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This leture overs tree-like networks, and algorithms for their design.
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Tree-like networksTree-like networks, and algorithms for their design:minimum spanning tree problem, spanning trees andspanning tree protool, greedy methods (Kruskal's andPrim's methods).
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Tree-like networks

A Tree

◮ onneted

◮ does not ontain any yles (loops)

⊲ A graph ontains no yles if there is no path ofnon-zero length {vi}
k
i=1 through the graph suhthat v0 = vk

Communications Network Design: lecture 16 – p.3/41

Communications Network Design: lecture 16 – p.3/41

Spanning Tree

Spanning tree, alternative de�nitions

◮ a tree that onnets all nodes in the graph
◮ onneted graph where the number of links in

G(N,T ) is |T | = |N −1|

◮ the graph is onneted, but if we ommit a singlelink, it beomes disonneted
◮ every pair of verties is onneted along one andonly one pathGiven |N| nodes,
◮ there are as many as |N||N|−2 suh trees

◮ more even than the number of paths
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Spanning Tree

◮ example appliation: able TV network

⊲ need to get a broadast TV signal from one(root) to many (leaves)

⊲ maybe we want to do this as heaply as possible?

◮ example appliation: Ethernet

⊲ Spanning Tree Protool

◮ example appliation: Fibre-To-The-Node (FTTN)

⊲ proposed design for Australian broadband

⊲ hybrid �bre/opper network

⋆ use opper telephone lines from home

⋆ run �bre out to �nodes�

⋆ result is a tree-like network

⊲ where should nodes be?
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Alternatives to FTTN are

◮ �bre to the urb (FTTC)

◮ �bre to the premises (FTTP)The loser optial �bre gets to your home, the more the network osts, but the better thespeeds.
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Spanning Tree Protool

◮ an Ethernet an have multiple possible swithing paths
⊲ for reliability

◮ but Ethernet effetively broadasts some messages
⊲ e.g. ARP

⊲ route loops ould be REALLY bad
⊲ looping broadasts would take up all availablebandwidth

⊲ no mehanism at the IP layer an stop this, as it ishappening at layer 2
◮ Spanning Tree Protool (STP) intended to reate a tree

⊲ hene avoid loops
◮ Is the STP optimizing anything we are about?
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More information on the spanning tree protool:

http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/sw_ntman/
cwsimain/cwsi2/cwsiug2/vlan2/stpapp.htm

http://www.javvin.com/protocolSTP.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci214602,
00.html
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Spanning Tree Protool

◮ Two versions of STP

⊲ DEC and IEEE (not ompatible) we will look at IEEE

◮ swithes are assigned numerial priority

◮ Ethernet swith with lowest priority is root

⊲ tie break is lowest MAC address

⋆ MAC addresses are unique

⋆ ombination of priority and MAC is alled node ID

◮ eah Ethernet swith port is given a ost

⊲ based on bandwidth of the link

⋆ see next slide

⊲ like a link weight (in Dijkstra)
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IEEE Spanning tree standards:

http://www.ieee802.org/1/pages/802.1D-2003.html
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
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Port osts

◮ default osts based on bandwith

⊲ old version based on 1 Gbps/(link bandwidth)
⊲ new version arbitrary table

⋆ port ost has to be integer > 0
⋆ new osts aount for link speeds > 1 GbpsMedia new ost old ost10 Mbps 100 100100 Mbps 19 101 Gbps 4 110 Gbps 2 1

◮ gives port ID
⊲ MAC address is used as a tie break again
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http://www.ieee802.org/1/pages/802.1D-2003.html
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf


Spanning Tree Protool

◮ Ethernet swithes send Bridge Protool Data Unit (BPDU)

⊲ e.g. Ciso default is every 2 seonds

⊲ ontains information above, and state

⊲ �ooded through network

◮ swithes try to �nd heapest path to the root swith

◮ losest port to the root on a swith is alled the root port

◮ eah Ethernet segment hooses the port advertizing theshortest path to the root

⊲ label the swith on this path the designated swith

◮ ports not on the designated swith are bloked

⊲ put into bakup mode

⊲ they still listen to BPDUs, but don't forward pakets
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Spanning Tree Protool Example

100 Mbps

To router

1 Gbps

10 Mbps

loop

Switch
Ethernet 

Switch
Ethernet 

Switch
Ethernet 
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Algorhyme

AlgorhymeI think that I shall never seeA graph as lovely as a tree.A tree whih must be sure to span.So pakets an reah every LAN.First the root must be seleted.By ID, it is eleted.Least ost paths from Root are traed.In the tree these paths are plaed.A mesh is made by folks like me.Then bridges �nd a spanning tree.STP is attributed to Radia Perlman as is the poem above.
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Minimum Spanning Trees

STP is doing an optimization:

◮ it is minimizing the path length for eah leaf to getto the root

◮ using somewhat arbitrary link weights!
◮ effetively it is trying to minimize ongestion byswithing traf� on higher bandwidth paths

Another standard optimization is to minimize the totalost of the tree
◮ the exat problem depends on what we mean by�osts�
◮ often referred to as Minimum Spanning Tree (MSP)
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Note that the STP does NOT solve the MSP problem!More information on MSPs an be sound at

http://www.ics.uci.edu/~eppstein/161/960206.html
http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Graph/Undirected/
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/kruskal/Kruskal.shtml
http://portal.acm.org/citation.cfm?id=52357
http://www.cs.sunysb.edu/~algorith/files/minimum-spanning-tree.shtml
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Minimum Spanning Trees

Take a general linear ost model

C(f) = ∑
e∈L

(αe fe +βe)

◮ various subases exist

◮ minimum weight spanning tree (MWST)

αe = 0
C(f) = ∑

e∈L

βe
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ForestsA olletion of sub-trees is alled a forest

links in the forest

links in G
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Properties of importane

Proposition 1: If F ,G are two forests for a network and

|F | > |G |, then ∃ link e ∈ F suh that G ∪{e} is a forest.Proof: Suppose the sub-trees in the forest G aredenoted G1,G2, . . .Gk (so eah is a onneted omponentof G and eah has no yles). Let Fi be the set of links in

F whih have both endpoints in omponent Gi of G . Nowsine F is a forest, and Fi ⊆ F , eah Fi is a forest, sonumber of links in Fi ≤ (# of nodes in Fi)−1
≤ (# of nodes in Gi)−1
= # links in Gi

(beause Gi is a tree)
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Properties of importane

Proof: (of prop. 1 ontinued)

∴ |Fi| ≤ |Gi|

∴ ∑k
i=1 |Fi| ≤ ∑k

i=1 |Gi| = |G | < |F |Therefore there is a link in F whih does not have bothendpoints in the same omponent (Gi) of G . Hene
G ∪{e} will not ontain a yle. Therefore G ∪{e} is aforest.2
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Properties of importane

Proposition 2: Given a fragment F of an MWST, let e bea link of minimum weight with one node in F and theother not in F . i.e. e is suh that βe = min{βi j | i ∈ F, j 6∈ F}Then F ∪{e} is a fragment of an MWSTProof: If 6 ∃e, then all nodes of G are in F , and therefore

F is an MWST.Suppose ∃e = (i, j) suh that βe = min{βi j | i ∈ F, j 6∈ F}.Denote by T the minimum weight spanning tree of whih

F is a fragment. If e ∈ T , we are done, so assume e 6∈ T .Then T ∪{e} has a yle. Sine node j 6∈ F, there is a link

e′ 6= e whih is on the yle and on T , and has one node on

F (see diagram).
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Properties of importane

Proof: (of prop. 2 ontinued)

F

T
e

e’
i

jDelete e′ from T and add e to T . We still have |N| nodesand |N|−1 links. ∴ we still have a spanning tree, T ∗ say.But βe ≤ βe′ by de�nition of e. So T ∗ has a ost ≤ that of

T . Therefore T ∗ is an MWST, and therefore F ∪{e} is afragment of an MWST.2
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Greedy methods

◮ at eah step we make the best hoie
⊲ don't ever go bak

◮ e.g. Dijkstra, Minoux's greedy method
◮ advantage

⊲ generally pretty simple
◮ disadvantage

⊲ doesn't reah true optimum in many ases

⋆ results are still sometimes quite good

⊲ Dijkstra does �nd an optimum

◮ two new examples today
⊲ Kruskal and Prim's methods

⊲ both are optimal
Communications Network Design: lecture 16 – p.19/41

Communications Network Design: lecture 16 – p.19/41



Kruskal's method [1℄

Input a onneted network G(N,E) with link weights

βe ≥ 0,∀e ∈ E1. Initialize: list the links in inreasing order of βe,e.g.

βe1 ≤ βe2 ≤ ·· · ≤ βe|E|2. While not a spanning tree

◮ hoose the next link in the list

⊲ if it doesn't form a yle, add it to the tree

⊲ if it does, then disard the linkAlternative step 2: for i = 1,2, . . . , |E|

◮ if adding link ei would not reate a yle, add it tothe tree, otherwise disard it
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Kruskal's method example

Input graph with link weights βe

25
40

30

20

15

10
35

1

2 4

3 5

Obviously, the links in order of inreasing βe are:link (2,4) (3,5) (3,4) (2,3) (4,5) (1,2) (1,3)

βe = 10 15 20 25 30 35 40
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Kruskal's method example

Step 1: onsider link (2,4)

25
40

30

20

15

10
35

1

2 4

53

Add the link to the forest.
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Kruskal's method example

Step 2: onsider link (3,5)

25
40

30

20

15

10
35

1

2 4

53

Add the link to the forest.
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Kruskal's method example

Step 3: onsider link (3,4)

25
40

30

20

15

10
35

1

2 4

53

Add the link to the forest.
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Kruskal's method example

Step 4: onsider link (2,3)
40

30

20

15

10
35

251

2 4

53

Disard the link as it would reate a yle
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Kruskal's method example

Step 5: onsider link (4,5)

40

20

15

10
35

25 301

2 4

53

Disard the link as it would reate a yle
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Kruskal's method example

Step 6: onsider link (1,2)

40

20

15

10
35

25 301

2 4

53

Add the link to the forest.We have a spanning tree now, so we ould stop here, anddisard (1,3), but we will ontinue until the end.
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Kruskal's method example

Step 7: onsider link (1,3)

20

15

10
35

40
25 301

2 4

53

Disard the link as it would reate a yle
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Kruskal's method proof

Sketh proof that Kruskal's method produes a MWST
◮ begin with a forest onsisting of all nodes, separate
◮ at eah stage, we have a forest (no yles)

⊲ from prop.1, we an �nd suh a forest
⊲ the algorithm itself prohibits new yles forming

◮ subtrees in the forest are fragments of the MWST

⊲ we always add least weight links (without yles)

⊲ new subtrees must be fragment of the MWSTsby prop.2
◮ �nal result must be the MWSTFor full proofs see [2, Setion 44, Part II℄,or [3, Thm 6.3℄
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Kruskal's method's omplexity

◮ we start by sorting whih takes O(|E| log|E|)

⊲ for a ompletely onneted network (the worstase) O(|E|) = O(|N|2)

⊲ so O(|E| log|E|) = O(|E| log|N|2) = O(|E| log|N|)

◮ go through all of the edges in turn so O(|E|) steps

◮ in eah step, we need to test for yles

⊲ for e = (i, j) hek whether nodes i and j are inthe same onneted sub-tree

⊲ varies with the method used

⊲ simple method is O(|N|)

⊲ areful method (see [3, Thm 6.4℄) is O(log|N|)

◮ Total omplexity O(|E| log|N|)
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Prim's Method [4℄

◮ Rather than add links with inreasing weights,Prim's method fans out from a single arbitrary node.
◮ maintain a sub-tree (S,L)

⊲ S ⊂ N
⊲ L ⊂ E suh that L is a spanning tree on S

⋆ onnets S
⋆ has no yles

◮ at eah step, add the �nearest neighbour� to S

⊲ add the heapest link from S to S\N

◮ using ideas from proposition 1 and 2
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Prim's Method [4℄

Input a onneted network G(N,E) with link weights

βe ≥ 0,∀e ∈ E1. Initialize: L = φ, S = {1}2. While (S,L) not a spanning tree (|L| < |N|−1)

◮ take (i′, j′) suh that

βi′ j′ = min{βi, j|(i, j) ∈ E, i ∈ S, j /∈ S}

◮ add (i′, j′) to the list L and j′ to S
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Prim's method example

Input graph with link weights βe (same as above)Choose an arbitrary start node (we hoose node 1)

25
40

30

20

15

10
35

1

2

3 5

4

S = {1}, L = φ
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Prim's method example

25
40

30

20

15

10
35

1

2

3 5

4

S = {1,2}, L = {(1,2)}
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Prim's method example

25
40

30

20

15

10
35

1

2

3 5

4

S = {1,2,4}, L = {(1,2),(2,4)}
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Prim's method example

25
40

30

20

15

10
35

1

2

3 5

4

S = {1,2,4,3}, L = {(1,2),(2,4),(3,4)}
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Prim's method example
25

40
30

20

15

10
35

1

2

5

4

3

S = {1,2,4,3,5}, L = {(1,2),(2,4),(3,4),(3,5)}
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Prim's method details

◮ proof is straight from prop. 1 and prop. 2 again

◮ omplexity of simple approah

⊲ need one step per node, so O(|N|) steps

⊲ eah step requires hoie of min over the edgeswhih takes time O(|E|) = O(|N|) for a densegraph

⊲ total omplexity is O(|N|2)

◮ better approah, using a Fibonai heap [3, p.121℄

⊲ for a sparse graph this is O(|E|+ |N| log|N|)
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Relationship to other algorithms
◮ greedy tree searh algorithms are all similar

⊲ like Dijkstra, but unlike arbitrary greedy methods,these are all optimal

⊲ differene between Dijkstra and Prim
⋆ Dijkstra looks for next node to be losest to root

⋆ Prim looks for next node to be losest to urrentMWST

⋆ STP is really doing Dijkstra to get SPF tree

◮ A tour (minus a link) is a speial ase of a MWST

⊲ TSP results in a speial ase of a MWST

⊲ TSP is a ost minimization over a stritly smaller set

⊲ So in general the MWST ost is less than the TSPost
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Misellany

◮ if eah link has a distint edge weight, there will bea unique MWST

⊲ in general the MWST is not unique

◮ The �rst algorithm for �nding a minimum spanningtree was developed by Otakar Boruvka in 1926 [5℄.

◮ The fastest minimum spanning tree algorithm todate was developed by Bernard Chazelle, runningtime O(|E|α(|E|, |N|)) where α is the lassialfuntional inverse of an Akermann funtion(effetively a onstant here) [6℄.
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