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Budget onstraint model

and branh and boundBranh and bound is a standard tehnique for solvinginteger programs, by relaxing the problem to thenon-integer problem to �nd bounds, and using these toprune a tree of the possible solutions (rather thanevaluating all possible solutions).
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Budget Constraint Model

separable linear ost model

C(f) = ∑
e∈L(f)

(βe+αe fe) where L(f) = {e∈ E : fe > 0}

= ∑
e∈L(f)

βe+ ∑
µ∈P

lµ(L(f))xµ

separate osts intoinitial investment osts (of laying optial �bre)

Cinv(L) = ∑
e∈L

βe

operations ost of lighting up the link

Cop(f,L) = ∑
e∈L

αe fe
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Budget Constraint Model (BCM)

ealier, we onsidered the problem
minC(f) = min[Cinv(L)+Cop(f,L)]subjet to the appropriate onstraintsbudget onstraint modelhave a budget onstraint on the investmentosts

Cinv(L)≤ Bonsider the optimization problem

minCop(f,L) subjet to Cinv(L)≤ Bwith additional onstraints as above.
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Formulation: of BCM

(P') min C(f) = ∑
e∈L

αe fes.t. fe = ∑
µ:e∈µ

xµ ∀e∈ E

∑
µ:µ∈Pk

xµ = tk ∀k∈ K

∑
e∈E

βeze ≤ B

xµ ≥ 0 ∀µ∈ P
ze = 0, or 1 ∀e∈ E

ze =

{

1 if link e∈ L (i.e. we use e)

0 if link e 6∈ L (i.e. we don't use e)
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BCM and the triangle inequality
αe satisfy the triangle inequality

ij jk

ik

α α

α
ki

j

αi j < αik +αk jbeause βe have been moved into onstraintsotherwise, link e= (i, j) ould be deleted as it isa longer path than i−k− j
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BCM and Branh and Boundthis is an old, well studied problem, e.g. see [1℄NP-hardlook for heuristi solutionsbranh and bound [2℄Branh and Bound is the topi of this leture.
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NotationWe an write an optimization problem several differentwaysinteger linear programming problem, alled (IP)

(IP)



















maximize cTxsubjet to Ax ≤ b
x ≥ 0
x ∈ Z

n

short form
max{cTx | Ax≤ b,x≥ 0,x ∈ Z

n}
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Integer programming

Take an integer linear programming problem
max{cTx | Ax≤ b,x≥ 0,x ∈ Z

n}some of our variables are real (e.g. link loads)we have a mixed-integer linear programmingproblem

Z
n is the set of n-dimensional vetors of integerswe will restrit to x ∈ {0,1}nMany other lassi examplestravelling salesman problemknapsak problemset overing problemmahine sheduling problem
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Converting BCM into integer program

Variables are

ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

Write optimization objetive
C(f) = ∑

e

αe fe (1)

= ∑
e

αe ∑
µ:e∈µ

xµ (2)

= ∑
e

∑
µ

αeA(e,µ)xµ (3)

= [αtA]x (4)
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Converting BCM into integer program

We derive the routing vetor x from the z by solving theshortest path problem (with linear osts) on the graphdetermined by the z.
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Converting BCM into integer program

Obvious onstraints given in the BCM are
∑

µ:µ∈Pk

xµ = tk, ∀k∈ K (5)

∑
e∈E

βeze ≤ B (6)

we just need to write these in matrix form, but there isa less obvious ontraint
(1−ze) fe = (1−ze) ∑

µ:e∈µ

xµ = 0 (7)

whih says we annot put traf� on absent links.
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Relationship to linear programming

For eah integer program:(IP) max{cTx | Ax≤ b,x≥ 0,x ∈ Z
n}there is an assoiated linear program:(LP) max{cTx | Ax≤ b,x≥ 0}Now (LP) is less onstrained than (IP) soIf (LP) is infeasible, then so is (IP)If (LP) is optimized by integer variables, then thatsolution is feasible and optimal for (IP)The optimal objetive value for (LP) is greater thanor equal to the optimal objetive for (IP)
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Boundsall the (LP) a relaxationbeause we have relaxed some onstraintsit is easy to solve (usually)its a standard linear programan use simplex, or interior point methodsrounding off the solution to the relaxation mightwork badlyit ould even produe a partitioned graphnot all traf� an get through!but the (LP) relaxation does provide a boundwe an use this to prune branhes
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Branhing
the above gives us bounds for solutionswe also need to branhat eah point where we don't have an integersolution, we an branh by splitting the possiblesolutions into two partitionsfor example, we require x1 ∈ {0,1}, but therelaxation solution was x1 = 0.2, we thensubdivide the problem into two parts

x1 = 0
x1 = 1then solve eah of these subproblems
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Branhing example

For the network problem, we have deision variables
ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

z = 01 z = 11

L=E

L=E\{e }1
included

L=E, e definitely1

Communications Network Design: lecture 12 – p.16/38



Branhing example

For the network problem, we have deision variables
ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

z = 01 z = 11

L=E\{e }1

L=E\{e }1L=E\{e , e }1

L=E, e definitely
included
1

z = 02 z = 02z = 12 z = 12

L=E\{e }2 L=E,
e included1 e ,e included1    2

L=E

2
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Branh and Boundkey: if upper bound of a subproblem is less thanobjetive for a known integer feasible solution, thenthe subproblem annot have a solution greaterthan the already known solutionwe an eliminate this solutionwe an also prune all of the tree below thesolutionit lets us do a non-exhaustive searh of thesubproblemsif we get to the end, we have a proof ofoptimality without exhaustive searh
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Branh and Bound: algorithm

1. Initialization: initialize variables, in partiular,start a list of subproblems, initialized with ouroriginal integer program.2. Termination: terminate the program when we reahthe optimum (i.e. the list of subproblems is empty).3. Problem seletion and relaxation: selet the nextproblem from the list of possible subproblems, andsolve a relaxation on it.4. Fathoming and pruning: eliminate branhes of thetree one we prove they annot ontain an optimalsolution.5. Branhing: partition the urrent problem intosubproblems, and add these to our list.
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Branh and Bound: exampleConsider the problem (from [2℄)

IP0



























maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0
x1,x2 integer
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Branh and Bound: algorithm

Initialization:initialize the list of problems Lset initially L = {IP0
}, where IP0 is the initialproblemoften store/piture L as a treeinumbent objetive value zip =−∞initial value of upper bound on problem is z̄0 = ∞onstraint set of problem IP0 is set to be

S0 = {x ∈ Z
n|Ax≤ b,x≥ 0}
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Branh and Bound: algorithm

Termination:If L = φ then we stopIf zip =−∞ then the integer program isinfeasible.Otherwise, the subproblem IPi whih yielded theurrent value of zip is optimal gives the optimalsolution x∗
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Branh and Bound: algorithm

Problem seletion:selet a problem from Lthere are multiple ways to deide whih problemto hoose from the listthe method used an have a big impat onspeedone seleted, delete the problem from the listRelaxation:solve a relaxation of the problemdenote the optimal solution by xiRdenote the optimal objetive value by zR
i

zR
i =−∞ if no feasible solutions exist
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Branh and Bound: algorithmFathoming :we say branh of the tree is fathomed ifinfeasiblefeasible solution, and zR
i ≤ zipintegral feasible solutionset zip←max{zip,zR

i }Pruning:in any of the ases above, we need not investigateany more subproblems of the urrent problemsubproblems have more onstraintstheir zmust lie under the upper boundPrune any subtrees with zR
j ≤ zipIf we pruned Goto step 2
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Branh and Bound: algorithm

Branhing:also alled partitioningwant to partition the urrent problem intosubproblemsthere are several ways to perform partitioningIf Si is the urrent onstraint set, then we need adisjoint partition {Si j}k
j=1 of this setwe add problems {IPi j
}k

j=1 to LIPi j is just IPi with its feasible region restritedto Si jGoto step 2
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Branh and Bound: algorithm

1. Initialization: initialize variables, in partiular,start a list of subproblems, initialized with ouroriginal integer program.2. Termination: terminate the program when we reahthe optimum (i.e. the list of subproblems is empty).3. Problem seletion and relaxation: selet the nextproblem from the list of possible subproblems, andsolve a relaxation on it.4. Fathoming and pruning: eliminate branhes of thetree one we prove they annot ontain an optimalsolution.5. Branhing: partition the urrent problem intosubproblems, and add these to our list.
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Branh and Bound: exampleConsider the problem (from [2℄)

IP0



























maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0
x1,x2 integerwith relaxation

LP0



















maximize z= 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0whih has solutions x0
1 = 2.5 and x0

2 = 3.75with zR
0 = 62.5
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Branh and Bound: example

we will partition on x1this is the �most infeasible�furthest from an integral valuewe will partition on x1partition into two subproblems by adding anextra onstraintIP1 has x1≥ 3IP2 has x1≤ 2

L = {IP1
,IP2
}
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Branh and Bound: example
x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

21
LP relaxation solution

2.5 3.75z = 62.5R

L = {IP1
,IP2
}
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Branh and Bound: example

Problem seletion (just hose in order) of IP1

IP1







































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solutions

x1
1 = 3 and x1

2 = 2.5 with zR
1 = 59we will next partition on x2IP3 has x2≤ 2IP4 has x2≥ 3
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Branh and Bound: example
x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

z = 62.5R

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP2
,IP3

,IP4
}
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Branh and Bound: example

Problem seletion (best bound) of IP2

IP2







































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≤ 2
x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solutions

x2
1 = 2 and x2

2 = 4 with zR
2 = 58integral feasible

zip = 58IP2 is fathomed
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Branh and Bound: example
x =      ,  x  = 

x = 2,  x  = 4
IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

z = 62.5R

2
LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP3
,IP4
}
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Branh and Bound: example

Problem seletion (order) of IP3

IP3















































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x2 ≥ 3

x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) is infeasible

zR
3 =−∞IP3 is fathomed

L = {IP4
}
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Branh and Bound: example

Problem seletion (only possible one) of IP4

IP4















































maximize 13x1 +8x2subjet to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x2 ≤ 2

x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solution

x2
1 = 3.2 and x2

2 = 2 with zR
4 = 57.6 < zipIP4 is fathomed

Communications Network Design: lecture 12 – p.34/38



Branh and Bound: example
x =      ,  x  = 

x = 2,  x  = 4
IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

z = 57.6R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

1
LP soln

3.2x =     ,  x  = 22

z = 62.5R

2
LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

infeasible
=> fathomed => fathomed

R
ipz  < z
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Branh and Bound: example

0 1 2 3 4 5 6
0

1
2

3
4

5
6

0

10

20

30

40

50

60

x
2

x
1

z=58

z
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Branh and BoundB&B is a very general algorithmas desribed above we seek the optimuman also be used as a heuristidifferent strategies available for eah step abovean use heuristis inside B&Bpre-proessing of the problem an be goodno single strategy stands out as best for allproblemsbut sometimes we an exploit properties of apartiular problem to do better
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