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This leture starts to onsider randomized algorithms, in partiular simulated annealing.
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Randomized algorithms:

simulated annealing

It is often the ase that we optimize against anon-onvex objetive funtion. In these ases we oftenuse heuristis suh as gradient desent, but they anbeome stuk in a loal minimum. Simulated annealingallows our searh to �boune� out of suh a point, byinluding some randomization in its searh. We presenthere the Metropolis algorithm for simulated annealing.
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Star-like networks

◮ earlier, we onsidered designing a hub-spoke(star-like) network

⊲ ost based on link length

⊲ equivalent to βe ∝ de and, αe = 0

⊲ as before (e.g. for Prim), this is onlyonstrution osts

⊲ an we inlude a load based ost αe?

◮ design a star where the osts will be

C(f) = ∑
e∈T

αe fe

⊲ set βe = 0 this time
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Star-like networks

◮ approah: simple ase αe = 1

⊲ �nd the hub node whih maximizes the �owswhih go-to, or leave from the star, i.e.,

hub = argmin
p∈N

{

∑
q∈N

tpq

}

⊲ this minimizes the traf� whih has to take twohops

⊲ we an onsider all |N| possibilities in O(|N|)time, with O(|N|) operations per ase, so O(|N|2)

◮ generalizes to αe 6= const, by �nding the hub nodehub = argmin
h∈N

∑
p∈N

αph ∑
q∈N

tpq
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Star-like networks

◮ no-one designs star-like networks like this

⊲ they do use stars, but not designed as above

⊲ e.g. WAN

⋆ when we deide the �hub�, we put all of ourservers there (e.g. web and email servers)

⋆ most traf� in enterprise WANs is loal, orfrom lient to server

⋆ if the servers are put somewhere, the traf�will go there anyway

⋆ so the traf� pattern depends on our design!

⊲ Broadast network

⋆ traf� all originates at the hub

◮ for more omplex (better) designs, the problem isNP-hard
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Some problems are too hard
◮ some problems are two big to solve

⊲ even polynomial time algorithms an run out ofpuff

⊲ NP-hard problems are a problem
◮ rounding errors in omputations

⊲ lead to inorret or meaningless solutions

⊲ ill-posedness
◮ sometimes we an't write down the ost

⊲ �I don't know muh about art, but I know what Ilike�

⊲ we an work out the ost for a solution, but wedon't know what the ost funtion looks like

⊲ hene we an't exploit problem spei�s
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Heuristi methods

◮ for hard problems we sometimes use heuristis

⊲ for instane, greedy heuristi

⊲ try to redue ost at eah step

⊲ an get stuk in a loal minimum
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Random searh methods

◮ allow steps that make ost worse

⊲ normally we always take C(x+∆x)≤C(x)

⊲ random methods sometimes take step ∆x suhthat C(x+∆x) > C(x)

◮ examples

⊲ Simulated annealing today [1, 2℄
⊲ Geneti algorithms next leture
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Randomized algorithm

◮ �divide and onquer� is another approah

⊲ problem needs to separate into subproblems

⊲ requires detailed insight into the problem

◮ greedy method gets stuk in a loal minimum

⊲ lever heuristi might be better, but tooomplex, or we don't know enough about thepartiulars of the system

⊲ allow some �random moves�, away from improvedost

⊲ these might just get us out of the loal minimum

⊲ we might just sale that next hill, and go intothe deeper valley
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Notation

◮ xi is the solution after i iterations

◮ C(x) is the ost funtion

◮ xi+1−xi = ∆x

◮ so the ost after i+1 steps is given by C(xi +∆x)

◮ the hange in ost is ∆C = C(xi +∆x)−C(xi)

◮ T will refer to �temperature�
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Simulated annealingBased on an analogy:

◮ in Statistial Mehanis and Chemistry Annealing is aproess for obtaining low energy states of a solid

⊲ heat a material until it melts

⊲ redue temperature gradually, (the proess has to beslow enough when near freezing point)

◮ Temperature redution too quik

⊲ the system will be out of equilibrium

⊲ �awed rystals in solid (not lowest energy state)

⊲ analogous to a loal minimum

◮ redue temperature slowly

⊲ substane takes struture with least potential energy

⊲ analogous to optimization (we want least ost)
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More information on simulated annealing an be found at:

http://www.cs.sandia.gov/opt/survey/sa.html
http://members.aol.com/btluke/simann1.htm
http://esa.ackleyshack.com/thesis/esthesis7/node14.html
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Details of the analogy

A simple overview to explain how the annealing works:An atom in a heat bath is given a smallrandom displaement, with a resultanthange ∆E in energy. A solution to the optimisation problemis hanged slightly to give a neighbour-ing solution, with a hange in the ostfuntion of ∆C=new ost-old ostIf ∆E ≤ 0, aept displaement andstart again If ∆C ≤ 0, aept new solution andstart again.If ∆E > 0, sometimes aept/ some-times rejet the new displaement onthe basis of some probability measure. If ∆C > 0, sometimes aept/ some-times rejet the new solution on thebasis of some probability measure.

Either reiterate at this temp. or droptemp. Either reiterate at this ost or dropost.
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http://www.cs.sandia.gov/opt/survey/sa.html
http://members.aol.com/btluke/simann1.htm
http://esa.ackleyshack.com/thesis/esthesis7/node14.html


Simulated annealing appliations

This sort of method has proved suessful in manyappliations of Optimisation e.g.

◮ TSP

◮ Job Shop Sheduling

◮ Graph Partitioning

◮ minimum spanning trees in ommuniations networks

◮ sheduling of 4th year exams

◮ et.
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Simulated annealing omponents

Components

◮ desription of system: x in a form we an work with
◮ ost funtion: C(x)

◮ random move generator: rearrangement ofexisting on�guration, to get a neighbouring one.

◮ annealing shedule: The onept of temperature isinluded via a ontrol parameter to simulate thetemperature hanges in the annealing proess.

⊲ give temperatures T

⊲ length of time at a given temperature

◮ aeptane funtion: when should we (randomly)aept a new solution, given the hange in ost
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Aeptane funtion

A greedy aeptane funtion looks like

∆C ≤ 0 aept

∆C > 0 rejetWe an rewrite this in terms of probability ofaeptane, P(∆C), whih in this ase would be given by

P(∆C) =

{

1, ∆C ≤ 0
0, ∆C > 0

But we want an aeptane funtion that will sometimesallow ost-inreasing solutions.
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Aeptane funtion

Desirable properties for aeptane funtion:
◮ P(∆C) = 1 for ∆C ≤ 0

◮ for ∆C > 0
⊲ P(∆C) should derease as ∆C inrease

⋆ make big inreases in ost less likely
⊲ P(∆C) should derease as T dereases

C∆

C∆P(    )

Temperature T1

2 1Temperature T < T
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Aeptane funtionA ommonly used aeptane funtion

◮ inorporate the Boltzman fator, derived fromstatistial mehanis

exp

(

−E(x)

kT

)

whih desribes the relative likelihood ofon�gurations x with energies E(x)

⊲ k is Boltzman's onstant

◮ use a new aeptane funtion

P(∆C) =

{

1, ∆C ≤ 0
exp

(

−∆C
kT

)

, ∆C > 0In optimization, the temperature is arbitrary, so wemay omit the onstant k
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Aeptane funtion

Conise way of writing aeptane funtion
P(∆C) = min

{

1,exp

(

−∆C
T

)}

◮ inorporate in solution by generating a newneighbouring solution
⊲ ompute the differene in ost ∆C

◮ generate a uniform random number p ∈ [0,1]

◮ solution is aepted if p < P(∆C)
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Example of one step

Minimum Spanning Tree Problem minC(f) = ∑e∈E αe fe

◮ urrent solution: a spanning tree

⊲ hoose initially tree where parent of node i isnode i−1

1

2

3
4

5

◮ generate a neighbouring tree by

⊲ adding a link e

⊲ this reates a yle

⊲ so remove a link to break the yle
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Example of one step

◮ randomly generate nodes i, j ∈ {1, . . . ,N} and j 6= i

⊲ make sure e = (i, j) is not already in E

⊲ insert e = (i, j) into E

◮ now hoose a random link e′ from the yle we havereated

⊲ tree won't beome disonneted if we remove alink from the yle
1

2

3
4

5
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Example of one step

◮ in example, graph G(N,E), where N = {1,2,3,4,5}
⊲ initially E = {(1,2),(2,3),(3,4),(4,5)}

⋆ assume it has ost C = 425
⊲ randomly generate two nodes, e.g. 1 and 4

⋆ e = (1,4) 6∈ E so we add the link

⋆ now we have a yle 1−2−3−4−1 with 4 links

⋆ randomly hoose one link from the 3 old linksof the yle, e.g. the third link (3,4)

⋆ remove this link from the tree to get E ′

⊲ if C(E ′) < C(E) aept the new tree, otherwise

⋆ given urrent temperature T = 150
⋆ randomly generate p∼U(0,1)
⋆ say C(E ′) = 500, so ∆C = 75
⋆ then we would aept E ′ if p < e−75/150 = 0.607
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Annealing shedule

◮ in the physial analogy, temperature is reduedslowly over time

⊲ allows system to stay approximately inequilibrium as the temperature dereases
◮ we need to do something analogous here
◮ two methods

⊲ homogeneous: run the above algorithm for awhile, and then redue the temperature, andthen repeat.
⊲ inhomogeneous: derease the temperature ateah step.

◮ also we need a shedule of temperature redutions
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Annealing shedule

Two parts of annealing shedule

◮ initial temperature

⊲ has to be high enough for �melting�

⊲ varying proposals as to how hot this should be

⋆ P(∆C) = 0.5 for initial neighbours

⋆ P(∆C) = 0.8 for initial neighbours

⋆ ould initially test all neighbours to see whattemperature is needed

◮ temperature redutions

⊲ ould give a table of temperature redutions

⊲ more ommonly use geometri derease

Ti+1 = αTiwhere α is usually between [0.75,0.95]
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Metropolis algorithm

Idea in Physis/Chemistry [1℄Optimization algorithm �rst proposed in [2℄
◮ start with random solution x, and temp T0

◮ while not �frozen�

⊲ for j = 1, . . . ,J
⋆ generate a random neighbouring solution

x+∆x
⋆ �nd the ost of this solution C(x+∆x), andthe hange in ost, e.g. ∆C = C(x+∆x)−C(x)

⋆ generate a random variable p∼U(0,1)

⋆ if p < P(∆C) = min
{

1,exp
(

−∆C
Ti

)} aept thesolution, i.e. x← x+∆x
⊲ Ti+1 = αTi
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TSP Example [2℄

Travelling Salesman Problem (TSP) from Leture 12

◮ state is the ze (do we use link e)

◮ moves to neighbours by

⊲ reversing the diretion in whih a part of thetour is traversed [3℄

⊲ this move preserves onstraints

⊲ other possibilities exist

◮ initial T = O(N1/2), where moves �ow around freely

◮ in 1983, sim.annealing ould (approximately) solve a6000 node problem

⊲ best exat solution for 318 nodes
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TSP Example

◮ the above uses a lever move to make sureonstraints remain satis�ed by a neighbour
◮ what if we don't know a �lever move�

⊲ transform the problem to an unonstrained one

⊲ onstrut an augmented objetive funtioninorporating any violated onstraints as largepenalty funtions
⋆ e.g. minimize ost C(x) subjet to x≥ 0
⋆ transform to

min
[

C(x)+106× I(x < 0)
]

where I(·) is an indiator funtion

⊲ solutions whih violate the onstraints will havevery high ost
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Applet Example

Some nie examples from the web.

http://appsrv.cse.cuhk.edu.hk/~csc6200/y99/applet/SA/annealing.html

http://www.math.uu.nl/people/beukers/anneal/anneal.html
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Algorithm issues

◮ initialization

⊲ start with a random solution

⊲ start with a �good� solution, from a heuristi
⋆ might be faster

⋆ might also get stuk in a loal minima
ld if the temperature doesn't start hotenough

ld but if the temperature is hot enough, whybother?
◮ if we start with T0 = 0 we get a greedy algorithm
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Algorithm issues

◮ homogeneous approah

⊲ how many times should we run the inner-loopbefore hanging the temperature

⊲ long enough to explore the regions of searhspae that should be reasonably populated

⊲ atually might need a bit of trial and error toget a number

⋆ an be problem dependent

⋆ large problems have a larger solution spae

◮ termination

⊲ when T = 0 things are �frozen� in plae

⊲ or when nothing hanges for several outer-loopiterations
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FinalMany muh more sophistiated modi�ations of theapproah in the literature, e.g. [4℄
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