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Budget constraint model
and branch and bound

Branch and bound is a standard technique for solving
integer programs, by relaxing the problem o the
non-integer problem to find bounds, and using these to
prune a tree of the possible solutions (rather than
evaluating all possible solutions).
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Budget Constraint Model

m separable linear cost model
C(f) = > (Betaefe) wherel(f)={ecE:f.>0}

ecL(

f)
ee%f)ﬁ lgp u (L(F)) Xy

B separate costs into
m initial investment costs (of laying optical fibre)

Cinv('—) — e; Be

m operations cost of lighting up the link
Cop(f,L) = ) 0ef
op( ) egl ele
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Budget Constraint Model (BCM)

m ealier, we considered the problem
mIiNC(f) = min|Cipy (L) 4+ Cop(f, L)]

subject to the appropriate constraints

m budget constraint model

m have a budget constraint on the investment
costs

Cinv(L) < B
m consider the optimization problem

minCop(f,L) subject to Cipy(L) < B

with additional constraints as above.
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Formulation: of BCM

(P)  min C(f) = Zaefe

ec
s.t. fe = > xu VecE
EEN

L

ue
Z;Beze <B
ec
X, >0 Vue P
Z =0,0orl VecE

] 1 iflinkeel (i.e. we use e)
] 0 iflinke¢L (i.e. we don't use €)
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BCM and the triangle inequality

m 0. satisfy the triangle inequality

Qjj < Aijk + Ak

m because (e have been moved into constraints

m otherwise, link e= (i, j) could be deleted as it is
a longer path than i—k—j
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BCM and Branch and Bound

m this is an old, well studied problem, e.g. see [1]

m NP-hard

m ook for heuristic solutions
m branch and bound [2]

m Branch and Bound is the topic of this lecture.
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Notation

We can write an optimization problem several different
ways

m integer linear programming problem, called (IP)

( maximize  c'x
subjectto Ax < Db
IP —
(IP)« X > 0
\ X & 7N

m short form
max{c'x | Ax < b,x > 0,x € Z"}
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Integer programming

m Take an integer linear programming problem
max{c'x | Ax < b,x > 0,x € Z"}

m some of our variables are real (e.g. link loads)
we have a mixed-integer linear programming
problem

m 7" is the set of n-dimensional vectors of integers
we will restrict to x € {0,1}"

m Many other classic examples
travelling salesman problem
knapsack problem
set covering problem
machine scheduling problem
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Converting BCM into integer program

Variables are

] 1 iflinkeelL (i.e. we use e)
] 0 iflinke¢L (i.e. we don't use €)

Write optimization objective

Cf) = 3 defe (1)
= Y 0e > X (2)
e Lecu
= > > deAle W)Xy (3)
e H
= [a'Alx (4)
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Converting BCM into integer program

We derive the routing vector x from the z by solving the
shortest path problem (with linear costs) on the graph
determined by the z.
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Converting BCM into integer program

Obvious constraints given in the BCM are

Z Xy, = t, VkeK (5)
LEP
Z; BeZe < B (6)

we just need to write these in matrix form, but there is
a less obvious contraint

(1-2z)fe=(1-2) ) % =0 (7)

Lecu

which says we cannot put traffic on absent links.
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Relationship to linear programming

For each integer program:
(IP) max{c'x|Ax<b,x>0,x € Z"}
there is an associated linear program:
(LP) max{c'x|Ax <b,x> 0}
Now (LP) is less constrained than (IP) so
m If (LP) is infeasible, then so is (IP)

m If (LP) is optimized by integer variables, then that
solution is feasible and optimal for (IP)

m The optimal objective value for (LP) is greater than
or equal To the optimal objective for (IP)
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Bounds

m call the (LP) a relaxation
m because we have relaxed some constraints

m it is easy o solve (usually)
m its a standard linear program
m can use simplex, or interior point methods

m rounding of f the solution to the relaxation might

work badly

m it could even produce a partitioned graph
m not all traffic can get throughl

m but the (LP) relaxation does provide a bound
m we can use this to prune branches
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Branching

m the above gives us bounds for solutions

m we also need to branch
m at each point where we don't have an integer
solution, we can branch by splitting the possible
solutions into two partitions

= for example, we require x; € {0,1}, but the

relaxation solution was x; = 0.2, we then
subdivide the problem into two parts
X1 = 0
X1=1
m then solve each of these subproblems
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Branching example

For the network problem, we have decision variables

] 1 iflinkeelL (i.e. we use e)
=9 0 if linke¢L (i.e. we don't use €)

L=E, e,definitely
included
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Branching example

For the network problem, we have decision variables

] 1 iflinkeelL (i.e. we use e)
=9 0 if linke¢L (i.e. we don't use €)

L=E

z=1
L=E\{e } L=E, e,definitely
Included
Z=1
L=E\e,, e} || L=E\ey L=E\{e
e,included e,,6,Included
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Branch and Bound

m key: if upper bound of a subproblem is less than
objective for a known integer feasible solution, then

m the subproblem cannot have a solution greater
than the already known solution

m we can eliminate this solution

m we can also prune all of the tree below the
solution

m it lets us do a non-exhaustive search of the
subproblems

m if we get to the end, we have a proof of
optimality without exhaustive search
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Branch and Bound: algorithm

1.

Initialization: initialize variables, in particular,
start a list of subproblems, initialized with our
original integer program.

Termination: terminate the program when we reach
the optimum (i.e. the list of subproblems is empty).

Problem selection and relaxation: select the next
problem from the list of possible subproblems, and

solve a relaxation on it.

Fathoming and pruning: eliminate branches of the
tree once we prove they cannot contain an optimal
solution.

Branching: partition the current problem into
subproblems, and add these to our list.
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Branch and Bound: example
Consider the problem (from [2])

( maximize 13X + 8%»
SUbJ@CT to X1+2% < 10
IP°! 5+ 2%, < 20
X1 > 0,% >0
\ X1, X2 InTeger
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Branch and Bound: algorithm

Initialization:
m initialize the list of problems £

m set initially £ = {IP°}, where IP° is the initial
problem

m often store/picture L as a tree
m incumbent objective value z, = —

m initial value of upper bound on problem is zy =

m constraint set of problem IP° is set to be
L ={xcZ"|Ax<b,x>0}
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Branch and Bound: algorithm

Termination:
mIf L =@then we stop

m If z, = — then the integer program is
infeasible.

m Otherwise, the subproblem IP' which yielded the
current value of zj, is optimal gives the optimal
solution x*
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Branch and Bound: algorithm

Problem selection:

m select a problem from L

m there are multiple ways to decide which problem

to choose from the list
the method used can have a big impact on

speed
m once selected, delete the problem from the list
Relaxation:
m solve a relaxation of the problem
m denote the optimal solution by xR

= denote the optimal objective value by Z?
723 = — if no feasible solutions exist
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Branch and Bound: algorithm

Fathoming :
m we say branch of the tree is fathomed if
m infeasible
= feasible solution, and Z* < zj,
m integral feasible solution
set zp «+— max{zp, 2"}
Pruning:
m in any of the cases above, we need not investigate
any more subproblems of the current problem
m subproblems have more constraints

® their zmust lie under the upper bound
m Prune any subtrees with Z¥ < 7,

m If we pruned Goto step 2
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Branch and Bound: algorithm

Branching:
m also called partitioning

m want to partition the current problem into
subproblems

m there are several ways to perform partitioning

m If S is the current constraint set, then we need a
disjoint partition {S'}_, of this set

= we add problems {IP" F_ito L

m IP' is just IP' with its feasible region restricted
to S
m Goto step 2
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Branch and Bound: algorithm

1.

Initialization: initialize variables, in particular,
start a list of subproblems, initialized with our
original integer program.

Termination: terminate the program when we reach
the optimum (i.e. the list of subproblems is empty).

Problem selection and relaxation: select the next
problem from the list of possible subproblems, and

solve a relaxation on it.

Fathoming and pruning: eliminate branches of the
tree once we prove they cannot contain an optimal
solution.

Branching: partition the current problem into
subproblems, and add these to our list.
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Branch and Bound: example
Consider the problem (from [2])

y

maximize 13Xy + 8%o
subject to X1 + 2Xo
IpP° ! 5X1 + 2X»
X1 > 0,% >0
\ X1, X2 InTeger

with relaxation
(

10
20

VARVA

maximize  z= 13x;+ 8%
subject to X1+ 2X%2

5X1 + 2%
\ X1 > 0,% >0

which has solutions X} = 2.5 and X} = 3.75with zy = 625

10

0
LP™ 4 20

VARVA
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Branch and Bound: example

m we will partition on x

m this is the "most infeasible”
furthest from an integral value

m we will partition on x;

m partition into two subproblems by adding an
extra constraint
IP' has x; > 3
IP2 has X1 <2

m L= {IP' TP
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Branch and Bound: example

L ={IP'IP°}

PO

LP relaxation solution
ZR: 625 | 1= 2.5, Xo=23.75

7%

Pl x>=3

IP? x<=2
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Branch and Bound: example

Problem selection (just chose in order) of P

( maximize 13X + 8%o
SUbJ@CT to X1+2% < 10
IPl < 51 +2% < 20
X1 > 3
X1 > 0,% >0
\ X1, X2 InTeger

The relaxation (o a LP) has solutions
mx{ =3 and x; = 2.5 with 1 =59
m we will next partition on x;
B IP° has x, <2
m IP" has x, > 3
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Branch and Bound: example

LP relaxation solution
ZR: 625 | 1= 2.5, Xo=23.75

LP soln
=3, Xo=2.5 f\’: 59

3 x>=3 4 x>=3
P x;>:3 P x;<:2

£={IP* IP° IP*}
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Branch and Bound: example

Problem selection (best bound) of IP°

([ maximize 13Xy + 8%o
SUbJ@CT to X1+2% < 10
Ip> < 51 +2% < 20
X < 2
X1 > 0,% >0
\ X1,X2 Integer

The relaxation (to a LP) has solutions
m X2 =2and x5 =4 with X = 58
m integral feasible
W z,=058
m IP® is fathomed
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Branch and Bound: example

LP relaxation solution
ZR: 625 | 1= 2.5, Xo=23.75

1 _ 2 _
LP soln IP= »%>=3 IP< x<=2 LP soln
=3, Xo=2.5 f\’: 59 ZR: 58 X=2, Xo=4
integer solution
=> fathomed
Zp= 98
3 X1>= 3 4 X1>= 3
IP Xo>= 3 I P Xo<= 2
3 4
£ = {IP® IP"
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Branch and Bound: example

Problem selection (order) of IP°®

[ maximize 13Xy + 8%o
subject to X1 +2% < 10
51+ 2% < 20
Ip3 ! Xy > 3
Xo > 3
X1 > 0,% >0
\ X1,X2 Integer

The relaxation (to a LP) is infeasible

N Z?Ff — —00
m IP° is fathomed
m L= {IPY
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Branch and Bound: example

Problem selection (only possible one) of IP*

maximize 13X + 8%o
SUbJ@CT to X1+2% < 10
51 +2% < 20
IP* ¢ Xy > 3
Xo < 2
X1 > 0,% >0
\ X1, X2 InTeger

The relaxation (o a LP) has solution
mx{=3.2and x5 =2 with |Z; =576 < 7,

m IP" is fathomed
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Branch and Bound: example

0
IP LP relaxation solution
f\’: 625 | 1= 2.5, Xo=23.75

7%

T oo 2 y<=
LP soln IPL x>=3 IP x<=21 b 5o
X=3, X2=2.5 7= 59 =58 | 172 Xem 4
integer solution
=> fathomed
Zip= 58
3 x>=3 4 %>=3
IP x;>: 3 P X§<: 2 | LP soin
F=576 | 4732 X2=2
feasibl Re 5.
rff%ﬂlo(raned = fgth:mzéd
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Branch and Bound: example

60 _,7 _______ N ..... A ............ ............ |

50‘ ....... ..... ....... .....

40‘ ....... P T . _____
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Branch and Bound

m B&B is a very general algorithm
m as described above we seek the optimum
m can also be used as a heuristic
m different strategies available for each step above
m can use heuristics inside B&B
m pre-processing of the problem can be good
m no single strategy stands out as best for all
problems

m but sometimes we can exploit properties of a
particular problem to do better
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