Communications Network Design lecture 17

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 2, 2009

Communications Network Design: lecture 17 – p.1/47

This lecture continues the discussion of treelike networks, in particular presenting algorithms for solving more complex tree-like network designs (Gomory-Hu and Gusfield's methods), using cut-sets.

Advanced tree-like network design

Tree-like networks, and some more advanced algorithms. Starting with cutsets we get Gomory-Hu and Gusfield's methods.

Communications Network Design: lecture 17 – p.2/47

Communications Network Design: lecture 17 – p.1/47

Communications Network Design: lecture 17 – p.2/47

Tree-like networks

The problems can be bit more complicated

- ▶ in cable TV network, no congestion cost, as content is replicated
- ▶ in Ethernet, congestion is arbitrarily delt with using weights that depend on bandwidth
- ▶ in some networks we may have to deal with load based costs

Communications Network Design: lecture 17 – p.3/47

Costs

Take a general linear cost model $C(\mathbf{f}) = \sum_{e \in L} (\alpha_e f_e + \beta_e)$

▶ last lecture we considered the minimum weight spanning tree (MWST) which has $\alpha_e = 0$, so

$$C(\mathbf{f}) = \sum_{e \in T} \beta_e$$

▶ today, we consider the case $\beta_e = 0$, so

$$C(\mathbf{f}) = \sum_{e \in T} \alpha_e f_e$$

▶ unfortunately, this is NP-complete

Communications Network Design: lecture 17 – p.4/47

Methods of attack

- ▶ enumeration impractical (too many trees)
- ▶ use standard trick from before

$$C(\mathbf{f}) = \sum_{e \in T} lpha_e f_e = \sum_{[p,q] \in K} l_{pq}(T) t_{pq}$$

▶ use a new idea, based on cutsets

Communications Network Design: lecture 17 – p.5/47

Cutsets

Take a graph G(N,E), then X, \bar{X} is a partition of the nodes N, if

$$\bar{X} = N \backslash X$$

that is

$$X \cup \bar{X} = N$$

$$X \cap \bar{X} = \emptyset$$

Definition: A cutset (X, \overline{X}) of G(N, E) is the set of links

$$(X,\bar{X}) = \{(i,j) \mid i \in X, j \in \bar{X}\}$$

Communications Network Design: lecture 17 – p.6/47

Communications Network Design: lecture 17 – p.5/47

Communications Network Design: lecture 17 – p.6/47

Cutset example

Communications Network Design: lecture 17 – p.7/47

Fundamental Cutset

- lacktriangle Suppose a cutset contains a single link $e \in E$
- ▶ if the link e is deleted from T, then T will be disconnected into two subtrees X_e and \bar{X}_e
- \blacktriangleright the cutset (X_e, \bar{X}_e) is called a fundamental cutset

Communications Network Design: lecture 17 – p.8/47

Fundamental Cutset

- ▶ for a tree T with n-1 links, there are n-1 fundamental cutsets
 - > cutting any link makes network disconnected

Communications Network Design: lecture 17 – p.9/47

Non-crossing cutsets

Definition: Cutsets (X,\bar{X}) and (Y,\bar{Y}) are said to be crossing if

 $X \cap Y \neq \emptyset$, $X \cap \bar{Y} \neq \emptyset$, $\bar{X} \cap Y \neq \emptyset$, and $\bar{X} \cap \bar{Y} \neq \emptyset$

Definition: Cutsets (X,\bar{X}) and (Y,\bar{Y}) are said to be non-crossing if at least one of the above intersections is empty.

Communications Network Design: lecture 17 – p.10/47

Crossing cutsets examples

Communications Network Design: lecture 17 – p.11/47

Non-crossing cutsets examples

Communications Network Design: lecture 17 – p.12/47

Non-crossing cutsets and trees

- ► Fundamental cutsets are non-crossing!
 - \triangleright so a tree has at least n-1 non-crossing cutsets
- lacktriangle also, suppose (X_e, \bar{X}_e) is a fundamental cutset
 - ightarrow if the O-D pair has $p \in X_e$ and $q \in \bar{X}_e$
 - \triangleright all traffic t_{pq} must pass through e
 - $\triangleright (X_e, \bar{X}_e)$ is said to separate p and q
 - \triangleright the traffic on link e will be

$$f_e = \sum_{p \in X_e} \sum_{q \in ar{X}_e} t_{pq} := t(X_e, ar{X}_e)$$

i.e., the traffic between sets X_e and \bar{X}_e is $t(X_e, \bar{X}_e)$

▶ network cost will be

$$C(\mathbf{f}) = \sum_{e \in T} \alpha_e f_e = \sum_{e \in T} \alpha_e t(X_e, \bar{X}_e)$$

Communications Network Design: lecture 17 - p.13/47

Cutsets and trees example

e.g.
$$ar{X}_{e_1} \cap ar{X}_{e_2} = ar{X}_{e_2} \cap ar{X}_{e_3} = ar{X}_{e_3} \cap ar{X}_{e_1} = \phi$$

Communications Network Design: lecture 17 - p.14/47

Min-hop tree

▶ we will simplify to the case where

$$\alpha_e = 1, \forall e \in E$$

$$C(\mathbf{f}) = \sum_{e \in T} f_e = \sum_{[p,q] \in K} \hat{l}_{pq}(T) t_{pq} = \sum_{e \in T} t(X_e, \bar{X}_e)$$

- lacktriangledown equivalent to minimizing hop count $\hat{l}_{\mu}(T) = \sum_{e:e \in \mu} 1$
 - implicitly assumes processing time for a packet at a node dominates performance.
- ► result is called a min hop tree
 - □ also called a Gomory-Hu tree (we see why below)
- ightharpoonup can be found in $O(|N|^2|E|)$ time, which is polynomial

Communications Network Design: lecture 17 – p.15/47

Gomory-Hu Method

Objective: given a graph G(N,E), and predicted traffic t_{pq} , find a min hop tree.

Principle: find a set of n-1 non-crossing cutsets that minimize $t(X_e, \bar{X}_e)$ at each step.

- ▶ another greedy algorithm
 - ▷ choose the best cutset at each stage
 - > however, it does reach the optimum
- \blacktriangleright n-1 non-crossing cutsets define our tree, e.g.
 - ▶ **Lemma**: A spanning tree with n-1 links corresponds uniquely to a set of n-1 non-crossing cutsets.
 - \triangleright the links occurring in exactly one cutset form a spanning tree T.

Communications Network Design: lecture 17 - p.16/47

Lemma proof

Proof: (\Rightarrow) Given T, removing any link $e \in T$ disconnects the network into T_e and \bar{T}_e , and so corresponds to a fundamental cutset (T_e, \bar{T}_e) . Now we can do the same with T_e , or \bar{T}_e . Imagine we partition T_e with cutset (T_g, \bar{T}_g) , then $T_g \subset T_e$, and so $T_g \cap \bar{T}_e = \emptyset$, and so these are non-crossing cutsets. Repeat recursively, until, after removing n-1 links, we will have n-1 non-crossing cutsets.

Communications Network Design: lecture 17 - p.17/47

Lemma proof (continued)

Proof: (\Leftarrow)

Suppose we have a set of (n-1) non-crossing cutsets, $\{F_1,F_2,\ldots,F_{n-1}\}$. Construct a spanning tree T as follows. Consider the cut $F_1=(X_1,\bar{X}_1)$. Draw two supernodes, one corresponding to the set of nodes in X_1 , and the other to those in \bar{X}_1 ; connect by a link. This creates a link in the spanning tree. Now consider the next cut, $F_2=(X_2,\bar{X}_2)$. Since F_2 does not cross F_1 , we have $X_2\subset X_1$ and $\bar{X}_1\subset \bar{X}_2$, (or we have $X_1\subset X_2$ and $\bar{X}_2\subset \bar{X}_1$). Then we can create a tree with three supernodes, X_2 , X_1-X_2 , and \bar{X}_1 , and two links in a spanning tree. Continue in this manner for all n-1 cutsets F_i , to get the (n-1) links in T.

Gomory-Hu Algorithm

- ▶ Initialize: $\mathcal{F} = \emptyset$ is a list of non-crossing cutsets.
- ▶ While: at least one pair of nodes p and q are not yet separated by a cutset in \mathcal{F} .
 - 1. select a pair of nodes $p,q \in N$ not yet separated by a cutset in $\mathcal F$
 - 2. find a cutset (X_{pq}, \bar{X}_{pq}) that
 - ightharpoonup minimizes $t(X, \bar{X})$ subject to
 - $\triangleright (X,\bar{X})$ separates p and q
 - hd (X,ar X) does not cross any cutset in ${\mathcal F}$
 - 3. put $\mathcal{F} \leftarrow \mathcal{F} \cup \{(X_{pq}, \bar{X}_{pq})\}$, and record $t(X_{pq}, \bar{X}_{pq})$
- ► Terminate: Determine the set of links contained in exactly one cutset these links form T.

Communications Network Design: lecture 17 – p.19/47

The traffic t_{pq} (zero entries not shown)

Communications Network Design: lecture 17 – p.20/47

Gomory-Hu Example

The traffic t_{pq} (zero entries not shown)

The possible cutsets (X_{12}, \bar{X}_{12})

Communications Network Design: lecture 17 – p.21/47

A list of the possible cutsets separating nodes 1 and 2

$$X_{12} = \{1\} \{1,3\} \{1,4\} \{1,5\} \{1,6\} \{1,3,4\} \{1,3,5\} \{1,3,6\} \{1,4,5\} \{1,4,6\} \{1,5,6\} \{1,3,4,5\} \{1,3,4,6\} \{1,3,5,6\} \{1,4,5,6\} \{1,3,4,5,6\}.$$

Here the one with minimum value has

$$X_{12} = \{1,3\}$$
 and $\bar{X}_{12} = \{2,4,5,6\}$

with value $4+1+1=6=v_e$, so $\mathcal{F}=\{(X_{12},\bar{X}_{12})\}$

Communications Network Design: lecture 17 – p.22/47

Gomory-Hu Example

The traffic t_{pq} (zero entries not shown)

Some values $t(X_{12}, \bar{X}_{12})$ and the min for $X_{12} = \{1,3\}$

Communications Network Design: lecture 17 – p.23/47

along with $t(X, \bar{X})$

Current partitioning of G Step 1: (p,q)=(1,2) and $X_{12} = \{1,3\}$

Communications Network Design: lecture 17 – p.24/47

Gomory-Hu Example

along with $t(X, \bar{X})$

Current partitioning of G Step 2: (p,q) = (1,3) and $X_{13} = \{1\}$

Communications Network Design: lecture 17 – p.25/47

along with $t(X, \bar{X})$

Current partitioning of G Step 3: (p,q)=(2,4) and $X_{24} = \{1, 2, 3, 5\}$

Communications Network Design: lecture 17 – p.26/47

Gomory-Hu Example

along with $t(X, \bar{X})$

Current partitioning of G Step 4: (p,q) = (2,5) and $X_{25} = \{1, 3, 4, 5, 6\}$

Communications Network Design: lecture 17 – p.27/47

Current partitioning of G Step 5: (p,q)=(4,6) and along with $t(X, \bar{X})$

 $X_{46} = \{1, 2, 3, 4, 5\}$

Communications Network Design: lecture 17 – p.28/47

Gomory-Hu Example

Choose links in exactly one cutset

Final result for T also showing $f_e = t(X, \bar{X})$

Communications Network Design: lecture 17 – p.29/47

Gomory-Hu Example: summary

SUMMARY:

- (a) $\underline{1,2}_{t(X,\bar{X})} = \{(X,\bar{X})\}$ where $X = \{1,3\}; \bar{X} = \{2,3,5,6\},$
- (b) $\frac{1,3}{t(X,\bar{X})} = \mathcal{F}_1 \cup \{(X,\bar{X})\}$ where $X = \{1\}; \bar{X} = \{3,2,4,5,6\}$,
- (c) $\underline{2,4}$ $\mathcal{F}_3=\mathcal{F}_2\cup\{(X,\bar{X})\}$ where has $X=\{4,6\}; \bar{X}=\{1,2,3,5\}$, $t(X,\bar{X})=6$.
- (d) $\underline{2,5}_{t(X,\bar{X})} = \mathcal{F}_3 \cup \{(X,\bar{X})\}$ where has $X = \{2\}; \bar{X} = \{1,3,4,5,6\}$,
- (e) $\underline{4,6}_{t(X,\bar{X})} = \mathcal{F}_4 \cup \{(X,\bar{X})\}$ where has $X = \{6\}; \bar{X} = \{1,2,3,4,5\}$,

Total cost: $\sum_{e \in T} f_e = 8 + 6 + 7 + 6 + 8 = 36$

Communications Network Design: lecture 17 - p.30/47

Gomory-Hu Complexity

- ▶ We have to find |N|-1 non-crossing cutsets, i.e. there will be O(|N|) steps
- each step requires minimization over all allowed cutsets
 - ▶ how do we find non-crossing cutsets?
 - - * max flow min cut theorem gives the minimum cutset
 - but how do we test non-crossing (in reasonable complexity)?
 - * non-trivial
- ► Gusfield's Algorithm is an alternative

Communications Network Design: lecture 17 - p.31/47

Gusfield's Algorithm

How can we get away from needing non-crossing cutsets?

Communications Network Design: lecture 17 – p.32/47

Gusfield's Algorithm

Objective: given a graph G(N,E), and predicted traffic t_{pq} , find a min hop tree.

Principle: start with a star, and break off bits that can become substars

- ▶ WLOG we can choose initial hub to be node 1
- ▶ another greedy algorithm

 - > however, it does reach the optimum
- ▶ we have a spanning tree at each step
 - \triangleright use r(k) to denote the parent of node k
 - because its a spanning tree, this is a unique representation

Communications Network Design: lecture 17 – p.33/47

Communications Network Design: lecture 17 - p.32/47

Communications Network Design: lecture 17 – p.33/47

Gusfield's Algorithm

- ▶ Initialize: start with the tree T being star, with node 1 as the hub, i.e. r(k) = 1 for k = 2, 3, ..., n▷ also for each link (k, r(k)) assign $v_{k1} = 0$
- ▶ For: k = 2, 3, ..., n
 - 1. amoung all cutsets separating k from its parent r(k), determine the cutset with smallest value of $t(X,\bar{X})$, i.e. choose (X,\bar{X}) that solves $\min\{t(X,\bar{X})|k\in X,r(k)\in\bar{X}\}$
 - 2. assign $v_e = t(X, \bar{X})$ to the link $e = (k, r(k)) \in T$
 - 3. For: i = 2, 3, ..., n \Rightarrow if $i \in X$ and $i \neq k$ and $(i, r(k)) \in T$
 - by then replace link (i, r(k)) in T by (i, k) with value equal to the old link, e.g. $v_{ik} = v_{i,r(k)}$

Communications Network Design: lecture 17 – p.34/47

Gusfield's Algorithm Example

The traffic t_{pq} (zero entries not shown)

Initial star network also showing v_{k1}

Communications Network Design: lecture 17 – p.35/47

Iteration 1: k=2

- ightharpoonup r(k) = 1, so we find minimal cutset that separates node 2 from node 1
- ▶ this is just the same as step 1 of G-H, and so the minimal cutset is $X = \{2,4,5,6\}$ and $\bar{X} = \{1,3\}$
- $\mathbf{v}_{2,1} = t(X, \bar{X}) = 6$
- ▶ for $i \in X = \{2,4,5,6\}$, we get $i \neq k$ and $i \in X$ for i = 4,5,6
- lacktriangledown for i=4,5,6, check whether $e=(i,r(k))\in T$, e.g.

$$(4,1) \in T$$
, so set $r(4) = k = 2$

$$(5,1) \in T$$
, so set $r(5) = k = 2$

$$(6,1) \in T$$
, so set $r(6) = k = 2$

Communications Network Design: lecture 17 – p.36/47

Gusfield's Algorithm Example

The traffic t_{pq} and the first cutset

Iteration 1: k = 2 also showing values

Communications Network Design: lecture 17 – p.37/47

Iteration 2: k = 3

- ightharpoonup r(k) = 1, so we find minimal cutset that separates node 3 from node 1
- ▶ this is just the same as step 2 of G-H, and so the minimal cutset is $X = \{2,3,4,5,6\}$ and $\bar{X} = \{1\}$
- \triangleright $v_{3,1} = t(X, \bar{X}) = 8$
- ▶ for $i \in X = \{2,3,4,5,6\}$, we get $i \neq k$ and $i \in X$ for i = 2,4,5,6
- for i=2,4,5,6, check whether $e=(i,r(k))\in T$, e.g.

 $(2,1) \in T$, so set r(2) = k = 3

 $(4,1) \notin T$, so take no action

 $(5,1) \not\in T$, so take no action

 $(6,1) \not\in T$, so take no action

Communications Network Design: lecture 17 – p.38/47

Gusfield's Algorithm Example

The traffic t_{pq} and the second cutset

Iteration 2: k = 3 also showing values

Communications Network Design: lecture 17 – p.39/47

Iteration 3: k=4

- ightharpoonup r(k) = 2, so we find minimal cutset that separates node 4 from node 2
- \blacktriangleright minimal cutset is $X = \{4,6\}$ and $\bar{X} = \{1,2,3,5\}$
- $\blacktriangleright \ v_{4,2} = t(X,\bar{X}) = 6$
- ▶ for $i \in X = \{4,6\}$, we get $i \neq k$ and $i \in X$ for i = 6
- \blacktriangleright for i=6, check whether $e=(i,r(k))\in T$, e.g.

$$(6,2) \in T$$
, so set $r(6) = k = 4$

Communications Network Design: lecture 17 – p.40/47

Gusfield's Algorithm Example

The traffic t_{pq} and the third cutset

Iteration 3: k = 4 also showing values

Communications Network Design: lecture 17 – p.41/47

Iteration 4: k = 5

- ightharpoonup r(k) = 2, so we find minimal cutset that separates node 5 from node 2
- \blacktriangleright minimal cutset is $X = \{1,3,4,5,6\}$ and $\bar{X} = \{2\}$
- $\triangleright \ \ v_{5,2} = t(X,\bar{X}) = 7$
- ▶ for $i \in X = \{1,3,4,5,6\}$, we get $i \neq k$ and $i \in X$ for i = 1,3,4,6
- lacktriangledown for i=1,3,4,6, check whether $e=(i,r(k))\in T$, e.g.

 $(1,2) \not\in T$, so no action

 $(3,2) \in T$, so set r(3) = k = 5

 $(4,2) \in T$, so set r(4) = k = 5

 $(6,2) \not\in T$, so no action

Communications Network Design: lecture 17 - p.42/47

Gusfield's Algorithm Example

The traffic t_{pq} and the forth cutset

Communications Network Design: lecture 17 – p.43/47

Iteration 5: k = 6

- ightharpoonup r(k) = 4, so we find minimal cutset that separates node 6 from node 4
- \blacktriangleright minimal cutset is $X = \{6\}$ and $\bar{X} = \{1,2,3,4,5\}$

- ▶ so there are no changes to the links

Communications Network Design: lecture 17 - p.44/47

Gusfield's Algorithm Example

The traffic t_{pq} and the fifth cutset

Iteration 5: k = 6 also showing values

Communications Network Design: lecture 17 – p.45/47

- ► Final result is the same as for Gomory-Hu, which we expect
- ▶ actually we could have used different cutsets
 - > get a different tree

 - ▷ non-unique solution to this particular problem

Communications Network Design: lecture 17 – p.46/47

References