Communications Network Design

lecture 17
Matthew Roughan
<mat hew.roughan@adelaide.edu.au>
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

March 2, 2009

This lecture continues the discussion of treelike networks, in particular presenting algorithms for solving more complex tree-like network designs (Gomory-Hu and Gusfield's methods), using cut-sets.

Advanced tree-like network design

Tree-like networks, and some more advanced algorithms. Starting with cutsets we get Gomory-Hu and Gusfield's methods.

Tree-like networks

The problems can be bit more complicated

- in cable TV network, no congestion cost, as content is replicated
- in Ethernet, congestion is arbitrarily delt with using weights that depend on bandwidth
- in some networks we may have to deal with load based costs

Costs

Take a general linear cost model $C(\mathbf{f})=\sum_{e \in L}\left(\alpha_{e} f_{e}+\beta_{e}\right)$

- last lecture we considered the minimum weight spanning tree (MWST) which has $\alpha_{e}=0$, so

$$
C(\mathbf{f})=\sum_{e \in T} \beta_{e}
$$

- today, we consider the case $\beta_{e}=0$, so

$$
C(\mathbf{f})=\sum_{e \in T} \alpha_{e} f_{e}
$$

- unfortunately, this is NP-complete

Methods of attack

- enumeration impractical (too many trees)
- use standard trick from before

$$
C(\mathbf{f})=\sum_{e \in T} \alpha_{e} f_{e}=\sum_{[p, q] \in K} l_{p q}(T) t_{p q}
$$

- use a new idea, based on cutsets

Cutsets

Take a graph $G(N, E)$, then X, \bar{X} is a partition of the nodes N, if

$$
\bar{X}=N \backslash X
$$

that is

$$
\begin{aligned}
& X \cup \bar{X}=N \\
& X \cap \bar{X}=\phi
\end{aligned}
$$

Definition: A cutset (X, \bar{X}) of $G(N, E)$ is the set of links

$$
(X, \bar{X})=\{(i, j) \mid i \in X, j \in \bar{X}\}
$$

Cutset example

Fundamental Cutset

- Suppose a cutset contains a single link $e \in E$
- if the link e is deleted from T, then T will be disconnected into two subtrees X_{e} and \bar{X}_{e}
- the cutset $\left(X_{e}, \bar{X}_{e}\right)$ is called a fundamental cutset

Communications Network Design: lecture 17 - p.8/47

Fundamental Cutset

- for a tree T with $n-1$ links, there are $n-1$ fundamental cutsets
\triangleright cutting any link makes network disconnected

Communications Network Design: lecture 17 - p. $9 / 47$

Crossing cutsets examples

Non-crossing cutsets and trees

- Fundamental cutsets are non-crossing!
\triangleright so a tree has at least $n-1$ non-crossing cutsets
- also, suppose $\left(X_{e}, \bar{X}_{e}\right)$ is a fundamental cutset
\triangleright if the O-D pair has $p \in X_{e}$ and $q \in \bar{X}_{e}$
\triangleright all traffic $t_{p q}$ must pass through e
$\triangleright\left(X_{e}, \bar{X}_{e}\right)$ is said to separate p and q
\triangleright the traffic on link e will be

$$
f_{e}=\sum_{p \in X_{e}} \sum_{q \in \bar{X}_{e}} t_{p q}:=t\left(X_{e}, \bar{X}_{e}\right)
$$

i.e., the traffic between sets X_{e} and \bar{X}_{e} is $t\left(X_{e}, \bar{X}_{e}\right)$

- network cost will be

$$
C(\mathbf{f})=\sum_{e \in T} \alpha_{e} f_{e}=\sum_{e \in T} \alpha_{e} t\left(X_{e}, \bar{X}_{e}\right)
$$

Min-hop tree

- we will simplify to the case where

$$
\alpha_{e}=1, \quad \forall e \in E
$$

$$
C(\mathbf{f})=\sum_{e \in T} f_{e}=\sum_{[p, q] \in K} \hat{l}_{p q}(T) t_{p q}=\sum_{e \in T} t\left(X_{e}, \bar{X}_{e}\right)
$$

- equivalent to minimizing hop count $\hat{l}_{\mu}(T)=\sum_{\text {e:ee } \in \mu} 1$
\triangleright implicitly assumes processing time for a packet at a node dominates performance.
- result is called a min hop tree
\triangleright also called a Gomory-Hu tree (we see why below)
- can be found in $O\left(|N|^{2}|E|\right)$ time, which is polynomial

Lemma proof

Proof: (\Rightarrow) Given T, removing any link $e \in T$ disconnects the network into T_{e} and \bar{T}_{e}, and so corresponds to a fundamental cutset (T_{e}, \bar{T}_{e}). Now we can do the same with T_{e}, or \bar{T}_{e}. Imagine we partition T_{e} with cutset $\left(T_{g}, \bar{T}_{g}\right)$, then $T_{g} \subset T_{e}$, and so $T_{g} \cap \bar{T}_{e}=\phi$, and so these are non-crossing cutsets. Repeat recursively, until, after removing $n-1$ links, we will have $n-1$ non-crossing cutsets.

Lemma proof (continued)

Proof: (\Leftarrow)
Suppose we have a set of $(n-1)$ non-crossing cutsets, $\left\{F_{1}, F_{2}, \ldots, F_{n-1}\right\}$. Construct a spanning tree T as follows. Consider the cut $F_{1}=\left(X_{1}, \bar{X}_{1}\right)$. Draw two supernodes, one corresponding to the set of nodes in X_{1}, and the other to those in \bar{X}_{1}; connect by a link. This creates a link in the spanning tree. Now consider the next cut, $F_{2}=\left(X_{2}, \bar{X}_{2}\right)$. Since F_{2} does not cross F_{1}, we have $X_{2} \subset X_{1}$ and $\bar{X}_{1} \subset \bar{X}_{2}$, (or we have $X_{1} \subset X_{2}$ and $\bar{X}_{2} \subset \bar{X}_{1}$). Then we can create a tree with three supernodes, $X_{2}, X_{1}-X_{2}$, and \bar{X}_{1}, and two links in a spanning tree. Continue in this manner for all $n-1$ cutsets F_{i}, to get the $(n-1)$ links in T.
\square

Gomory-Hu Algorithm

- Initialize: $\mathcal{F}=\phi$ is a list of non-crossing cutsets.
- While: at least one pair of nodes p and q are not yet separated by a cutset in \mathcal{F}.

1. select a pair of nodes $p, q \in N$ not yet separated by a cutset in \mathcal{F}
2. find a cutset $\left(X_{p q}, \bar{X}_{p q}\right)$ that
\triangleright minimizes $t(X, \bar{X})$ subject to
$\triangleright(X, \bar{X})$ separates p and q
$\triangleright(X, \bar{X})$ does not cross any cutset in \mathcal{F}
3. put $\mathcal{F} \leftarrow \mathcal{F} \cup\left\{\left(X_{p q}, \bar{X}_{p q}\right)\right\}$, and record $t\left(X_{p q}, \bar{X}_{p q}\right)$

- Terminate: Determine the set of links contained in exactly one cutset - these links form T.

Gomory-Hu Example

The traffic $t_{p q}$
(zero entries not shown)

Gomory-Hu Example

Communications Network Design: lecture 17 - p. $20 / 47$

Gomory-Hu Example

A list of the possible cutsets separating nodes 1 and 2

$$
\begin{aligned}
X_{12}= & \{1\}\{1,3\}\{1,4\}\{1,5\}\{1,6\}\{1,3,4\}\{1,3,5\}\{1,3,6\} \\
& \{1,4,5\}\{1,4,6\}\{1,5,6\}\{1,3,4,5\}\{1,3,4,6\} \\
& \{1,3,5,6\}\{1,4,5,6\}\{1,3,4,5,6\} .
\end{aligned}
$$

Here the one with minimum value has

$$
X_{12}=\{1,3\} \quad \text { and } \quad \bar{X}_{12}=\{2,4,5,6\}
$$

with value $4+1+1=6=v_{e}$, so $\mathcal{F}=\left\{\left(X_{12}, \bar{X}_{12}\right)\right\}$

Gomory-Hu Example

The traffic $t_{p q}$
(zero entries not shown)

Some values $t\left(X_{12}, \bar{X}_{12}\right)$ and the min for $X_{12}=\{1,3\}$

Communications Network Design: lecture 17 - p. $23 / 47$

Gomory-Hu Example

Current partitioning of G Step 1: $(p, q)=(1,2)$ and along with $t(X, \bar{X})$

$$
X_{12}=\{1,3\}
$$

Communications Network Design: lecture 17 - p. $24 / 47$

Gomory-Hu Example

Current partitioning of G Step 3: $(p, q)=(2,4)$ and along with $t(X, \bar{X})$

$$
X_{24}=\{1,2,3,5\}
$$

Communications Network Design: lecture 17 - p. $26 / 47$

Gomory-Hu Example

Current partitioning of G Step 5: $(p, q)=(4,6)$ and along with $t(X, \bar{X})$

$$
X_{46}=\{1,2,3,4,5\}
$$

Communications Network Design: lecture 17 - p. $28 / 47$

Gomory-Hu Example: summary

SUMMARY:

(a) $\underline{1,2} \mathcal{F}_{1}=\{(X, \bar{X})\}$ where $X=\{1,3\} ; \bar{X}=\{2,3,5,6\}$, $\overline{t(X}, \bar{X})=6$.
(b) $1,3 \mathcal{F}_{2}=\mathcal{F}_{1} \cup\{(X, \bar{X})\}$ where $X=\{1\} ; \bar{X}=\{3,2,4,5,6\}$, $\overline{t(X}, \bar{X})=8$.
 $t(X, \bar{X})=6$.
(d) $\underline{2,5} \quad \mathcal{F}_{4}=\mathcal{F}_{3} \cup\{(X, \bar{X})\}$ where has $X=\{2\} ; \bar{X}=\{1,3,4,5,6\}$, $t(X, \bar{X})=7$.
(e) $\underline{4,6} \quad \mathcal{F}_{5}=\mathcal{F}_{4} \cup\{(X, \bar{X})\}$ where has $X=\{6\} ; \bar{X}=\{1,2,3,4,5\}$, $t(X, \bar{X})=8$.

Total cost: $\sum_{e \in T} f_{e}=8+6+7+6+8=36$

Gusfield's Algorithm

How can we get away from needing non-crossing cutsets?

Gusfield's Algorithm

Objective: given a graph $G(N, E)$, and predicted traffic $t_{p q}$, find a min hop tree.
Principle: start with a star, and break off bits that can become substars

- WLOG we can choose initial hub to be node 1
- another greedy algorithm
\square for each node, test to see if the network is cheaper if we break it off the main hub
Δ however, it does reach the optimum
- we have a spanning tree at each step
\triangleright use $r(k)$ to denote the parent of node k
\triangleright because its a spanning tree, this is a unique representation

Gusfield's Algorithm

- Initialize: start with the tree T being star, with node 1 as the hub, i.e. $r(k)=1$ for $k=2,3, \ldots, n$
\triangleright also for each link $(k, r(k))$ assign $v_{k 1}=0$
- For: $k=2,3, \ldots, n$

1. amoung all cutsets separating k from its parent $r(k)$, determine the cutset with smallest value of $t(X, \bar{X})$, i.e. choose (X, \bar{X}) that solves $\min \{t(X, \bar{X}) \mid k \in X, r(k) \in \bar{X}\}$
2. assign $v_{e}=t(X, \bar{X})$ to the link $e=(k, r(k)) \in T$
3. For: $i=2,3, \ldots, n$
\triangleright if $i \in X$ and $i \neq k$ and $(i, r(k)) \in T$
\triangleright then replace link $(i, r(k))$ in T by (i, k) with value equal to the old link, e.g. $v_{i k}=v_{i, r(k)}$

Gusfield's Algorithm Example

The traffic $t_{p q}$
 (zero entries not shown)
 Initial star network also showing $v_{k 1}$

Gusfield's Algorithm Example

Iteration 1: $k=2$

- $r(k)=1$, so we find minimal cutset that separates node 2 from node 1
- this is just the same as step 1 of G-H, and so the minimal cutset is $X=\{2,4,5,6\}$ and $\bar{X}=\{1,3\}$
- $\mathrm{v}_{2,1}=t(X, \bar{X})=6$
- for $i \in X=\{2,4,5,6\}$, we get $i \neq k$ and $i \in X$ for $i=4,5,6$
- for $i=4,5,6$, check whether $e=(i, r(k)) \in T$, e.g.

$$
\begin{array}{ll}
(4,1) \in T, & \text { so set } r(4)=k=2 \\
(5,1) \in T, & \text { so set } r(5)=k=2 \\
(6,1) \in T, & \text { so set } r(6)=k=2
\end{array}
$$

Gusfield's Algorithm Example

The traffic $t_{p q}$
and the first cutset

Iteration 1: $k=2$ also showing values

Gusfield's Algorithm Example

Iteration 2: $k=3$

- $r(k)=1$, so we find minimal cutset that separates node 3 from node 1
- this is just the same as step 2 of G-H, and so the minimal cutset is $X=\{2,3,4,5,6\}$ and $\bar{X}=\{1\}$
- $v_{3,1}=t(X, \bar{X})=8$
- for $i \in X=\{2,3,4,5,6\}$, we get $i \neq k$ and $i \in X$ for $i=2,4,5,6$
- for $i=2,4,5,6$, check whether $e=(i, r(k)) \in T$, e.g.
$(2,1) \in T$, so set $r(2)=k=3$
$(4,1) \notin T$, so take no action
$(5,1) \notin T$, so take no action
$(6,1) \notin T$, so take no action

Gusfield's Algorithm Example

$$
\begin{array}{ll}
\text { The traffic } t_{p q} & \text { Iteration 2: } k=3 \\
\text { and the second cutset } & \text { also showing values }
\end{array}
$$

Gusfield's Algorithm Example

Iteration 3: $k=4$

- $r(k)=2$, so we find minimal cutset that separates node 4 from node 2
- minimal cutset is $X=\{4,6\}$ and $\bar{X}=\{1,2,3,5\}$
- $\mathrm{V}_{4,2}=t(X, \bar{X})=6$
- for $i \in X=\{4,6\}$, we get $i \neq k$ and $i \in X$ for $i=6$
- for $i=6$, check whether $e=(i, r(k)) \in T$, e.g.
$(6,2) \in T, \quad$ so $\operatorname{set} r(6)=k=4$

Gusfield's Algorithm Example

The traffic $t_{p q}$
and the third cutset

Iteration 3: $k=4$ also showing values

Gusfield's Algorithm Example

Iteration 4: $k=5$

- $r(k)=2$, so we find minimal cutset that separates node 5 from node 2
- minimal cutset is $X=\{1,3,4,5,6\}$ and $\bar{X}=\{2\}$
- $\mathrm{v}_{5,2}=t(X, \bar{X})=7$
- for $i \in X=\{1,3,4,5,6\}$, we get $i \neq k$ and $i \in X$ for $i=1,3,4,6$
- for $i=1,3,4,6$, check whether $e=(i, r(k)) \in T$, e.g.

$$
\begin{array}{ll}
(1,2) \notin T, & \text { so no action } \\
(3,2) \in T, & \text { so set } r(3)=k=5 \\
(4,2) \in T, & \text { so set } r(4)=k=5 \\
(6,2) \notin T, & \text { so no action }
\end{array}
$$

Gusfield's Algorithm Example

The traffic $t_{p q}$
and the forth cutset

Iteration 4: $k=5$ also showing values

Gusfield's Algorithm Example

Iteration 5: $k=6$

- $r(k)=4$, so we find minimal cutset that separates node 6 from node 4
- minimal cutset is $X=\{6\}$ and $\bar{X}=\{1,2,3,4,5\}$
- $\mathrm{v}_{6,4}=t(X, \bar{X})=8$
- for $i \in X=\{6\}$, we get $i \neq k$ and $i \in X$ for no values of i
- so there are no changes to the links

Gusfield's Algorithm Example

The traffic $t_{p q}$
and the fifth cutset

Iteration 5: $k=6$ also showing values

Gusfield's Algorithm Example

- Final result is the same as for Gomory-Hu, which we expect
\triangleright didn't need to look for non-crossing cutsets
- actually we could have used different cutsets
\triangleright get a different tree
\triangleright same cost though
\triangleright non-unique solution to this particular problem

Communications Network Design: lecture 17 - p. $46 / 47$

