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Branh and bound (ont)The simple branh and bound solution shown previously israther naive. It doesn't take advantage of the strutureof the problem. We show how branh and bound an beapplied to the budget onstraint model, by showing therelationship with the knapsak problem. The usefulresult we get is the Dionne-Florian lower bound, whihan be used in bounding.
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Branh and BoundBranh and bound subsumes many spei�approahes, and allows for a variety ofimplementations.partition, sampling, and subsequent lower and upperbounding proedures: these operations are appliediteratively to the olletion of ative ('andidate')subsets within the feasible set DBranh and bound methods typially rely on some apriori strutural knowledge about the problem.
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Budget Constraint Model

(P') min C(f) = ∑
e∈L

αe fes.t. fe = ∑
µ:e∈µ

xµ ∀e∈ E

∑
µ:µ∈Pk

xµ = tk ∀k∈ K

∑
e∈E

βeze ≤ B

xµ ≥ 0 ∀µ∈ P
ze = 0, or 1 ∀e∈ E

ze =

{

1 if link e∈ L (i.e. we use e)

0 if link e 6∈ L (i.e. we don't use e)
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Budget Constraint Model

The ost is now C(f) = ∑
e∈L

αe fe = ∑
k∈K

tkl̂k(L) = v(L)

The network design is determined by the hoie of
L, the links we will use, whih in turn determines theroutes and then the link loads, so that the ost isreally a funtion of L, whih we write v(L) here.The heapest possible network will have all linkspresent, i.e., v(E) is the lowest ostlink reation osts have been shifted into(budget) onstraintany missing links might ause rerouting, whihould in turn inrease the ost
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Budget Constraint Model Bounds
v(E) is the lowest ostwhat happens if we remove link e= (i, j)the traf� ti, j must be rerouted on a non-diretroutehene, higher ost (or at least no lower)take d(i, j) to be the ost of rerouting traf� ti, jbeause link e= (i, j) is removed from the link set

d(i, j) =
[

l̂(i, j)
(

E \ (i, j)
)

−α(i, j)

]

ti, j

So for any link set L ⊆ E,
v(L) ≥ v(E)+ ∑

e/∈L

de
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Budget Constraint Model Bounds
v(L) ≥ v(E)+ ∑

e/∈L

defor feasible networks, i.e. ∑
e∈L

βe ≤ B

thus we an get a lower bound on the ost of allfeasible networksNote, in B&B on simple LPs, we were �nding upperbounds for maximization from relaxationshere we are �nding minimums (osts)hene we get lower bounds from our relaxationsso the above is doing the right thing for arelaxation
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Budget Constraint Model Bounds
v(L) ≥ v(E)+ ∑

e/∈L

de

= v(E)+ ∑
e∈E

(1−ze)de

≥ v(E)+ ∑
e∈E

de−wfor all feasible solutions L suh that ∑
e∈L

βe ≤ B and where

w = ∑e∈E dezethe lower bound on v(L) will be smallest when w islargest.we need to look for the maximum value of w, e.g.

max{∑e∈E deze|∑eβeze ≤ B,ze = 0 or 1}
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Budget Constraint Model Bounds

so we have a new IP to solve

max{∑e∈E deze|∑eβeze ≤ B,ze = 0 or 1}this is a knapsak problem [1℄we an do the standard relaxation to a LP, to getthe problem
LP











maximize wR = ∑e∈E dezesubjet to ∑eβeze ≤ B
0≤ ze ≤ 1remember that it is a relaxation of the IP, so

wR ≥ wso it is an upper bound on w, and so gives us a lowerbound on v(L)
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Knapsak problem

Integral knapsak problemwe have a knapsak (bakpak) with �nite volume Bwe want to �t as muh useful stuff into it aspossiblemaximize the value of the items ontainedeah item ehas a volume βehas a value deif we inlude the item, we say ze = 1otherwise ze = 0maximum value is obtained when we �nd

max{∑e∈E deze|∑eβeze ≤ B,ze = 0 or 1}
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Knapsak problem

Frational knapsak problemas noted earlier, the integral knapsak problem isNP-hardso we relax the problem to a linear program
max{∑e∈E deze|∑eβeze ≤ B,0≤ ze ≤ 1}all this the frational knapsak problembeause we are allowed to break items up intofrations (given by ze)this problem is easier to solve than even many otherLPs [2℄
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Frational knapsak solution

rank all links e∈ E in order suh that
de1

βe1

≥
de2

βe2

≥ . . .
de|E|

βe|E|

de
βe

an be thought of as the unit worth of eremember analogy of de as value, and βe as volume�nd the largest integer k suh that
k

∑
i=1

βei ≤ B

�ll the knapsak with items of most unit worth �rst.until we reah kthen we use a fration of the next item
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Frational knapsak solution

the solution is

zei =



























1 for i = 1,2. . . ,k

B−
k

∑
i=1

βei

βek+1

for i = k+1

0 for i ≥ k+2

omplexity of the solution is
O(|E| log|E|) for the sorting operationit an be done faster by a weighted mediansearh [1, p.398℄ whih takes time O(|E|)
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Dionne-Florian lower boundNow, the lower bound on the ost for a feasible design Lwill be

v(L) ≥ v(E)+ ∑
e/∈L

de

= v(E)+ ∑
e∈E

(1−ze)de

= v(E)+
|E|

∑
i=k+2

dei +dek+1

{

1−

[

B−∑k
i=1 βei zei

βek+1

]}

= v(E)+
|E|

∑
i=k+1

dei −
dek+1

βek+1

{

B−
k

∑
i=1

βei zei

}

This is alled the Dionne-Florian lower bound
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Branh and Bound: setup

Let z̄(m) be a partial solution for z.
z̄(m) is a 0-1 vetor of m omponents, m≤ |E|Entries z̄(m)

e in z̄(m) give the status of linksalready deided in the design being onsideredThat is

z̄(m)
e =

{

1 ⇒ link e is inluded the design

0 ⇒ link e is not inluded the design
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Branh and Bound: setup

Let D(z̄(m)) ⊆ E be the design orresponding to z̄(m)it already ontains the links orresponding tothe 1's of z̄(m)it omits links orresponding to the 0's of z̄(m)other links are undeidedSo D(z̄(m)) ⊆ E and z̄(m)
e = 0,1 for all e∈ D(z̄(m)).Obviously, if e 6∈ D(z̄(m)), then the status of link e hasnot yet been determined, so we need to determine

ze for all e 6∈ D(z̄(m)).This will give a ompletion z of z̄(m)
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Branh and BoundWe an use the D-F lower bound in B&B as follows:we are doing a minimization, so we need alower-bound at eah subproblemalulate lower bounds on the ost of a design D(z̄)as follows:given z̄, determine a ompletion of z̄ using theknapsak problem approah aboveSuppose for ease of referene,
ei 6∈ D(z̄(m)), for i = 1,2, . . . , |E|−mand the ei are listed by dereasing relative worth.Then a lower bound on the ost of D(z̄(m)) is b(z̄(m))
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Branh and Bound
b(z̄(m)) =











originalost withall linksi.e. v(E)











+∑





















hanges in ostfor reroutingloads on linksdetermined to NOTbe in the designi.e. z̄(m)
e = 0





















+















dek+1 −
dek+1

βek+1















leftoverbit ofbudget Bfromknapsak prob.
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Branh and BoundThe last part orresponds to rerouting a fration of loadfrom ek+1 beause a fration of the link is �missing� (zek+1is frational!). So

b(z̄(m)) = v(E)+



 ∑
e:z̄(m)

e =0

de+
|E|−m

∑
i=k+2

dei





+

[

dek+1 −

{

B− ∑
e∈D(z̄)

βeze−
k

∑
i=1

βei

}

dek+1

βek+1

]

Then we just apply branh and bound as before, usingthis bound.
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Branh and Bound outlineIf ∑
e∈E

βe ≤ B, then STOP

the optimal design is the fully meshed network

Otherwise,Initialise:list all links in E in order of dereasing relativeweights, dei

βei

.
L = IP0;
D(z̄) = /0;best-to-date ost C = ∞

Communications Network Design: lecture 13 – p.20/49



Branh and Bound outlineAt any stage: given a list L of partial solutions {z̄} andtheir orresponding lower bounds, b(z̄), selet one z̄ ∈ Land attempt to fathom it. That is, remove it from L and(a) solve the frational knapsak problem and omputethe D-F lower-bound b(z̄)If this has an integer feasible part solution, it isfathomed. If the ost of the integer solution

C′ < C then this beomes the best-to-date ostand we update C to C′.we an prune any solutions with b(z̄) > Cif the solution has lower bound z̄ greater thanthe best-to-date ost C, then it is fathomed,and we an prune it.if infeasible then it is fathomed
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Branh and Bound outline(b) If not fathomed onstrut two new partial solutionsby seleting a link e not determined in z̄ and putting(i) z̄e = 1(ii) z̄e = 0Note: Selet e in order of dereasing de/βeContinue until all partial solutions have been fathomed
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Branh and Bound example

The network G(N,E) and data for (αe,βe) and offeredtraf�, tpq (as in Minoux's method example, Leture 14)

1,5

1,3

1,6

2,3

2,6

1,3

1,

1,

2,

2,

1,

1,
eβeα ,

1 2Link
costs

4 3

C(f) = ∑
e∈L

ce( fe)

ce( fe) = αe fe+βe

∑eβeze ≤ B = 14

3

2

2

4

4

5
te

1 2Offered
traffic

4 3
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Branh and Bound example

Assume all routing is diret i.e. fe = tkNow v(E) = ∑eαe fe = 4+3+8+2+10+2= 29Sine de =
[

l̂µ(E−e)−αe
]

fe, we have the table:
e= (i, j) αe µ̂i j (E−e) l̂ i j (E−e) de de/βe rank

(1,2) 1 1−4−2 2 (2−1).4 = 4 4/3 1
(1,3) 2 1−4−3 2 (2−2).4 = 0 0 5
(1,4) 1 1−2−4 2 (2−1).3 = 3 3/5 3
(2,3) 2 2−4−3 2 (2−2).5 = 0 0 6
(2,4) 1 2−1−4 2 (2−1).2 = 2 1/3 4
(3,4) 1 3−1−4 3 (3−1).2 = 4 4/3 2
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Branh and Bound example

Rank all links in order of dereasing dei

βei

edge
(1,2) (3,4) (1,4) (2,4) (1,3) (2,3)

de 4 4 3 2 0 0

βe 3 3 5 6 6 3

de

βe

4
3

4
3

3
5

1
3

0 0

Table 1We will use Table 1 repeatedly in this example.
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Branh and Bound example
∑
e∈E

βe = 26> B = 14, so an't just use E

Table 1 lists links in order of dereasing dei

βeiInitialise:

L = IP0;

D(z̄) = /0;best-to-date ost C = ∞
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Branh and Bound example

Problem 0: z̄ = ()Knapsak problem:ount aross βe row until ∑k
i=1 βei ≤ B and ∑k+1

i=1 βei > B

β12+β34+β14= 11< 14; β12+β34+β14+β24= 17> 14.

k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound:
b(z̄) = v(E)+ [d13+d23]+ (1− 1

2)d24

= 29+(0+0)+ 1
2.2

= 30
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Branh and Bound example

P0 relaxation solution

ze

1/2
1

1

1

0
0

1 2

4 3
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Branh and Bound example

Note that b(z̄) > v(E) as expeted: if you deletelinks from E, and have to reroute then theoperating osts should inrease.the solution was not integer feasible, so we have tobranh into two subproblemsP1: z̄ = (1) (we add the onstraint z12 = 1)P2: z̄ = (0) (we add the onstraint z12 = 0)our list of outstanding subproblems beomes

L = {P1
,P2

}
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Branh and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

z=(1) z=(0)

P1 P2
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Branh and Bound example

Problem 1: z̄ = (1)Knapsak problem: exatly the same as problem 0solution for P0 had z12 = 1, so z̄ = (1) doesn't hangethe solution at all

k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound: b(z̄) = 30 (the same as P0)the solution was not integer feasible, so we have tobranh into two subproblemsP3: z̄ = (1,1) (we add the onstraint z34 = 1)P4: z̄ = (1,0) (we add the onstraint z34 = 0)
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Branh and Bound example

Problem 2: z̄ = (0)Knapsak problem:

β12 is exluded, so only onsider olumns 2-6ount aross βe row until ∑k
i=2 βei ≤ B and ∑k+1

i=2 βei > B

β34+β14+β24 = 14

k = 4, and z= (0,1,1,1,0,0)solution is integer feasible, so it is fathomedD-F lower bound:
b(z̄) = v(E)+d12+(d13+d23)+0.d13

= 29+4+0+0
= 33The urrent value C = ∞ > 33 so let C = 33
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Branh and Bound example

P2 relaxation solution

ze
1

1

1

0

0
0

1 2

4 3
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Branh and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

z=(1) z=(0)

z=(1,1) z=(1,0)

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

integer feasible

P4P3 C=33
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Branh and Bound example

Problem 3: z̄ = (1,1)Knapsak problem: exatly the same as problem 0 and 1solution for P0 had z12 = z34 = 1, so z̄ = (1,1) doesn'thange the solution at all
k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound: b(z̄) = 30 (the same as P0 and P1)the solution was not integer feasible, so we have tobranh into two subproblemsP5: z̄ = (1,1,1) (we add the onstraint z14 = 1)P6: z̄ = (1,1,0) (we add the onstraint z14 = 0)
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Branh and Bound example

Problem 4: z̄ = (1,0)Knapsak problem:

β12 is de�nitely inluded and β34 is exluded,so only onsider olumns 3-6,and remainder of B is B−β12 = 11

∑k
i=3 βei ≤ 11 and ∑k+1

i=3 βei > 11

β14+β24 = 11

k = 4, and z= (1,0,1,1,0,0)D-F lower bound:
b(z̄) = v(E)+ [d34+d13+d23]+0

= 29+4 = 33solution is integer feasible, so it is fathomed

b(z̄) is too high to be useful though (already C = 33)
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Branh and Bound example

P4 relaxation solution

ze
1

1

0
0

0

1

1 2

4 3Node 3 is NOT onneted!
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Branh and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3 Rz  =(1,0,1,1,0,0)

b(z) = 33P4

z=(1) z=(0)

z=(1,1,1) z=(1,1,0)

z=(1,1) z=(1,0)
C=33

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

integer feasible

unconnected

P5 P6
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Branh and Bound example

Problem 5: z̄ = (1,1,1)Knapsak problem: exatly the same as problem 0,1 and 3solution for P0 had z12 = z34 = z14 = 1, so z̄ = (1,1,1)doesn't hange the solution at all
k = 3, and z= (1,1,1,1/2,0,0)solution is not integer feasibleD-F lower bound: b(z̄) = 30 (the same as P0, P1 and P3)the solution was not integer feasible, so we have tobranh into two subproblemsP7: z̄ = (1,1,1,1) (we add the onstraint z24 = 1)P8: z̄ = (1,1,1,0) (we add the onstraint z24 = 0)
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Branh and Bound example

Problem 6: z̄ = (1,1,0)Knapsak problem:

β12,β34 are de�nitely inluded and β14 is exluded,so only onsider olumns 4-6,and remainder of B is B−β12−β34 = 8

∑k
i=4 βei ≤ 8 and ∑k+1

i=4 βei > 8

β24 = 6 β24+β13 = 12

k = 4, and z= (1,1,0,1,1/3,0)D-F lower bound: b(z̄) = 29+(3+0)+(1−1/3).0= 32solution is not integer feasible, so it is not fathomedwe should branh on thislets delay branhing for a moment
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Branh and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P5

Rz  =(1,0,1,1,0,0)
b(z) = 33P4

Rz  =(1,1,0,1,1/3,0)
b(z) = 32P6

z=(1) z=(0)

z=(1,1,1,1)

z=(1,1,1)

z=(1,1,1,0)

z=(1,1,0)

z=(1,1) z=(1,0)
C=33

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

P7

integer feasible

unconnected

P8
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Branh and Bound example

Problem 7: z̄ = (1,1,1,1)Sine z̄ = (1,1,1,1), we inlude the �rst four links, so theost will be at least

4

∑
i=1

βei = 3+3+5+6> 14

hene there is no feasible solutionhene the solution is fathomed
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Branh and Bound example

Problem 8: z̄ = (1,1,1,0)Knapsak problem:

β12,β34,β14 are de�nitely inluded and β24 isexluded,so only onsider olumns 5-6,and remainder of B is B−β12−β34−β14 = 3

∑k
i=5 βei ≤ 3 and ∑k+1

i=5 βei > 3

β13 = 6 > 3

k = 4, and z= (1,1,1,0,1/2,0)D-F lower bound: b(z̄) = 29+(2+0)+(1−1/2).0= 31solution is not integer feasible, so it is not fathomedwe branh on this to get P9 and P10
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Branh and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P5

Rz  =(1,0,1,1,0,0)
b(z) = 33P4

Rz  =(1,1,0,1,1/3,0)
b(z) = 32P6

Rz  =(1,1,1,0,1/2,0)
b(z) = 31P8

z=(1) z=(0)

z=(1,1,1,0,1)

z=(1,1,1,1)

z=(1,1,1)

z=(1,1,1,0)

z=(1,1,0)

z=(1,1) z=(1,0)

z=(1,1,1,0,0)

C=33

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

infeasibleP7

P9 P10

integer feasible

unconnected
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Branh and Bound example

Problem 9: z̄ = (1,1,1,0,1)Sine z̄ = (1,1,1,0,1), so the ost will be at least
5

∑
i=1

z̄iβei = 3+3+5+6> 14

hene there is no feasible solutionhene the solution is fathomed
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Branh and Bound example

Problem 10: z̄ = (1,1,1,0,0)Knapsak problem:

β12,β34,β14 are de�nitely inluded and β24,β13 areexluded,so only onsider olumns 6,and remainder of B is B−β12−β34−β14 = 3

β23 = 3

k = 6, and z= (1,1,1,0,0,1)D-F lower bound: b(z̄) = 29+(2+0)+(1−1).d24 = 31solution is integer feasible, so it is fathomedthis gives us a new best bound, so C = 31, (dith P2)we an prune P6 whih has b(z̄) = 32> C

Communications Network Design: lecture 13 – p.46/49



Branh and Bound example
Rz  =(1,1,1,1/2,0,0)

b(z) = 30P0

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P1

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P3

Rz  =(1,1,1,1/2,0,0)
b(z) = 30P5

Rz  =(1,0,1,1,0,0)
b(z) = 33P4

Rz  =(1,1,0,1,1/3,0)
b(z) = 32P6

Rz  =(1,1,1,0,1/2,0)
b(z) = 31P8

z=(1) z=(0)

z=(1,1,1,0,1)

z=(1,1,1,1)

z=(1,1,1)

z=(1,1,1,0)

z=(1,1,0)

z=(1,1) z=(1,0)

z=(1,1,1,0,0)

b(z) = 31

b(z) > C=31

b(z) >= C=33

Rz  =(0,1,1,1,0,0)
b(z) = 33P2

infeasibleP7

infeasibleP9 P10

integer feasible

integer feasible

unconnected

optimal solution, C=31

Rz  =(1,1,1,0,0,1)
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Branh and Bound example

P10 solution (and �nal solution)

ze
1

00

1

1

1
1 2

4 3

Note this is the same as theresult of Minoux's algorithmInvestment ost for thisnetwork expenditure ∑eβe = 14We an work out atualoperations ost (rather thanD-F lower bound)

∑
e

ce( fe) = ∑
e

αe fe = 31

Question: what would happen if I made B = 9?Question: what would happen if I made B = 1000?
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