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Budget 
onstraint model

and bran
h and boundBran
h and bound is a standard te
hnique for solvinginteger programs, by relaxing the problem to thenon-integer problem to �nd bounds, and using these toprune a tree of the possible solutions (rather thanevaluating all possible solutions).
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Budget Constraint Model

separable linear 
ost model

C(f) = ∑
e∈L(f)

(βe+αe fe) where L(f) = {e∈ E : fe > 0}

= ∑
e∈L(f)

βe+ ∑
µ∈P

lµ(L(f))xµ

separate 
osts intoinitial investment 
osts (of laying opti
al �bre)

Cinv(L) = ∑
e∈L

βe

operations 
ost of lighting up the link

Cop(f,L) = ∑
e∈L

αe fe
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Budget Constraint Model (BCM)

ealier, we 
onsidered the problem
minC(f) = min[Cinv(L)+Cop(f,L)]subje
t to the appropriate 
onstraintsbudget 
onstraint modelhave a budget 
onstraint on the investment
osts

Cinv(L)≤ B
onsider the optimization problem

minCop(f,L) subje
t to Cinv(L)≤ Bwith additional 
onstraints as above.

Communications Network Design: lecture 12 – p.4/38



Formulation: of BCM

(P') min C(f) = ∑
e∈L

αe fes.t. fe = ∑
µ:e∈µ

xµ ∀e∈ E

∑
µ:µ∈Pk

xµ = tk ∀k∈ K

∑
e∈E

βeze ≤ B

xµ ≥ 0 ∀µ∈ P
ze = 0, or 1 ∀e∈ E

ze =

{

1 if link e∈ L (i.e. we use e)

0 if link e 6∈ L (i.e. we don't use e)
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BCM and the triangle inequality
αe satisfy the triangle inequality

ij jk

ik

α α

α
ki

j

αi j < αik +αk jbe
ause βe have been moved into 
onstraintsotherwise, link e= (i, j) 
ould be deleted as it isa longer path than i−k− j

Communications Network Design: lecture 12 – p.6/38



BCM and Bran
h and Boundthis is an old, well studied problem, e.g. see [1℄NP-hardlook for heuristi
 solutionsbran
h and bound [2℄Bran
h and Bound is the topi
 of this le
ture.
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NotationWe 
an write an optimization problem several differentwaysinteger linear programming problem, 
alled (IP)

(IP)



















maximize cTxsubje
t to Ax ≤ b
x ≥ 0
x ∈ Z

n

short form
max{cTx | Ax≤ b,x≥ 0,x ∈ Z

n}
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Integer programming

Take an integer linear programming problem
max{cTx | Ax≤ b,x≥ 0,x ∈ Z

n}some of our variables are real (e.g. link loads)we have a mixed-integer linear programmingproblem

Z
n is the set of n-dimensional ve
tors of integerswe will restri
t to x ∈ {0,1}nMany other 
lassi
 examplestravelling salesman problemknapsa
k problemset 
overing problemma
hine s
heduling problem
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Converting BCM into integer program

Variables are

ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

Write optimization obje
tive
C(f) = ∑

e

αe fe (1)

= ∑
e

αe ∑
µ:e∈µ

xµ (2)

= ∑
e

∑
µ

αeA(e,µ)xµ (3)

= [αtA]x (4)
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Converting BCM into integer program

We derive the routing ve
tor x from the z by solving theshortest path problem (with linear 
osts) on the graphdetermined by the z.
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Converting BCM into integer program

Obvious 
onstraints given in the BCM are
∑

µ:µ∈Pk

xµ = tk, ∀k∈ K (5)

∑
e∈E

βeze ≤ B (6)

we just need to write these in matrix form, but there isa less obvious 
ontraint
(1−ze) fe = (1−ze) ∑

µ:e∈µ

xµ = 0 (7)

whi
h says we 
annot put traf�
 on absent links.
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Relationship to linear programming

For ea
h integer program:(IP) max{cTx | Ax≤ b,x≥ 0,x ∈ Z
n}there is an asso
iated linear program:(LP) max{cTx | Ax≤ b,x≥ 0}Now (LP) is less 
onstrained than (IP) soIf (LP) is infeasible, then so is (IP)If (LP) is optimized by integer variables, then thatsolution is feasible and optimal for (IP)The optimal obje
tive value for (LP) is greater thanor equal to the optimal obje
tive for (IP)
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Bounds
all the (LP) a relaxationbe
ause we have relaxed some 
onstraintsit is easy to solve (usually)its a standard linear program
an use simplex, or interior point methodsrounding off the solution to the relaxation mightwork badlyit 
ould even produ
e a partitioned graphnot all traf�
 
an get through!but the (LP) relaxation does provide a boundwe 
an use this to prune bran
hes
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Bran
hing
the above gives us bounds for solutionswe also need to bran
hat ea
h point where we don't have an integersolution, we 
an bran
h by splitting the possiblesolutions into two partitionsfor example, we require x1 ∈ {0,1}, but therelaxation solution was x1 = 0.2, we thensubdivide the problem into two parts

x1 = 0
x1 = 1then solve ea
h of these subproblems
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Bran
hing example

For the network problem, we have de
ision variables
ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

z = 01 z = 11

L=E

L=E\{e }1
included

L=E, e definitely1
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Bran
hing example

For the network problem, we have de
ision variables
ze =

{

1 if link e∈ L (i.e. we use e)
0 if link e 6∈ L (i.e. we don't use e)

z = 01 z = 11

L=E\{e }1

L=E\{e }1L=E\{e , e }1

L=E, e definitely
included
1

z = 02 z = 02z = 12 z = 12

L=E\{e }2 L=E,
e included1 e ,e included1    2

L=E

2

Communications Network Design: lecture 12 – p.16/38



Bran
h and Boundkey: if upper bound of a subproblem is less thanobje
tive for a known integer feasible solution, thenthe subproblem 
annot have a solution greaterthan the already known solutionwe 
an eliminate this solutionwe 
an also prune all of the tree below thesolutionit lets us do a non-exhaustive sear
h of thesubproblemsif we get to the end, we have a proof ofoptimality without exhaustive sear
h
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Bran
h and Bound: algorithm

1. Initialization: initialize variables, in parti
ular,start a list of subproblems, initialized with ouroriginal integer program.2. Termination: terminate the program when we rea
hthe optimum (i.e. the list of subproblems is empty).3. Problem sele
tion and relaxation: sele
t the nextproblem from the list of possible subproblems, andsolve a relaxation on it.4. Fathoming and pruning: eliminate bran
hes of thetree on
e we prove they 
annot 
ontain an optimalsolution.5. Bran
hing: partition the 
urrent problem intosubproblems, and add these to our list.

Communications Network Design: lecture 12 – p.18/38



Bran
h and Bound: exampleConsider the problem (from [2℄)

IP0



























maximize 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0
x1,x2 integer
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Bran
h and Bound: algorithm

Initialization:initialize the list of problems Lset initially L = {IP0
}, where IP0 is the initialproblemoften store/pi
ture L as a treein
umbent obje
tive value zip =−∞initial value of upper bound on problem is z̄0 = ∞
onstraint set of problem IP0 is set to be

S0 = {x ∈ Z
n|Ax≤ b,x≥ 0}
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Bran
h and Bound: algorithm

Termination:If L = φ then we stopIf zip =−∞ then the integer program isinfeasible.Otherwise, the subproblem IPi whi
h yielded the
urrent value of zip is optimal gives the optimalsolution x∗
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Bran
h and Bound: algorithm

Problem sele
tion:sele
t a problem from Lthere are multiple ways to de
ide whi
h problemto 
hoose from the listthe method used 
an have a big impa
t onspeedon
e sele
ted, delete the problem from the listRelaxation:solve a relaxation of the problemdenote the optimal solution by xiRdenote the optimal obje
tive value by zR
i

zR
i =−∞ if no feasible solutions exist
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Bran
h and Bound: algorithmFathoming :we say bran
h of the tree is fathomed ifinfeasiblefeasible solution, and zR
i ≤ zipintegral feasible solutionset zip←max{zip,zR

i }Pruning:in any of the 
ases above, we need not investigateany more subproblems of the 
urrent problemsubproblems have more 
onstraintstheir zmust lie under the upper boundPrune any subtrees with zR
j ≤ zipIf we pruned Goto step 2
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Bran
h and Bound: algorithm

Bran
hing:also 
alled partitioningwant to partition the 
urrent problem intosubproblemsthere are several ways to perform partitioningIf Si is the 
urrent 
onstraint set, then we need adisjoint partition {Si j}k
j=1 of this setwe add problems {IPi j
}k

j=1 to LIPi j is just IPi with its feasible region restri
tedto Si jGoto step 2
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Bran
h and Bound: algorithm

1. Initialization: initialize variables, in parti
ular,start a list of subproblems, initialized with ouroriginal integer program.2. Termination: terminate the program when we rea
hthe optimum (i.e. the list of subproblems is empty).3. Problem sele
tion and relaxation: sele
t the nextproblem from the list of possible subproblems, andsolve a relaxation on it.4. Fathoming and pruning: eliminate bran
hes of thetree on
e we prove they 
annot 
ontain an optimalsolution.5. Bran
hing: partition the 
urrent problem intosubproblems, and add these to our list.
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Bran
h and Bound: exampleConsider the problem (from [2℄)

IP0



























maximize 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0
x1,x2 integerwith relaxation

LP0



















maximize z= 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1≥ 0,x2≥ 0whi
h has solutions x0
1 = 2.5 and x0

2 = 3.75with zR
0 = 62.5
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Bran
h and Bound: example

we will partition on x1this is the �most infeasible�furthest from an integral valuewe will partition on x1partition into two subproblems by adding anextra 
onstraintIP1 has x1≥ 3IP2 has x1≤ 2

L = {IP1
,IP2
}
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Bran
h and Bound: example
x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

21
LP relaxation solution

2.5 3.75z = 62.5R

L = {IP1
,IP2
}
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Bran
h and Bound: example

Problem sele
tion (just 
hose in order) of IP1

IP1







































maximize 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solutions

x1
1 = 3 and x1

2 = 2.5 with zR
1 = 59we will next partition on x2IP3 has x2≤ 2IP4 has x2≥ 3
Communications Network Design: lecture 12 – p.29/38



Bran
h and Bound: example
x =      ,  x  = 

IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

z = 62.5R

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP2
,IP3

,IP4
}
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Bran
h and Bound: example

Problem sele
tion (best bound) of IP2

IP2







































maximize 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≤ 2
x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solutions

x2
1 = 2 and x2

2 = 4 with zR
2 = 58integral feasible

zip = 58IP2 is fathomed
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Bran
h and Bound: example
x =      ,  x  = 

x = 2,  x  = 4
IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

z = 62.5R

2
LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

L = {IP3
,IP4
}
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Bran
h and Bound: example

Problem sele
tion (order) of IP3

IP3















































maximize 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x2 ≥ 3

x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) is infeasible

zR
3 =−∞IP3 is fathomed

L = {IP4
}
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Bran
h and Bound: example

Problem sele
tion (only possible one) of IP4

IP4















































maximize 13x1 +8x2subje
t to x1 +2x2 ≤ 10
5x1 +2x2 ≤ 20

x1 ≥ 3
x2 ≤ 2

x1≥ 0,x2≥ 0
x1,x2 integerThe relaxation (to a LP) has solution

x2
1 = 3.2 and x2

2 = 2 with zR
4 = 57.6 < zipIP4 is fathomed
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Bran
h and Bound: example
x =      ,  x  = 

x = 2,  x  = 4
IP2IP1

IP0

x >= 31 x <= 21

IP4IP3

z = 59R z = 58R

z = 57.6R

21
LP relaxation solution

2.5 3.75

1 2
LP soln
x = 3,  x  = 2.5

integer solution
=> fathomed

ipz  = 58

1
LP soln

3.2x =     ,  x  = 22

z = 62.5R

2
LP soln
1

22
11x >= 3

x >= 3 x <= 2
x >= 3

infeasible
=> fathomed => fathomed

R
ipz  < z
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Bran
h and Bound: example

0 1 2 3 4 5 6
0

1
2

3
4

5
6

0

10

20

30

40

50

60

x
2

x
1

z=58

z
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Bran
h and BoundB&B is a very general algorithmas des
ribed above we seek the optimum
an also be used as a heuristi
different strategies available for ea
h step above
an use heuristi
s inside B&Bpre-pro
essing of the problem 
an be goodno single strategy stands out as best for allproblemsbut sometimes we 
an exploit properties of aparti
ular problem to do better
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