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Communications Network Design: lecture 12 – p.1/38

This leture introdues an simpli�ed network design problem (the budget onstraint model)and the onept of branh and bound optimization.
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Budget onstraint model

and branh and boundBranh and bound is a standard tehnique for solvinginteger programs, by relaxing the problem to thenon-integer problem to �nd bounds, and using these toprune a tree of the possible solutions (rather thanevaluating all possible solutions).
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Budget Constraint Model

◮ separable linear ost model

C(f) = ∑
e∈L(f)

(βe+αe fe) where L(f) = {e∈ E : fe > 0}

= ∑
e∈L(f)

βe+ ∑
µ∈P

lµ(L(f))xµ

◮ separate osts into

⊲ initial investment osts (of laying optial �bre)

Cinv(L) = ∑
e∈L

βe

⊲ operations ost of lighting up the link

Cop(f,L) = ∑
e∈L

αe fe

Communications Network Design: lecture 12 – p.3/38

Given L(f) = {e∈ E : fe > 0}

C(f) = ∑
e∈L(f)

(βe+αe fe)

= ∑
e: fe>0

(βe+αe fe)

= ∑
e: fe>0

ce( fe)

ce( fe) =

{

0 if fe = 0

βe+αe fe if fe > 0
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Budget Constraint Model (BCM)
◮ ealier, we onsidered the problem

minC(f) = min[Cinv(L)+Cop(f,L)]subjet to the appropriate onstraints
◮ budget onstraint model

⊲ have a budget onstraint on the investmentosts

Cinv(L)≤ B

⊲ onsider the optimization problem

minCop(f,L) subjet to Cinv(L)≤ Bwith additional onstraints as above.
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Formulation: of BCM

(P') min C(f) = ∑
e∈L

αe fes.t. fe = ∑
µ:e∈µ

xµ ∀e∈ E

∑
µ:µ∈Pk

xµ = tk ∀k∈ K

∑
e∈E

βeze ≤ B

xµ ≥ 0 ∀µ∈ P
ze = 0, or 1 ∀e∈ E

ze =

{

1 if link e∈ L (i.e. we use e)

0 if link e 6∈ L (i.e. we don't use e)
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BCM and the triangle inequality
◮ αe satisfy the triangle inequality

ij jk

ik

α α

α
ki

j

αi j < αik +αk j

⊲ beause βe have been moved into onstraints

⊲ otherwise, link e= (i, j) ould be deleted as it isa longer path than i−k− j
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BCM and Branh and Bound

◮ this is an old, well studied problem, e.g. see [1℄

◮ NP-hard

◮ look for heuristi solutions

⊲ branh and bound [2℄

◮ Branh and Bound is the topi of this leture.
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NotationWe an write an optimization problem several differentways

◮ integer linear programming problem, alled (IP)

(IP)



















maximize cTxsubjet to Ax ≤ b
x ≥ 0
x ∈ Z

n

◮ short form

max{cTx | Ax≤ b,x≥ 0,x ∈ Z
n}
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Z is the set of integers {. . . ,−3,−2,−1,0,1,2,3, . . .}

Z
n is the n-dimensional integer lattie, e.g. a segment of Z2 is shown at the points in the �gurebelow.
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Integer programming

◮ Take an integer linear programming problem

max{cTx | Ax≤ b,x≥ 0,x ∈ Z
n}

⊲ some of our variables are real (e.g. link loads)

⋆ we have a mixed-integer linear programmingproblem

⊲ Z
n is the set of n-dimensional vetors of integers

⋆ we will restrit to x ∈ {0,1}n

⊲ Many other lassi examples

⋆ travelling salesman problem

⋆ knapsak problem

⋆ set overing problem

⋆ mahine sheduling problem

Communications Network Design: lecture 12 – p.9/38

More information on integer programming an be found at

http://mat.gsia.cmu.edu/orclass/integer/integer.html
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Converting BCM into integer program

Variables are

ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

Write optimization objetive
C(f) = ∑

e

αe fe (1)

= ∑
e

αe ∑
µ:e∈µ

xµ (2)

= ∑
e

∑
µ

αeA(e,µ)xµ (3)

= [αtA]x (4)
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(2) follows from the fat that in the BCM fe = ∑
µ:e∈µ

xµ,∀e∈ E.(3) we de�ned the routing matrix A by

A(e,µ) =

{

1, if path µ uses link e, i.e. e∈ µ

0, otherwise(4) is just a vetor/matrix representation of (3), and an be rewritten in the familiar form

C(f) = ∑
µ∈P

lµxµ = lt x
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Converting BCM into integer program

We derive the routing vetor x from the z by solving theshortest path problem (with linear osts) on the graphdetermined by the z.
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Converting BCM into integer program

Obvious onstraints given in the BCM are
∑

µ:µ∈Pk

xµ = tk, ∀k∈ K (5)

∑
e∈E

βeze ≤ B (6)

we just need to write these in matrix form, but there isa less obvious ontraint
(1−ze) fe = (1−ze) ∑

µ:e∈µ

xµ = 0 (7)

whih says we annot put traf� on absent links.
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(7) says that xµ = 0 for any path µ that uses a link e that is not present in the network we build,i.e. we an't route traf� along links that don't exist.
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Relationship to linear programming

For eah integer program:(IP) max{cTx | Ax≤ b,x≥ 0,x ∈ Z
n}there is an assoiated linear program:(LP) max{cTx | Ax≤ b,x≥ 0}Now (LP) is less onstrained than (IP) so

◮ If (LP) is infeasible, then so is (IP)

◮ If (LP) is optimized by integer variables, then thatsolution is feasible and optimal for (IP)

◮ The optimal objetive value for (LP) is greater thanor equal to the optimal objetive for (IP)
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Remember we an always onvert a onstraint suh as

Ax≤ b,x≥ 0.into an equality by inluding slak variables s suh that

Ax+ s = b,x≥ 0,s≥ 0.
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Bounds

◮ all the (LP) a relaxation

⊲ beause we have relaxed some onstraints
◮ it is easy to solve (usually)

⊲ its a standard linear program
⊲ an use simplex, or interior point methods

◮ rounding off the solution to the relaxation mightwork badly

⊲ it ould even produe a partitioned graph

⊲ not all traf� an get through!

◮ but the (LP) relaxation does provide a bound

⊲ we an use this to prune branhes
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Branhing

◮ the above gives us bounds for solutions

◮ we also need to branh

⊲ at eah point where we don't have an integersolution, we an branh by splitting the possiblesolutions into two partitions

⊲ for example, we require x1 ∈ {0,1}, but therelaxation solution was x1 = 0.2, we thensubdivide the problem into two parts

⋆ x1 = 0
⋆ x1 = 1

⊲ then solve eah of these subproblems
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Branhing example

For the network problem, we have deision variables
ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

z = 01 z = 11

L=E\{e }1

L=E\{e }1L=E\{e , e }1

L=E, e definitely
included
1

z = 02 z = 02z = 12 z = 12

L=E\{e }2 L=E,
e included1 e ,e included1    2

L=E

2
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Branh and Bound

◮ key: if upper bound of a subproblem is less thanobjetive for a known integer feasible solution, then

⊲ the subproblem annot have a solution greaterthan the already known solution

⊲ we an eliminate this solution

⊲ we an also prune all of the tree below thesolution

◮ it lets us do a non-exhaustive searh of thesubproblems

⊲ if we get to the end, we have a proof ofoptimality without exhaustive searh
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More information and examples of Branh and bound an be found at

http://mat.gsia.cmu.edu/orclass/integer/integer.html
http://en.wikipedia.org/wiki/Branch_and_bound
http://mathworld.wolfram.com/BranchandBoundAlgorithm.htmlAn instrutive paper is

http://www.rpi.edu/~mitchj/papers/leeejem.htmlA list of implementations an be found at

http://www.mat.univie.ac.at/~neum/glopt/software_g.html
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Branh and Bound: algorithm

1. Initialization: initialize variables, in partiular,start a list of subproblems, initialized with ouroriginal integer program.2. Termination: terminate the program when we reahthe optimum (i.e. the list of subproblems is empty).3. Problem seletion and relaxation: selet the nextproblem from the list of possible subproblems, andsolve a relaxation on it.4. Fathoming and pruning: eliminate branhes of thetree one we prove they annot ontain an optimalsolution.5. Branhing: partition the urrent problem intosubproblems, and add these to our list.
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http://mat.gsia.cmu.edu/orclass/integer/integer.html
http://en.wikipedia.org/wiki/Branch_and_bound
http://mathworld.wolfram.com/BranchandBoundAlgorithm.html
http://www.rpi.edu/~mitchj/papers/leeejem.html
http://www.mat.univie.ac.at/~neum/glopt/software_g.html


Branh and Bound: exampleConsider the problem (from [2℄)

IP0



























maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0
x1,x2 integer
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Branh and Bound: algorithm

Initialization:

◮ initialize the list of problems L

⊲ set initially L = {IP0
}, where IP0 is the initialproblem

⊲ often store/piture L as a tree
◮ inumbent objetive value zip =−∞

◮ initial value of upper bound on problem is z̄0 = ∞

◮ onstraint set of problem IP0 is set to be

S0 = {x ∈ Z
n|Ax≤ b,x≥ 0}
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The inumbent objetive value zip represents the �best� solution we have found so far. If anysolution does worse than this we an ignore it. Its intial value −∞ is hosen to be the worstpossible, so that any feasible solution will be better than this.The bound gives us an upper bound on the solution of an integer program. Initially we don'tknow anything, and so the upper bound is effetively unde�ned by setting it to be z̄0 = ∞.When we solve the relaxation, we will �nd out this value.If the upper bound of a solution z̄i < zip then this problem IPi obviously annot ahieve thesame objetive value that we have already ahieved elsewhere in our solutions.The onstraint set Si de�nes the set of possible solutions for the the partiular problem IPiunder onsideration.
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Branh and Bound: algorithm

Termination:

◮ If L = φ then we stop

⊲ If zip =−∞ then the integer program isinfeasible.

⊲ Otherwise, the subproblem IPi whih yielded theurrent value of zip is optimal gives the optimalsolution x∗
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We stop branh and bound when we have run out of subproblems (whih are listed in L ) tosolve, i.e., when L is empty.
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Branh and Bound: algorithm

Problem seletion:

◮ selet a problem from L

⊲ there are multiple ways to deide whih problemto hoose from the list
⋆ the method used an have a big impat onspeed

⊲ one seleted, delete the problem from the listRelaxation:

◮ solve a relaxation of the problem
⊲ denote the optimal solution by xiR

⊲ denote the optimal objetive value by zR
i

⋆ zR
i =−∞ if no feasible solutions exist
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For the example
IP0



























maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10

5x1 +2x2 ≤ 20

x1 ≥ 0,x2 ≥ 0

x1,x2 integerthe relaxation is
LP0



















maximize z= 13x1 +8x2subjet to x1 +2x2 ≤ 10

5x1 +2x2 ≤ 20

x1 ≥ 0,x2 ≥ 0whih has solutions x0R
1 = 2.5 and x0R

2 = 3.75with zR
0 = 62.5
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Branh and Bound: algorithmFathoming :

◮ we say branh of the tree is fathomed if

⊲ infeasible

⊲ feasible solution, and zR
i ≤ zip

⊲ integral feasible solution

⋆ set zip←max{zip,zR
i }Pruning:

◮ in any of the ases above, we need not investigateany more subproblems of the urrent problem

⊲ subproblems have more onstraints

⊲ their zmust lie under the upper bound

◮ Prune any subtrees with zR
j ≤ zip

◮ If we pruned Goto step 2
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We don't prune the example yet (see later for omplete example).
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Branh and Bound: algorithm

Branhing:

◮ also alled partitioning

◮ want to partition the urrent problem intosubproblems

⊲ there are several ways to perform partitioning

◮ If Si is the urrent onstraint set, then we need adisjoint partition {Si j}k
j=1 of this set

⊲ we add problems {IPi j
}k

j=1 to L

⊲ IPi j is just IPi with its feasible region restritedto Si j

◮ Goto step 2
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In the example we partition on x1

◮ this is the �most infeasible�

⊲ furthest from an integral value

◮ partition into two subproblems by adding an extra onstraint

⊲ IP1 has x1 ≥ 3

⊲ IP2 has x1 ≤ 2So now L = {IP1
, IP2}

x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

21
LP relaxation solution

2.5 3.75z = 62.5R
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Branh and Bound: algorithm

1. Initialization: initialize variables, in partiular,start a list of subproblems, initialized with ouroriginal integer program.2. Termination: terminate the program when we reahthe optimum (i.e. the list of subproblems is empty).3. Problem seletion and relaxation: selet the nextproblem from the list of possible subproblems, andsolve a relaxation on it.4. Fathoming and pruning: eliminate branhes of thetree one we prove they annot ontain an optimalsolution.5. Branhing: partition the urrent problem intosubproblems, and add these to our list.
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We an think of �branh and bound� as a meta-heuristi � there are many ways to do eahstep in the above algorithm, and our hoie will build a partiular form of branh and bound.
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Branh and Bound: exampleConsider the problem (from [2℄)

IP0



























maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0
x1,x2 integerwith relaxation

LP0



















maximize z= 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0whih has solutions x0
1 = 2.5 and x0

2 = 3.75with zR
0 = 62.5
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Branh and Bound: example

◮ we will partition on x1

⊲ this is the �most infeasible�

⋆ furthest from an integral value

◮ we will partition on x1

⊲ partition into two subproblems by adding anextra onstraint

⋆ IP1 has x1≥ 3
⋆ IP2 has x1≤ 2

◮ L = {IP1
,IP2
}
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Branh and Bound: example
x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

21
LP relaxation solution

2.5 3.75z = 62.5R

L = {IP1
,IP2
}
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Branh and Bound: example

Problem seletion (just hose in order) of IP1

IP1







































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solutions

◮ x1
1 = 3 and x1

2 = 2.5 with zR
1 = 59

◮ we will next partition on x2

⊲ IP3 has x2≤ 2

⊲ IP4 has x2≥ 3
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Branh and Bound: example
x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

z = 62.5R

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP2
,IP3

,IP4
}

Communications Network Design: lecture 12 – p.30/38

Communications Network Design: lecture 12 – p.30/38



Branh and Bound: example

Problem seletion (best bound) of IP2

IP2







































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≤ 2
x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solutions

◮ x2
1 = 2 and x2

2 = 4 with zR
2 = 58

◮ integral feasible

◮ zip = 58

◮ IP2 is fathomed
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Branh and Bound: example
x =      ,  x  = 

x = 2,  x  = 4
IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

z = 62.5R

2
LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP3
,IP4
}
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Branh and Bound: example

Problem seletion (order) of IP3

IP3















































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x2 ≥ 3

x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) is infeasible

◮ zR
3 =−∞

◮ IP3 is fathomed

◮ L = {IP4
}
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Branh and Bound: example

Problem seletion (only possible one) of IP4

IP4















































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x2 ≤ 2

x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solution

◮ x2
1 = 3.2 and x2

2 = 2 with zR
4 = 57.6 < zip

◮ IP4 is fathomed
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Branh and Bound: example

x =      ,  x  = 

x = 2,  x  = 4
IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

z = 57.6R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

1
LP soln

3.2x =     ,  x  = 22

z = 62.5R

2
LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

infeasible
=> fathomed => fathomed

R
ipz  < z
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Branh and Bound: example

0 1 2 3 4 5 6
0

1
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6
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x
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x
1

z=58

z
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Branh and Bound

◮ B&B is a very general algorithm

⊲ as desribed above we seek the optimum

⊲ an also be used as a heuristi

◮ different strategies available for eah step above

⊲ an use heuristis inside B&B

⊲ pre-proessing of the problem an be good

◮ no single strategy stands out as best for allproblems

⊲ but sometimes we an exploit properties of apartiular problem to do better
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