Communications Network Design
lecture 12

Matthew Roughan
<mat t hew. r oughan@adel ai de. edu. au>

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 2, 2009

Communications Network Design: lecture 12 — p.1/38

Budget constraint model
and branch and bound

Branch and bound is a standard technique for solving
integer programs, by relaxing the problem o the
non-integer problem to find bounds, and using these to
prune a tree of the possible solutions (rather than
evaluating all possible solutions).

Communications Network Design: lecture 12 — p.2/38

Budget Constraint Model

m separable linear cost model
C(f) = > (Betaefe) wherel(f)={ecE:f.>0}

ecL(

f)
ee%f)ﬁ lgp u (L(F)) Xy

B separate costs into
m initial investment costs (of laying optical fibre)

Cinv('—) — e; Be

m operations cost of lighting up the link
Cop(f,L) =) 0ef
op() egl ele

Communications Network Design: lecture 12 — p.3/38

Budget Constraint Model (BCM)

m ealier, we considered the problem
mIiNC(f) = min|Cipy (L) 4+ Cop(f, L)]

subject to the appropriate constraints

m budget constraint model

m have a budget constraint on the investment
costs

Cinv(L) < B
m consider the optimization problem

minCop(f,L) subject to Cipy(L) < B

with additional constraints as above.

Communications Network Design: lecture 12 — p.4/38

Formulation: of BCM

(P) min C(f) = Zaefe

ec
s.t. fe = > xu VecE
EEN

L

ue
Z;Beze <B
ec
X, >0 Vue P
Z =0,0orl VecE

] 1 iflinkeel (i.e. we use e)
] 0 iflinke¢L (i.e. we don't use €)

Communications Network Design: lecture 12 — p.5/38

BCM and the triangle inequality

m 0. satisfy the triangle inequality

Qjj < Aijk + Ak

m because (e have been moved into constraints

m otherwise, link e= (i, j) could be deleted as it is
a longer path than i—k—j

Communications Network Design: lecture 12 — p.6/38

BCM and Branch and Bound

m this is an old, well studied problem, e.g. see [1]

m NP-hard

m ook for heuristic solutions
m branch and bound [2]

m Branch and Bound is the topic of this lecture.

Communications Network Design: lecture 12 — p.7/38

Notation

We can write an optimization problem several different
ways

m integer linear programming problem, called (IP)

(maximize c'x
subjectto Ax < Db
IP —
(IP)« X > 0
\ X & 7N

m short form
max{c'x | Ax < b,x > 0,x € Z"}

Communications Network Design: lecture 12 — p.8/38

Integer programming

m Take an integer linear programming problem
max{c'x | Ax < b,x > 0,x € Z"}

m some of our variables are real (e.g. link loads)
we have a mixed-integer linear programming
problem

m 7" is the set of n-dimensional vectors of integers
we will restrict to x € {0,1}"

m Many other classic examples
travelling salesman problem
knapsack problem
set covering problem
machine scheduling problem

Communications Network Design: lecture 12 — p.9/38

Converting BCM into integer program

Variables are

] 1 iflinkeelL (i.e. we use e)
] 0 iflinke¢L (i.e. we don't use €)

Write optimization objective

Cf) = 3 defe (1)
= Y 0e > X (2)
e Lecu
= > > deAle W)Xy (3)
e H
= [a'Alx (4)

Communications Network Design: lecture 12 — p.10/38

Converting BCM into integer program

We derive the routing vector x from the z by solving the
shortest path problem (with linear costs) on the graph
determined by the z.

Communications Network Design: lecture 12 — p.11/38

Converting BCM into integer program

Obvious constraints given in the BCM are

Z Xy, = t, VkeK (5)
LEP
Z; BeZe < B (6)

we just need to write these in matrix form, but there is
a less obvious contraint

(1-2z)fe=(1-2)) % =0 (7)

Lecu

which says we cannot put traffic on absent links.

Communications Network Design: lecture 12 — p.12/38

Relationship to linear programming

For each integer program:
(IP) max{c'x|Ax<b,x>0,x € Z"}
there is an associated linear program:
(LP) max{c'x|Ax <b,x> 0}
Now (LP) is less constrained than (IP) so
m If (LP) is infeasible, then so is (IP)

m If (LP) is optimized by integer variables, then that
solution is feasible and optimal for (IP)

m The optimal objective value for (LP) is greater than
or equal To the optimal objective for (IP)

Communications Network Design: lecture 12 — p.13/38

Bounds

m call the (LP) a relaxation
m because we have relaxed some constraints

m it is easy o solve (usually)
m its a standard linear program
m can use simplex, or interior point methods

m rounding of f the solution to the relaxation might

work badly

m it could even produce a partitioned graph
m not all traffic can get throughl

m but the (LP) relaxation does provide a bound
m we can use this to prune branches

Communications Network Design: lecture 12 — p.14/38

Branching

m the above gives us bounds for solutions

m we also need to branch
m at each point where we don't have an integer
solution, we can branch by splitting the possible
solutions into two partitions

= for example, we require x; € {0,1}, but the

relaxation solution was x; = 0.2, we then
subdivide the problem into two parts
X1 = 0
X1=1
m then solve each of these subproblems

Communications Network Design: lecture 12 — p.15/38

Branching example

For the network problem, we have decision variables

] 1 iflinkeelL (i.e. we use e)
=9 0 if linke¢L (i.e. we don't use €)

L=E, e,definitely
included

Communications Network Design: lecture 12 — p.16/38

Branching example

For the network problem, we have decision variables

] 1 iflinkeelL (i.e. we use e)
=9 0 if linke¢L (i.e. we don't use €)

L=E

z=1
L=E\{e } L=E, e,definitely
Included
Z=1
L=E\e,, e} || L=E\ey L=E\{e
e,included e,,6,Included

Communications Network Design: lecture 12 — p.16/38

Branch and Bound

m key: if upper bound of a subproblem is less than
objective for a known integer feasible solution, then

m the subproblem cannot have a solution greater
than the already known solution

m we can eliminate this solution

m we can also prune all of the tree below the
solution

m it lets us do a non-exhaustive search of the
subproblems

m if we get to the end, we have a proof of
optimality without exhaustive search

Communications Network Design: lecture 12 — p.17/38

Branch and Bound: algorithm

1.

Initialization: initialize variables, in particular,
start a list of subproblems, initialized with our
original integer program.

Termination: terminate the program when we reach
the optimum (i.e. the list of subproblems is empty).

Problem selection and relaxation: select the next
problem from the list of possible subproblems, and

solve a relaxation on it.

Fathoming and pruning: eliminate branches of the
tree once we prove they cannot contain an optimal
solution.

Branching: partition the current problem into
subproblems, and add these to our list.

Communications Network Design: lecture 12 — p.18/38

Branch and Bound: example
Consider the problem (from [2])

(maximize 13X + 8%»
SUbJ@CT to X1+2% < 10
IP°! 5+ 2%, < 20
X1 > 0,% >0
\ X1, X2 InTeger

Communications Network Design: lecture 12 — p.19/38

Branch and Bound: algorithm

Initialization:
m initialize the list of problems £

m set initially £ = {IP°}, where IP° is the initial
problem

m often store/picture L as a tree
m incumbent objective value z, = —

m initial value of upper bound on problem is zy =

m constraint set of problem IP° is set to be
L ={xcZ"|Ax<b,x>0}

Communications Network Design: lecture 12 — p.20/38

Branch and Bound: algorithm

Termination:
mIf L =@then we stop

m If z, = — then the integer program is
infeasible.

m Otherwise, the subproblem IP' which yielded the
current value of zj, is optimal gives the optimal
solution x*

Communications Network Design: lecture 12 — p.21/38

Branch and Bound: algorithm

Problem selection:

m select a problem from L

m there are multiple ways to decide which problem

to choose from the list
the method used can have a big impact on

speed
m once selected, delete the problem from the list
Relaxation:
m solve a relaxation of the problem
m denote the optimal solution by xR

= denote the optimal objective value by Z?
723 = — if no feasible solutions exist

Communications Network Design: lecture 12 — p.22/38

Branch and Bound: algorithm

Fathoming :
m we say branch of the tree is fathomed if
m infeasible
= feasible solution, and Z* < zj,
m integral feasible solution
set zp «+— max{zp, 2"}
Pruning:
m in any of the cases above, we need not investigate
any more subproblems of the current problem
m subproblems have more constraints

® their zmust lie under the upper bound
m Prune any subtrees with Z¥ < 7,

m If we pruned Goto step 2

Communications Network Design: lecture 12 — p.23/38

Branch and Bound: algorithm

Branching:
m also called partitioning

m want to partition the current problem into
subproblems

m there are several ways to perform partitioning

m If S is the current constraint set, then we need a
disjoint partition {S'}_, of this set

= we add problems {IP" F_ito L

m IP' is just IP' with its feasible region restricted
to S
m Goto step 2

Communications Network Design: lecture 12 — p.24/38

Branch and Bound: algorithm

1.

Initialization: initialize variables, in particular,
start a list of subproblems, initialized with our
original integer program.

Termination: terminate the program when we reach
the optimum (i.e. the list of subproblems is empty).

Problem selection and relaxation: select the next
problem from the list of possible subproblems, and

solve a relaxation on it.

Fathoming and pruning: eliminate branches of the
tree once we prove they cannot contain an optimal
solution.

Branching: partition the current problem into
subproblems, and add these to our list.

Communications Network Design: lecture 12 — p.25/38

Branch and Bound: example
Consider the problem (from [2])

y

maximize 13Xy + 8%o
subject to X1 + 2Xo
IpP° ! 5X1 + 2X»
X1 > 0,% >0
\ X1, X2 InTeger

with relaxation
(

10
20

VARVA

maximize z= 13x;+ 8%
subject to X1+ 2X%2

5X1 + 2%
\ X1 > 0,% >0

which has solutions X} = 2.5 and X} = 3.75with zy = 625

10

0
LP™ 4 20

VARVA

Communications Network Design: lecture 12 — p.26/38

Branch and Bound: example

m we will partition on x

m this is the "most infeasible”
furthest from an integral value

m we will partition on x;

m partition into two subproblems by adding an
extra constraint
IP' has x; > 3
IP2 has X1 <2

m L= {IP' TP

Communications Network Design: lecture 12 — p.27/38

Branch and Bound: example

L ={IP'IP°}

PO

LP relaxation solution
ZR: 625 | 1= 2.5, Xo=23.75

7%

Pl x>=3

IP? x<=2

Communications Network Design: lecture 12 — p.28/38

Branch and Bound: example

Problem selection (just chose in order) of P

(maximize 13X + 8%o
SUbJ@CT to X1+2% < 10
IPl < 51 +2% < 20
X1 > 3
X1 > 0,% >0
\ X1, X2 InTeger

The relaxation (o a LP) has solutions
mx{ =3 and x; = 2.5 with 1 =59
m we will next partition on x;
B IP° has x, <2
m IP" has x, > 3

Communications Network Design: lecture 12 — p.29/38

Branch and Bound: example

LP relaxation solution
ZR: 625 | 1= 2.5, Xo=23.75

LP soln
=3, Xo=2.5 f\’: 59

3 x>=3 4 x>=3
P x;>:3 P x;<:2

£={IP* IP° IP*}

Communications Network Design: lecture 12 — p.30/38

Branch and Bound: example

Problem selection (best bound) of IP°

([maximize 13Xy + 8%o
SUbJ@CT to X1+2% < 10
Ip> < 51 +2% < 20
X < 2
X1 > 0,% >0
\ X1,X2 Integer

The relaxation (to a LP) has solutions
m X2 =2and x5 =4 with X = 58
m integral feasible
W z,=058
m IP® is fathomed

Communications Network Design: lecture 12 — p.31/38

Branch and Bound: example

LP relaxation solution
ZR: 625 | 1= 2.5, Xo=23.75

1 _ 2 _
LP soln IP= »%>=3 IP< x<=2 LP soln
=3, Xo=2.5 f\’: 59 ZR: 58 X=2, Xo=4
integer solution
=> fathomed
Zp= 98
3 X1>= 3 4 X1>= 3
IP Xo>= 3 I P Xo<= 2
3 4
£ = {IP® IP"

Communications Network Design: lecture 12 — p.32/38

Branch and Bound: example

Problem selection (order) of IP°®

[maximize 13Xy + 8%o
subject to X1 +2% < 10
51+ 2% < 20
Ip3 ! Xy > 3
Xo > 3
X1 > 0,% >0
\ X1,X2 Integer

The relaxation (to a LP) is infeasible

N Z?Ff — —00
m IP° is fathomed
m L= {IPY

Communications Network Design: lecture 12 — p.33/38

Branch and Bound: example

Problem selection (only possible one) of IP*

maximize 13X + 8%o
SUbJ@CT to X1+2% < 10
51 +2% < 20
IP* ¢ Xy > 3
Xo < 2
X1 > 0,% >0
\ X1, X2 InTeger

The relaxation (o a LP) has solution
mx{=3.2and x5 =2 with |Z; =576 < 7,

m IP" is fathomed

Communications Network Design: lecture 12 — p.34/38

Branch and Bound: example

0
IP LP relaxation solution
f\’: 625 | 1= 2.5, Xo=23.75

7%

T oo 2 y<=
LP soln IPL x>=3 IP x<=21 b 5o
X=3, X2=2.5 7= 59 =58 | 172 Xem 4
integer solution
=> fathomed
Zip= 58
3 x>=3 4 %>=3
IP x;>: 3 P X§<: 2 | LP soin
F=576 | 4732 X2=2
feasibl Re 5.
rff%ﬂlo(raned = fgth:mzéd

Communications Network Design: lecture 12 — p.35/38

Branch and Bound: example

60 _,7 _______ N A |

50‘

40‘ P T . _____

Communications Network Design: lecture 12 — p.36/38

Branch and Bound

m B&B is a very general algorithm
m as described above we seek the optimum
m can also be used as a heuristic
m different strategies available for each step above
m can use heuristics inside B&B
m pre-processing of the problem can be good
m no single strategy stands out as best for all
problems

m but sometimes we can exploit properties of a
particular problem to do better

Communications Network Design: lecture 12 — p.37/38

References

[1] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan, "The complexity of the network
design problem,” Networks, vol. 8, pp. 279-285, 1978.

[2] E. K. Lee and J. Mitchell, Encyclopedia of Optimization, ch. Branch-and-bound
methods for integer programming. Kluwer Academic Publishers, 2001.
http://ww. rpi.edu/~mtchj/papers/|leeejemhtmnl.

Communications Network Design: lecture 12 — p.38/38

http://www.rpi.edu/~mitchj/papers/leeejem.html

	
	Budget Constraint Model
	Budget Constraint Model (BCM)
	Formulation: of BCM
	BCM and the triangle inequality
	BCM and Branch and Bound
	Notation
	Integer programming
	Converting BCM into integer program
	Converting BCM into integer program
	Converting BCM into integer program
	Relationship to linear programming
	Bounds
	Branching
	Branching example
	Branch and Bound
	Branch and Bound: algorithm
	Branch and Bound: example
	Branch and Bound: algorithm
	Branch and Bound: algorithm
	Branch and Bound: algorithm
	Branch and Bound: algorithm
	Branch and Bound: algorithm
	Branch and Bound: algorithm
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound: example
	Branch and Bound
	

