Communications Network Design

 lecture 12Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 2, 2009

Budget constraint model and branch and bound

Branch and bound is a standard technique for solving integer programs, by relaxing the problem to the non-integer problem to find bounds, and using these to prune a tree of the possible solutions (rather than evaluating all possible solutions).

Budget Constraint Model

- separable linear cost model

$$
\begin{aligned}
C(\mathbf{f}) & =\sum_{e \in L(\mathbf{f})}\left(\beta_{e}+\alpha_{e} f_{e}\right) \quad \text { where } L(\mathbf{f})=\left\{e \in E: f_{e}>0\right\} \\
& =\sum_{e \in L(\mathbf{f})} \beta_{e}+\sum_{\mu \in P} l_{\mu}(L(\mathbf{f})) x_{\mu}
\end{aligned}
$$

- separate costs into
- initial investment costs (of laying optical fibre)

$$
C_{\mathrm{inv}}(L)=\sum_{e \in L} \beta_{e}
$$

- operations cost of lighting up the link

$$
C_{\mathrm{op}}(\mathbf{f}, L)=\sum_{e \in L} \alpha_{e} f_{e}
$$

Budget Constraint Model (BCM)

- ealier, we considered the problem

$$
\min C(\mathbf{f})=\min \left[C_{\mathrm{inv}}(L)+C_{\mathrm{op}}(\mathbf{f}, L)\right]
$$

subject to the appropriate constraints

- budget constraint model
- have a budget constraint on the investment costs

$$
C_{\mathrm{inv}}(L) \leq B
$$

- consider the optimization problem

$$
\min C_{\mathrm{op}}(\mathbf{f}, L) \text { subject to } C_{\text {inv }}(L) \leq B
$$

with additional constraints as above.

Formulation: of BCM

$$
\left.\begin{array}{rlrl}
\left(P^{\prime}\right) \quad \begin{array}{rlrl}
C(f) & =\sum_{e \in L} \alpha_{e} f_{e} \\
\min & f_{e} & =\sum_{\mu: e \in \mu} x_{\mu} & \forall e \in E \\
\text { s.t. } & \forall k \in K
\end{array} \\
\sum_{\sum_{\mu} \mu \in P_{k}} x_{\mu} & =t_{k} & \\
\sum_{e \in E} \beta_{e} z_{e} & \leq B & \\
x_{\mu} & \geq 0 & \forall \mu \in P \\
z_{e} & =0, \text { or } 1 & \forall e \in E
\end{array}\right\} \begin{aligned}
1 & \text { if link } e \in L \text { (i.e. we use e) } \\
0 & \text { if link } e \notin L \text { (i.e. we don't use } e \text {) }
\end{aligned}
$$

BCM and the triangle inequality

- α_{e} satisfy the triangle inequality

$$
\alpha_{i j}<\alpha_{i k}+\alpha_{k j}
$$

- because β_{e} have been moved into constraints
\square otherwise, link $e=(i, j)$ could be deleted as it is a longer path than $i-k-j$

$B C M$ and Branch and Bound

- this is an old, well studied problem, e.g. see [1]
- NP-hard
- look for heuristic solutions
- branch and bound [2]
- Branch and Bound is the topic of this lecture.

Notation

We can write an optimization problem several different ways

- integer linear programming problem, called (IP)

$$
(\text { IP })\left\{\begin{array}{rlll|}
\text { maximize } & \mathbf{c}^{T} \mathbf{x} & & \\
\text { subject to } & A \mathbf{x} & \leq \mathbf{b} \\
& \mathbf{x} & \geq 0 \\
& \mathbf{x} & \in \mathbb{Z}^{n} \\
& &
\end{array}\right.
$$

- short form

$$
\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}
$$

Integer programming

- Take an integer linear programming problem

$$
\max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}
$$

- some of our variables are real (e.g. link loads)
- we have a mixed-integer linear programming problem
$\square \mathbb{Z}^{n}$ is the set of n-dimensional vectors of integers
- we will restrict to $\mathbf{x} \in\{0,1\}^{n}$
- Many other classic examples
- travelling salesman problem
- knapsack problem
- set covering problem
- machine scheduling problem

Converting BCM into integer program

Variables are

$$
z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use e) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use e) }\end{cases}
$$

Write optimization objective

$$
\begin{align*}
C(\mathbf{f}) & =\sum_{e} \alpha_{e} f_{e} \tag{1}\\
& =\sum_{e} \alpha_{e} \sum_{\mu \cdot e \in \mu} x_{\mu} \tag{2}\\
& =\sum_{e} \sum_{\mu} \alpha_{e} A(e, \mu) x_{\mu} \tag{3}\\
& =\left[\alpha^{t} A\right] \mathbf{x} \tag{4}
\end{align*}
$$

Converting BCM into integer program

We derive the routing vector \mathbf{x} from the \mathbf{z} by solving the shortest path problem (with linear costs) on the graph determined by the \mathbf{z}.

Converting BCM into integer program

Obvious constraints given in the BCM are

$$
\begin{align*}
& \sum_{\mu: \mu \in P_{k}} x_{\mu}=t_{k}, \quad \forall k \in K \tag{5}\\
& \sum_{e \in E} \beta_{e} z_{e} \leq B \tag{6}
\end{align*}
$$

we just need to write these in matrix form, but there is a less obvious contraint

$$
\begin{equation*}
\left(1-z_{e}\right) f_{e}=\left(1-z_{e}\right) \sum_{\mu: e \in \mu} x_{\mu}=0 \tag{7}
\end{equation*}
$$

which says we cannot put traffic on absent links.

Relationship to linear programming

For each integer program:
(IP) $\quad \max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^{n}\right\}$
there is an associated linear program:
(LP) $\quad \max \left\{\mathbf{c}^{T} \mathbf{x} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0\right\}$
Now (LP) is less constrained than (IP) so

- If (LP) is infeasible, then so is (IP)
- If (LP) is optimized by integer variables, then that solution is feasible and optimal for (IP)
- The optimal objective value for (LP) is greater than or equal to the optimal objective for (IP)

Bounds

- call the (LP) a relaxation
- because we have relaxed some constraints
- it is easy to solve (usually)
- its a standard linear program
- can use simplex, or interior point methods
- rounding off the solution to the relaxation might work badly
- it could even produce a partitioned graph
- not all traffic can get through!
- but the (LP) relaxation does provide a bound
- we can use this to prune branches

Branching

- the above gives us bounds for solutions
- we also need to branch
- at each point where we don't have an integer solution, we can branch by splitting the possible solutions into two partitions
\square for example, we require $x_{1} \in\{0,1\}$, but the relaxation solution was $x_{1}=0.2$, we then subdivide the problem into two parts
$x_{1}=0$
- $x_{1}=1$
- then solve each of these subproblems

Branching example

For the network problem, we have decision variables

$$
z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use e) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use } e \text {) }\end{cases}
$$

Branching example

For the network problem, we have decision variables

$$
z_{e}= \begin{cases}1 & \text { if link } e \in L \text { (i.e. we use e) } \\ 0 & \text { if link } e \notin L \text { (i.e. we don't use } e \text {) }\end{cases}
$$

Branch and Bound

- key: if upper bound of a subproblem is less than objective for a known integer feasible solution, then
- the subproblem cannot have a solution greater than the already known solution
- we can eliminate this solution
- we can also prune all of the tree below the solution
- it lets us do a non-exhaustive search of the subproblems
- if we get to the end, we have a proof of optimality without exhaustive search

Branch and Bound: algorithm

1. Initialization: initialize variables, in particular, start a list of subproblems, initialized with our original integer program.
2. Termination: terminate the program when we reach the optimum (i.e. the list of subproblems is empty).
3. Problem selection and relaxation: select the next problem from the list of possible subproblems, and solve a relaxation on it.
4. Fathoming and pruning: eliminate branches of the tree once we prove they cannot contain an optimal solution.
5. Branching: partition the current problem into subproblems, and add these to our list.

Branch and Bound: example

Consider the problem (from [2])

$I P^{0}$	maximize subject to	$\begin{aligned} 13 x_{1}+8 x_{2} & \\ x_{1}+2 x_{2} & \leq 10 \\ 5 x_{1}+2 x_{2} & \leq 20 \\ x_{1} \geq 0, x_{2} \geq 0 & \\ x_{1}, x_{2} \text { integer } & \end{aligned}$

Branch and Bound: algorithm

Initialization:

- initialize the list of problems \mathcal{L}
\square set initially $\mathcal{L}=\left\{I P^{0}\right\}$, where $I P^{0}$ is the initial problem
- often store/picture \mathcal{L} as a tree
- incumbent objective value $z_{i p}=-\infty$
- initial value of upper bound on problem is $\bar{z}_{0}=\infty$
- constraint set of problem IP ${ }^{0}$ is set to be $S^{0}=\left\{\mathbf{x} \in \mathbb{Z}^{n} \mid A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0\right\}$

Branch and Bound: algorithm

Termination:

- If $\mathcal{L}=\phi$ then we stop
- If $z_{i p}=-\infty$ then the integer program is infeasible.
- Otherwise, the subproblem IP ${ }^{i}$ which yielded the current value of $z_{i p}$ is optimal gives the optimal solution \mathbf{x}^{*}

Branch and Bound: algorithm

Problem selection:

- select a problem from \mathcal{L}
- there are multiple ways to decide which problem to choose from the list
- the method used can have a big impact on speed
- once selected, delete the problem from the list

Relaxation:

- solve a relaxation of the problem
- denote the optimal solution by $\mathbf{x}^{i R}$
- denote the optimal objective value by z_{i}^{R}
- $z_{i}^{R}=-\infty$ if no feasible solutions exis \dagger

Branch and Bound: algorithm

Fathoming :

- we say branch of the tree is fathomed if
- infeasible
- feasible solution, and $z_{i}^{R} \leq z_{i p}$
- integral feasible solution
- set $z_{i p} \leftarrow \max \left\{z_{i p}, z_{i}^{R}\right\}$

Pruning:

- in any of the cases above, we need not investigate any more subproblems of the current problem
- subproblems have more constraints
- their z must lie under the upper bound
- Prune any subtrees with $z_{j}^{R} \leq z_{i p}$
- If we pruned Goto step 2

Branch and Bound: algorithm

Branching:

- also called partitioning
- want to partition the current problem into subproblems
- there are several ways to perform partitioning
- If S^{i} is the current constraint set, then we need a disjoint partition $\left\{S^{i j}\right\}_{j=1}^{k}$ of this se \dagger
- we add problems $\left\{\text { IP }^{i j}\right\}_{j=1}^{k}$ to \mathcal{L}
- IP ${ }^{i j}$ is just $I P^{i}$ with its feasible region restricted to $S^{i j}$
- Goto step 2

Branch and Bound: algorithm

1. Initialization: initialize variables, in particular, start a list of subproblems, initialized with our original integer program.
2. Termination: terminate the program when we reach the optimum (i.e. the list of subproblems is empty).
3. Problem selection and relaxation: select the next problem from the list of possible subproblems, and solve a relaxation on it.
4. Fathoming and pruning: eliminate branches of the tree once we prove they cannot contain an optimal solution.
5. Branching: partition the current problem into subproblems, and add these to our list.

Branch and Bound: example

Consider the problem (from [2])

$$
I P^{0}\left\{\begin{array}{rl}
\text { maximize } & 13 x_{1}+8 x_{2} \\
\text { subject to } & x_{1}+2 x_{2}
\end{array} \leq 10\right.
$$

with relaxation

$$
\operatorname{LP}^{0}\left\{\begin{array}{lrl}
\text { maximize } & z=13 x_{1}+8 x_{2} & \\
\text { subject to } & x_{1}+2 x_{2} \leq 10 \\
& 5 x_{1}+2 x_{2} \leq 20 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}\right.
$$

which has solutions $x_{1}^{0}=2.5$ and $x_{2}^{0}=3.75$ with $z_{0}^{R}=62.5$

Branch and Bound: example

- we will partition on x_{1}
- this is the "most infeasible"
- furthest from an integral value
- we will partition on x_{1}
- partition into two subproblems by adding an extra constraint
$I P^{1}$ has $x_{1} \geq 3$
$I P^{2}$ has $x_{1} \leq 2$
$■ \mathcal{L}=\left\{I P^{1}, I P^{2}\right\}$

Branch and Bound: example

$$
\mathcal{L}=\left\{I P^{1}, I P^{2}\right\}
$$

Branch and Bound: example

Problem selection (just chose in order) of IP ${ }^{1}$

The relaxation (to a LP) has solutions

- $x_{1}^{1}=3$ and $x_{2}^{1}=2.5$ with $z_{1}^{R}=59$
- we will next partition on x_{2}
- IP ${ }^{3}$ has $x_{2} \leq 2$
- IP ${ }^{4}$ has $x_{2} \geq 3$

Branch and Bound: example

$$
\mathcal{L}=\left\{I P^{2}, I P^{3}, I P^{4}\right\}
$$

Branch and Bound: example

Problem selection (best bound) of $I P^{2}$

$$
I P^{2}\left\{\begin{array}{rrl|}
\text { maximize } & 13 x_{1}+8 x_{2} & \\
\text { subject to } & x_{1}+2 x_{2} & \leq 10 \\
5 x_{1}+2 x_{2} & \leq 20 \\
x_{1} & \leq 2 \\
& x_{1} \geq 0, x_{2} \geq 0 & \\
& x_{1}, x_{2} \text { integer } & \\
& \\
& & \\
& & \\
&
\end{array}\right.
$$

The relaxation (to a LP) has solutions

- $x_{1}^{2}=2$ and $x_{2}^{2}=4$ with $z_{2}^{R}=58$
- integral feasible

■ $z_{i p}=58$

- IP ${ }^{2}$ is fathomed

Branch and Bound: example

$$
\mathcal{L}=\left\{I P^{3}, I P^{4}\right\}
$$

Branch and Bound: example

Problem selection (order) of $I P^{3}$

The relaxation (to a LP) is infeasible

- $z_{3}^{R}=-\infty$
- IP ${ }^{3}$ is fathomed
- $\mathcal{L}=\left\{\mathrm{IP}^{4}\right\}$

Branch and Bound: example

Problem selection (only possible one) of $I P^{4}$

The relaxation (to a LP) has solution

- $x_{1}^{2}=3.2$ and $x_{2}^{2}=2$ with $z_{4}^{R}=57.6<z_{i p}$
- IP ${ }^{4}$ is fathomed

Branch and Bound: example

Branch and Bound: example

Branch and Bound

- $B \& B$ is a very general algorithm
- as described above we seek the optimum
- can also be used as a heuristic
- different strategies available for each step above
- can use heuristics inside B\&B
- pre-processing of the problem can be good
- no single strategy stands out as best for all problems
- but sometimes we can exploit properties of a particular problem to do better

References

[1] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan, "The complexity of the network design problem," Networks, vol. 8, pp. 279-285, 1978.
[2] E. K. Lee and J. Mitchell, Encyclopedia of Optimization, ch. Branch-and-bound methods for integer programming. Kluwer Academic Publishers, 2001. http://www.rpi.edu/~mitchj/papers/leeejem.html.

