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This le
ture 
ontinues the dis
ussion of treelike networks, in parti
ular presenting algorithmsfor solving more 
omplex tree-like network designs (Gomory-Hu and Gus�eld's methods),using 
ut-sets.
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Advan
ed tree-likenetwork design

Tree-like networks, and some more advan
ed algorithms.Starting with 
utsets we get Gomory-Hu and Gus�eld'smethods.
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Tree-like networksThe problems 
an be bit more 
ompli
ated

◮ in 
able TV network, no 
ongestion 
ost, as 
ontentis repli
ated

◮ in Ethernet, 
ongestion is arbitrarily delt with usingweights that depend on bandwidth

◮ in some networks we may have to deal with loadbased 
osts
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CostsTake a general linear 
ost model C(f) = ∑
e∈L

(αe fe+βe)

◮ last le
ture we 
onsidered the minimum weightspanning tree (MWST) whi
h has αe = 0, so
C(f) = ∑

e∈T

βe

◮ today, we 
onsider the 
ase βe = 0, so
C(f) = ∑

e∈T

αe fe

◮ unfortunately, this is NP-
omplete
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Methods of atta
k

◮ enumeration impra
ti
al (too many trees)

◮ use standard tri
k from before

C(f) = ∑
e∈T

αe fe = ∑
[p,q]∈K

lpq(T)tpq

◮ use a new idea, based on 
utsets

Communications Network Design: lecture 17 – p.5/47

Communications Network Design: lecture 17 – p.5/47

CutsetsTake a graph G(N,E), then X, X̄ is a partition of thenodes N, if

X̄ = N\Xthat is

X∪ X̄ = N
X∩ X̄ = φ

De�nition: A 
utset (X, X̄) of G(N,E) is the set of links

(X, X̄) = {(i, j) | i ∈ X, j ∈ X̄}
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Cutset example

cutset

X
X
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Fundamental Cutset

◮ Suppose a 
utset 
ontains a single link e∈ E

◮ if the link e is deleted from T, then T will bedis
onne
ted into two subtrees Xe and X̄e

◮ the 
utset (Xe, X̄e) is 
alled a fundamental 
utset

fundamental cutset

e
e

e
X

X
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Fundamental Cutset

◮ for a tree T with n−1 links, there are n−1fundamental 
utsets

⊲ 
utting any link makes network dis
onne
ted

Xe

eX

e
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Non-
rossing 
utsets

De�nition: Cutsets (X, X̄) and (Y,Ȳ) are said to be
rossing if

X∩Y 6= /0, X∩Ȳ 6= /0, X̄∩Y 6= /0, and X̄∩Ȳ 6= /0

De�nition: Cutsets (X, X̄) and (Y,Ȳ) are said to benon-
rossing if at least one of the above interse
tions isempty.
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Crossing 
utsets examples

Y

X

Y

X
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Non-
rossing 
utsets examples

φ

Y
X

X Y = 

Y X
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Non-
rossing 
utsets and trees

◮ Fundamental 
utsets are non-
rossing!

⊲ so a tree has at least n−1 non-
rossing 
utsets

◮ also, suppose (Xe, X̄e) is a fundamental 
utset

⊲ if the O-D pair has p∈ Xe and q∈ X̄e

⊲ all traf�
 tpq must pass through e

⊲ (Xe, X̄e) is said to separate p and q

⊲ the traf�
 on link ewill be

fe = ∑
p∈Xe

∑
q∈X̄e

tpq := t(Xe, X̄e)i.e., the traf�
 between sets Xe and X̄e is t(Xe, X̄e)

◮ network 
ost will be

C(f) = ∑
e∈T

αe fe = ∑
e∈T

αet(Xe, X̄e)
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Cutsets and trees example
e

eX
Xe

Xe

eX
e

Xe

e

eX

1

1
1

2

2
2

3

3

3

e.g. X̄e1∩ X̄e2 = X̄e2∩ X̄e3 = X̄e3∩ X̄e1 = φ
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Min-hop tree

◮ we will simplify to the 
ase where

αe = 1, ∀e∈ E

C(f) = ∑
e∈T

fe = ∑
[p,q]∈K

l̂pq(T)tpq = ∑
e∈T

t(Xe, X̄e)

◮ equivalent to minimizing hop 
ount l̂µ(T) = ∑e:e∈µ1

⊲ impli
itly assumes pro
essing time for a pa
ketat a node dominates performan
e.

◮ result is 
alled a min hop tree

⊲ also 
alled a Gomory-Hu tree (we see why below)

◮ 
an be found in O(|N|2|E|) time, whi
h is polynomial
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Gomory-Hu Method

Obje
tive: given a graph G(N,E), and predi
ted traf�

tpq, �nd a min hop tree.Prin
iple: �nd a set of n−1 non-
rossing 
utsets thatminimize t(Xe, X̄e) at ea
h step.

◮ another greedy algorithm
⊲ 
hoose the best 
utset at ea
h stage
⊲ however, it does rea
h the optimum

◮ n−1 non-
rossing 
utsets de�ne our tree, e.g.

⊲ Lemma: A spanning tree with n−1 links
orresponds uniquely to a set of n−1non-
rossing 
utsets.
⊲ the links o

uring in exa
tly one 
utset form aspanning tree T.
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Lemma proof

Proof: (⇒) Given T, removing any link e∈ T dis
onne
tsthe network into Te and T̄e, and so 
orresponds to afundamental 
utset (Te, T̄e). Now we 
an do the same with

Te, or T̄e. Imagine we partition Te with 
utset (Tg, T̄g), then

Tg⊂ Te, and so Tg∩ T̄e = φ, and so these are non-
rossing
utsets. Repeat re
ursively, until, after removing n−1links, we will have n−1 non-
rossing 
utsets.
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Lemma proof (
ontinued)

Proof: (⇐)Suppose we have a set of (n−1) non-
rossing 
utsets,

{F1,F2, . . . ,Fn−1}. Constru
t a spanning tree T as follows.Consider the 
ut F1 = (X1, X̄1). Draw two supernodes, one
orresponding to the set of nodes in X1, and the other tothose in X̄1; 
onne
t by a link. This 
reates a link in thespanning tree. Now 
onsider the next 
ut, F2 = (X2, X̄2).Sin
e F2 does not 
ross F1, we have X2⊂ X1 and X̄1⊂ X̄2,(or we have X1⊂ X2 and X̄2⊂ X̄1). Then we 
an 
reate atree with three supernodes, X2, X1−X2, and X̄1, and twolinks in a spanning tree. Continue in this manner for all
n−1 
utsets Fi , to get the (n−1) links in T.
2
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Gomory-Hu Algorithm

◮ Initialize: F = φ is a list of non-
rossing 
utsets.
◮ While: at least one pair of nodes p and q are notyet separated by a 
utset in F .1. sele
t a pair of nodes p,q∈ N not yet separatedby a 
utset in F2. �nd a 
utset (Xpq, X̄pq) that

⊲ minimizes t(X, X̄) subje
t to
⊲ (X, X̄) separates p and q
⊲ (X, X̄) does not 
ross any 
utset in F3. put F ← F ∪{(Xpq, X̄pq)}, and re
ord t(Xpq, X̄pq)

◮ Terminate: Determine the set of links 
ontained inexa
tly one 
utset � these links form T.
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Gomory-Hu Example

The traf�
 tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6
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Gomory-Hu Example

The traf�
 tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6

The possible 
utsets
(X12, X̄12)

1 2

3 4

5 6
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Gomory-Hu Example

A list of the possible 
utsets separating nodes 1 and 2

X12 = {1} {1,3} {1,4} {1,5} {1,6} {1,3,4} {1,3,5} {1,3,6}
{1,4,5} {1,4,6} {1,5,6} {1,3,4,5} {1,3,4,6}
{1,3,5,6} {1,4,5,6} {1,3,4,5,6}.

Here the one with minimum value has

X12 = {1,3} and X̄12 = {2,4,5,6}with value 4+1+1 = 6 = νe, so F = {(X12, X̄12)}
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Gomory-Hu Example

The traf�
 tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Some values t(X12, X̄12) andthe min for X12 = {1,3}

1 2

3 4

5 6

6

8 7

11

7
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1,3

2,4,5,6

6

Step 1: (p,q) = (1,2) and

X12 = {1,3}

1

1 2

3 4

5 6
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

2,4,5,6

1

3

6

8

Step 2: (p,q) = (1,3) and
X13 = {1}

1

2

1 2

3 4

5 6
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1

3

2,5

4,6

6

8

6

Step 3: (p,q) = (2,4) and

X24 = {1,2,3,5}

1

2

1 2

3 4

5 6

3
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1

3

4,6

5 2

6

8

6

7

Step 4: (p,q) = (2,5) and
X25 = {1,3,4,5,6}

1

2

3

4

1 2

3 4

5 6
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1

3

5 2

4

6

8

7

6

8

6

Step 5: (p,q) = (4,6) and

X46 = {1,2,3,4,5}

1

2

3

4

5

1 2

3 4

5 6
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Gomory-Hu Example

Choose links in exa
tlyone 
utset

1 2

3 4

5 6

Final result for T also show-ing fe = t(X, X̄)

8
6

7

6

8

1 2

3 4

5 6
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Gomory-Hu Example: summarySUMMARY:(a) 1,2 F1 = {(X, X̄)} where X = {1,3}; X̄ = {2,3,5,6},

t(X, X̄) = 6.(b) 1,3 F2 = F1∪{(X, X̄)} where X = {1}; X̄ = {3,2,4,5,6},

t(X, X̄) = 8.(
) 2,4 F3 = F2∪{(X, X̄)} where has X = {4,6}; X̄ = {1,2,3,5},

t(X, X̄) = 6.(d) 2,5 F4 = F3∪{(X, X̄)} where has X = {2}; X̄ = {1,3,4,5,6},

t(X, X̄) = 7.(e) 4,6 F5 = F4∪{(X, X̄)} where has X = {6}; X̄ = {1,2,3,4,5},

t(X, X̄) = 8.Total 
ost: ∑e∈T fe = 8+6+7+6+8= 36
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Gomory-Hu Complexity

◮ We have to �nd |N|−1 non-
rossing 
utsets, i.e.there will be O(|N|) steps

◮ ea
h step requires minimization over all allowed
utsets

⊲ how do we �nd non-
rossing 
utsets?
⊲ Ford-Fulkerson Maximum Flow LabellingAlgorithm (see Math Programming III)

⋆ max �ow � min 
ut theorem gives theminimum 
utset
⊲ but how do we test non-
rossing (in reasonable
omplexity)?

⋆ non-trivial
◮ Gus�eld's Algorithm is an alternative
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Gus�eld's Algorithm

How 
an we get away from needing non-
rossing 
utsets?
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Gus�eld's Algorithm

Obje
tive: given a graph G(N,E), and predi
ted traf�

tpq, �nd a min hop tree.Prin
iple: start with a star, and break off bits that 
anbe
ome substars

◮ WLOG we 
an 
hoose initial hub to be node 1
◮ another greedy algorithm

⊲ for ea
h node, test to see if the network is
heaper if we break it off the main hub

⊲ however, it does rea
h the optimum

◮ we have a spanning tree at ea
h step

⊲ use r(k) to denote the parent of node k

⊲ be
ause its a spanning tree, this is a uniquerepresentation
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Gus�eld's Algorithm

◮ Initialize: start with the tree T being star, withnode 1 as the hub, i.e. r(k) = 1 for k = 2,3, . . . ,n

⊲ also for ea
h link (k, r(k)) assign vk1 = 0

◮ For: k = 2,3, . . . ,n1. amoung all 
utsets separating k from its parent

r(k), determine the 
utset with smallest value of

t(X, X̄), i.e. 
hoose (X, X̄) that solves

min{t(X, X̄)|k∈ X, r(k) ∈ X̄}2. assign ve = t(X, X̄) to the link e= (k, r(k)) ∈ T3. For: i = 2,3, . . . ,n
⊲ if i ∈ X and i 6= k and (i, r(k)) ∈ T
⊲ then repla
e link (i, r(k)) in T by (i,k) withvalue equal to the old link, e.g. vik = vi,r(k)
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Gus�eld's Algorithm Example

The traf�
 tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Initial star networkalso showing vk1

0

0

0

0

0

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 1: k = 2

◮ r(k) = 1, so we �nd minimal 
utset that separatesnode 2 from node 1

◮ this is just the same as step 1 of G-H, and so theminimal 
utset is X = {2,4,5,6} and X̄ = {1,3}

◮ ν2,1 = t(X, X̄) = 6

◮ for i ∈ X = {2,4,5,6}, we get i 6= k and i ∈ X for

i = 4,5,6

◮ for i = 4,5,6, 
he
k whether e= (i, r(k)) ∈ T, e.g.

(4,1) ∈ T, so set r(4) = k = 2
(5,1) ∈ T, so set r(5) = k = 2
(6,1) ∈ T, so set r(6) = k = 2
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Gus�eld's Algorithm Example

The traf�
 tpqand the �rst 
utset
6

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 1: k = 2also showing values
0

6

0

0

0

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 2: k = 3
◮ r(k) = 1, so we �nd minimal 
utset that separatesnode 3 from node 1

◮ this is just the same as step 2 of G-H, and so theminimal 
utset is X = {2,3,4,5,6} and X̄ = {1}

◮ ν3,1 = t(X, X̄) = 8

◮ for i ∈ X = {2,3,4,5,6}, we get i 6= k and i ∈ X for

i = 2,4,5,6

◮ for i = 2,4,5,6, 
he
k whether e= (i, r(k)) ∈ T, e.g.

(2,1) ∈ T, so set r(2) = k = 3
(4,1) 6∈ T, so take no a
tion

(5,1) 6∈ T, so take no a
tion

(6,1) 6∈ T, so take no a
tion
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Gus�eld's Algorithm Example

The traf�
 tpqand the se
ond 
utset

8

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 2: k = 3also showing values

0

0

0

8
6

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 3: k = 4

◮ r(k) = 2, so we �nd minimal 
utset that separatesnode 4 from node 2

◮ minimal 
utset is X = {4,6} and X̄ = {1,2,3,5}

◮ ν4,2 = t(X, X̄) = 6

◮ for i ∈ X = {4,6}, we get i 6= k and i ∈ X for i = 6

◮ for i = 6, 
he
k whether e= (i, r(k)) ∈ T, e.g.

(6,2) ∈ T, so set r(6) = k = 4
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Gus�eld's Algorithm Example

The traf�
 tpqand the third 
utset

6

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 3: k = 4also showing values

0

8
6

0

6

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 4: k = 5

◮ r(k) = 2, so we �nd minimal 
utset that separatesnode 5 from node 2

◮ minimal 
utset is X = {1,3,4,5,6} and X̄ = {2}

◮ ν5,2 = t(X, X̄) = 7

◮ for i ∈ X = {1,3,4,5,6}, we get i 6= k and i ∈ X for

i = 1,3,4,6

◮ for i = 1,3,4,6, 
he
k whether e= (i, r(k)) ∈ T, e.g.

(1,2) 6∈ T, so no a
tion

(3,2) ∈ T, so set r(3) = k = 5
(4,2) ∈ T, so set r(4) = k = 5
(6,2) 6∈ T, so no a
tion
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Gus�eld's Algorithm Example

The traf�
 tpqand the forth 
utset

7

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 4: k = 5also showing values
8

0
6

6

7

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 5: k = 6

◮ r(k) = 4, so we �nd minimal 
utset that separatesnode 6 from node 4

◮ minimal 
utset is X = {6} and X̄ = {1,2,3,4,5}

◮ ν6,4 = t(X, X̄) = 8

◮ for i ∈ X = {6}, we get i 6= k and i ∈ X for no values of

i

◮ so there are no 
hanges to the links
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Gus�eld's Algorithm Example

The traf�
 tpqand the �fth 
utset
8

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 5: k = 6also showing values
8

6
6

7

8

1 2

3 4

5 6
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Gus�eld's Algorithm Example

◮ Final result is the same as for Gomory-Hu, whi
h weexpe
t

⊲ didn't need to look for non-
rossing 
utsets

◮ a
tually we 
ould have used different 
utsets

⊲ get a different tree

⊲ same 
ost though

⊲ non-unique solution to this parti
ular problem

8

6
6

7

8

1 2

3 4

5 6

8

6

7

8

6

1 2

3 4

5 6
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