this.

The bound gives us an upper bound on the solution of an integer program. Initially we don' know anything, and so the upper bound is effectively undefined by setting it to be $\bar{z}_{0}=\infty$. When we solve the relaxation, we will find out this value.

If the upper bound of a solution $\bar{z}_{i}<z_{i p}$ then this problem IP^{i} obviously cannot achieve the same objective value that we have already achieved elsewhere in our solutions.

The constraint set S^{i} defines the set of possible solutions for the the particular problem IP^{i} under consideration.

Branch and Bound: algorithm

Termination:

- If $\mathcal{L}=\phi$ then we stop
\triangleright If $z_{i p}=-\infty$ then the integer program is infeasible.
\triangleright Otherwise, the subproblem IP ${ }^{i}$ which yielded the current value of $z_{i p}$ is optimal gives the optimal solution \mathbf{x}^{*}

Branch and Bound: algorithm

Problem selection:

- select a problem from \mathcal{L}
\triangleright there are multiple ways to decide which problem to choose from the list
* the method used can have a big impact on speed
\triangleright once selected, delete the problem from the list

Relaxation:

- solve a relaxation of the problem
\triangleright denote the optimal solution by $\mathrm{x}^{i R}$
\triangleright denote the optimal objective value by z_{i}^{R} $\star z_{i}^{R}=-\infty$ if no feasible solutions exis \dagger

Communications Network Design: lecture 12 - p.22/38

For the example

the relaxation is

Branch and Bound: algorithm

Fathoming:

- we say branch of the tree is fathomed if
\triangleright infeasible
\triangleright feasible solution, and $z_{i}^{R} \leq z_{i p}$
\triangleright integral feasible solution
\star set $z_{i p} \leftarrow \max \left\{z_{i p}, z_{i}^{R}\right\}$
Pruning:
- in any of the cases above, we need not investigate any more subproblems of the current problem
\triangleright subproblems have more constraints
\triangleright their z must lie under the upper bound
- Prune any subtrees with $z_{j}^{R} \leq z_{i p}$
- If we pruned Goto step 2

We don't prune the example yet (see later for complete example).

Branch and Bound: algorithm

Branching:

- also called partitioning
- want to partition the current problem into subproblems
\triangleright there are several ways to perform partitioning
- If S^{i} is the current constraint set, then we need a disjoint partition $\left\{S^{i j}\right\}_{j=1}^{k}$ of this set
\triangleright we add problems $\left\{\operatorname{IP}^{i j}\right\}_{j=1}^{k}$ to \mathcal{L}
$\triangleright \mathrm{IP}^{i j}$ is just $I P^{i}$ with its feasible region restricted to $S^{i j}$
- Goto step 2

In the example we partition on x_{1}

- this is the "most infeasible"
\triangleright furthest from an integral value
- partition into two subproblems by adding an extra constraint
$\triangleright \mathrm{IP}^{1}$ has $x_{1} \geq 3$
$\triangleright \mathrm{IP}^{2}$ has $x_{1} \leq 2$
So now $\mathcal{L}=\left\{\mathrm{IP}^{1}, \mathrm{IP}^{2}\right\}$

Branch and Bound: algorithm

1. Initialization: initialize variables, in particular, start a list of subproblems, initialized with our original integer program.
2. Termination: terminate the program when we reach the optimum (i.e. the list of subproblems is empty).
3. Problem selection and relaxation: select the next problem from the list of possible subproblems, and solve a relaxation on it.
4. Fathoming and pruning: eliminate branches of the tree once we prove they cannot contain an optimal solution.
5. Branching: partition the current problem into subproblems, and add these to our list.

We can think of "branch and bound" as a meta-heuristic - there are many ways to do each step in the above algorithm, and our choice will build a particular form of branch and bound.

Branch and Bound: example

$$
\begin{aligned}
& \text { Consider the problem (from [2]) } \\
& \text { with relaxation }
\end{aligned}
$$

which has solutions $x_{1}^{0}=2.5$ and $x_{2}^{0}=3.75$ with $z_{0}^{R}=62.5$

Communications Network Design: lecture 12 - p.26/38

Branch and Bound: example

- we will partition on x_{1}
\triangleright this is the "most infeasible"
* furthest from an integral value
- we will partition on x_{1}
\triangleright partition into two subproblems by adding an extra constraint
\star IP 1 has $x_{1} \geq 3$
\star IP 2 has $x_{1} \leq 2$
- $\mathcal{L}=\left\{I P^{1}, I P^{2}\right\}$

$$
\mathcal{L}=\left\{I P^{1}, I P^{2}\right\}
$$

Branch and Bound: example

Branch and Bound: example

Problem selection (just chose in order) of IP ${ }^{1}$

$I P^{1}\{$	maximize subject to	$\begin{aligned} 13 x_{1}+8 x_{2} & \\ x_{1}+2 x_{2} & \leq 10 \\ 5 x_{1}+2 x_{2} & \leq 20 \\ x_{1} & \geq 3 \\ x_{1} \geq 0, x_{2} \geq 0 & \\ x_{1}, x_{2} \text { integer } & \end{aligned}$

The relaxation (to a LP) has solutions

- $x_{1}^{1}=3$ and $x_{2}^{1}=2.5$ with $z_{1}^{R}=59$
- we will next partition on x_{2}
$\triangleright I P^{3}$ has $x_{2} \leq 2$
$\triangleright I P^{4}$ has $x_{2} \geq 3$

Branch and Bound: example

Branch and Bound: example
Problem selection (best bound) of $I P^{2}$

$I P^{2}$	maximize subject to	$\begin{aligned} 13 x_{1}+8 x_{2} & \\ x_{1}+2 x_{2} & \leq 10 \\ 5 x_{1}+2 x_{2} & \leq 20 \\ x_{1} & \leq 2 \\ x_{1} \geq 0, x_{2} \geq 0 & \\ x_{1}, x_{2} \text { integer } & \end{aligned}$

The relaxation (to a LP) has solutions

- $x_{1}^{2}=2$ and $x_{2}^{2}=4$ with $z_{2}^{R}=58$
- integral feasible
- $z_{i p}=58$
- $I P^{2}$ is fathomed

Branch and Bound: example

Problem selection (order) of $I P^{3}$

$I P^{3}$	maximize subject to	$\begin{aligned} 13 x_{1}+8 x_{2} & \\ x_{1}+2 x_{2} & \leq 10 \\ 5 x_{1}+2 x_{2} & \leq 20 \\ x_{1} & \geq 3 \\ x_{2} & \geq 3 \\ x_{1} \geq 0, x_{2} \geq 0 & \\ x_{1}, x_{2} \text { integer } & \end{aligned}$

The relaxation (to a LP) is infeasible

- $z_{3}^{R}=-\infty$
- IP ${ }^{3}$ is fathomed
- $\mathcal{L}=\left\{I P^{4}\right\}$

Branch and Bound: example

Branch and Bound: example

Branch and Bound

- B\&B is a very general algorithm
\triangleright as described above we seek the optimum
\triangleright can also be used as a heuristic
- different strategies available for each step above
- can use heuristics inside B\&B
\triangleright pre-processing of the problem can be good
- no single strategy stands out as best for all problems
\triangleright but sometimes we can exploit properties of a particular problem to do better

References

[1] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan, "The complexity of the network design problem," Networks, vol. 8, pp. 279-285, 1978.
[2] E. K. Lee and J. Mitchell, Encyclopedia of Optimization, ch. Branch-and-bound methods for integer programming. Kluwer Academic Publishers, 2001.
http://www.rpi.edu/~mitchj/papers/leeejem.html.

[^0]: (7) says that $x_{\mu}=0$ for any path μ that uses a link e that is not present in the network we build,
 i.e. we can't route traffic along links that don't exist.

