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Advaned tree-likenetwork design

Tree-like networks, and some more advaned algorithms.Starting with utsets we get Gomory-Hu and Gus�eld'smethods.
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Tree-like networksThe problems an be bit more ompliatedin able TV network, no ongestion ost, as ontentis repliatedin Ethernet, ongestion is arbitrarily delt with usingweights that depend on bandwidthin some networks we may have to deal with loadbased osts
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Costs
Take a general linear ost model C(f) = ∑

e∈L

(αe fe+βe)

last leture we onsidered the minimum weightspanning tree (MWST) whih has αe = 0, so
C(f) = ∑

e∈T

βe

today, we onsider the ase βe = 0, so

C(f) = ∑
e∈T

αe fe

unfortunately, this is NP-omplete
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Methods of attakenumeration impratial (too many trees)use standard trik from before
C(f) = ∑

e∈T

αe fe = ∑
[p,q]∈K

lpq(T)tpq

use a new idea, based on utsets
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CutsetsTake a graph G(N,E), then X, X̄ is a partition of thenodes N, if

X̄ = N\Xthat is

X∪ X̄ = N
X∩ X̄ = φ

De�nition: A utset (X, X̄) of G(N,E) is the set of links

(X, X̄) = {(i, j) | i ∈ X, j ∈ X̄}
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Cutset example
cutset

X
X
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Fundamental CutsetSuppose a utset ontains a single link e∈ Eif the link e is deleted from T, then T will bedisonneted into two subtrees Xe and X̄ethe utset (Xe, X̄e) is alled a fundamental utset

fundamental cutset

e
e

e
X

X
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Fundamental Cutsetfor a tree T with n−1 links, there are n−1fundamental utsetsutting any link makes network disonneted

Xe

eX

e
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Fundamental Cutsetfor a tree T with n−1 links, there are n−1fundamental utsetsutting any link makes network disonneted
Xe

Xe
e
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Non-rossing utsets

De�nition: Cutsets (X, X̄) and (Y,Ȳ) are said to berossing if

X∩Y 6= /0, X∩Ȳ 6= /0, X̄∩Y 6= /0, and X̄∩Ȳ 6= /0

De�nition: Cutsets (X, X̄) and (Y,Ȳ) are said to benon-rossing if at least one of the above intersetions isempty.
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Crossing utsets examples
XX

Communications Network Design: lecture 17 – p.11/47



Crossing utsets examples

Y
Y
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Crossing utsets examples

Y

X

Y

X
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Crossing utsets examples

Y

X

YX
Y

X
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Non-rossing utsets examples
XX
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Non-rossing utsets examples
Y

Y
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Non-rossing utsets examples

φ

Y
X

X Y = 

Y X
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Non-rossing utsets and treesFundamental utsets are non-rossing!so a tree has at least n−1 non-rossing utsetsalso, suppose (Xe, X̄e) is a fundamental utsetif the O-D pair has p∈ Xe and q∈ X̄eall traf� tpq must pass through e

(Xe, X̄e) is said to separate p and qthe traf� on link ewill be
fe = ∑

p∈Xe

∑
q∈X̄e

tpq := t(Xe, X̄e)i.e., the traf� between sets Xe and X̄e is t(Xe, X̄e)network ost will be
C(f) = ∑

e∈T

αe fe = ∑
e∈T

αet(Xe, X̄e)
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Cutsets and trees example

e

eX
Xe

Xe

eX
e

Xe

e

eX

1

1
1

2

2
2

3

3

3

e.g. X̄e1∩ X̄e2 = X̄e2∩ X̄e3 = X̄e3∩ X̄e1 = φ
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Min-hop tree

we will simplify to the ase where
αe = 1, ∀e∈ E

C(f) = ∑
e∈T

fe = ∑
[p,q]∈K

l̂pq(T)tpq = ∑
e∈T

t(Xe, X̄e)

equivalent to minimizing hop ount l̂µ(T) = ∑e:e∈µ1impliitly assumes proessing time for a paketat a node dominates performane.result is alled a min hop treealso alled a Gomory-Hu tree (we see why below)an be found in O(|N|2|E|) time, whih is polynomial
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Gomory-Hu Method

Objetive: given a graph G(N,E), and predited traf�
tpq, �nd a min hop tree.Priniple: �nd a set of n−1 non-rossing utsets thatminimize t(Xe, X̄e) at eah step.another greedy algorithmhoose the best utset at eah stagehowever, it does reah the optimum

n−1 non-rossing utsets de�ne our tree, e.g.Lemma: A spanning tree with n−1 linksorresponds uniquely to a set of n−1non-rossing utsets.the links ouring in exatly one utset form aspanning tree T.
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Lemma proof

Proof: (⇒) Given T, removing any link e∈ T disonnetsthe network into Te and T̄e, and so orresponds to afundamental utset (Te, T̄e). Now we an do the same with
Te, or T̄e. Imagine we partition Te with utset (Tg, T̄g), then

Tg⊂ Te, and so Tg∩ T̄e = φ, and so these are non-rossingutsets. Repeat reursively, until, after removing n−1links, we will have n−1 non-rossing utsets.
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Lemma proof (ontinued)

Proof: (⇐)Suppose we have a set of (n−1) non-rossing utsets,
{F1,F2, . . . ,Fn−1}. Construt a spanning tree T as follows.Consider the ut F1 = (X1, X̄1). Draw two supernodes, oneorresponding to the set of nodes in X1, and the other tothose in X̄1; onnet by a link. This reates a link in thespanning tree. Now onsider the next ut, F2 = (X2, X̄2).Sine F2 does not ross F1, we have X2⊂ X1 and X̄1⊂ X̄2,(or we have X1⊂ X2 and X̄2⊂ X̄1). Then we an reate atree with three supernodes, X2, X1−X2, and X̄1, and twolinks in a spanning tree. Continue in this manner for all

n−1 utsets Fi , to get the (n−1) links in T.

2
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Gomory-Hu Algorithm

Initialize: F = φ is a list of non-rossing utsets.While: at least one pair of nodes p and q are notyet separated by a utset in F .1. selet a pair of nodes p,q∈ N not yet separatedby a utset in F2. �nd a utset (Xpq, X̄pq) thatminimizes t(X, X̄) subjet to
(X, X̄) separates p and q
(X, X̄) does not ross any utset in F3. put F ← F ∪{(Xpq, X̄pq)}, and reord t(Xpq, X̄pq)Terminate: Determine the set of links ontained inexatly one utset � these links form T.
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Gomory-Hu Example

The traf� tpq(zero entries not shown)
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Gomory-Hu Example

The traf� tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6

The possible utsets
(X12, X̄12)

1 2

3 4

5 6
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Gomory-Hu Example

A list of the possible utsets separating nodes 1 and 2

X12 = {1} {1,3} {1,4} {1,5} {1,6} {1,3,4} {1,3,5} {1,3,6}
{1,4,5} {1,4,6} {1,5,6} {1,3,4,5} {1,3,4,6}
{1,3,5,6} {1,4,5,6} {1,3,4,5,6}.

Here the one with minimum value has
X12 = {1,3} and X̄12 = {2,4,5,6}with value 4+1+1 = 6 = νe, so F = {(X12, X̄12)}
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Gomory-Hu Example

The traf� tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Some values t(X12, X̄12) andthe min for X12 = {1,3}

1 2

3 4

5 6

6

8 7

11

7
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1,3

2,4,5,6

6

Step 1: (p,q) = (1,2) and
X12 = {1,3}

1

1 2

3 4

5 6
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

2,4,5,6

1

3

6

8

Step 2: (p,q) = (1,3) and
X13 = {1}

1

2

1 2

3 4

5 6
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1

3

2,5

4,6

6

8

6
Step 3: (p,q) = (2,4) and

X24 = {1,2,3,5}

1

2

1 2

3 4

5 6

3

Communications Network Design: lecture 17 – p.26/47



Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1

3

4,6

5 2

6

8

6

7

Step 4: (p,q) = (2,5) and
X25 = {1,3,4,5,6}

1

2

3

4

1 2

3 4

5 6
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Gomory-Hu Example

Current partitioning of Galong with t(X, X̄)

1

3

5 2

4

6

8

7

6

8

6

Step 5: (p,q) = (4,6) and
X46 = {1,2,3,4,5}

1

2

3

4

5

1 2

3 4

5 6
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Gomory-Hu Example

Choose links in exatlyone utset

1 2

3 4

5 6

Final result for T also show-ing fe = t(X, X̄)

8
6

7

6

8

1 2

3 4

5 6
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Gomory-Hu Example: summarySUMMARY:(a) 1,2 F1 = {(X, X̄)} where X = {1,3}; X̄ = {2,3,5,6},
t(X, X̄) = 6.(b) 1,3 F2 = F1∪{(X, X̄)} where X = {1}; X̄ = {3,2,4,5,6},

t(X, X̄) = 8.() 2,4 F3 = F2∪{(X, X̄)} where has X = {4,6}; X̄ = {1,2,3,5},

t(X, X̄) = 6.(d) 2,5 F4 = F3∪{(X, X̄)} where has X = {2}; X̄ = {1,3,4,5,6},

t(X, X̄) = 7.(e) 4,6 F5 = F4∪{(X, X̄)} where has X = {6}; X̄ = {1,2,3,4,5},

t(X, X̄) = 8.Total ost: ∑e∈T fe = 8+6+7+6+8= 36
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Gomory-Hu Complexity

We have to �nd |N|−1 non-rossing utsets, i.e.there will be O(|N|) stepseah step requires minimization over all allowedutsetshow do we �nd non-rossing utsets?Ford-Fulkerson Maximum Flow LabellingAlgorithm (see Math Programming III)max �ow � min ut theorem gives theminimum utsetbut how do we test non-rossing (in reasonableomplexity)?non-trivialGus�eld's Algorithm is an alternative
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Gus�eld's Algorithm

How an we get away from needing non-rossing utsets?
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Gus�eld's Algorithm

Objetive: given a graph G(N,E), and predited traf�
tpq, �nd a min hop tree.Priniple: start with a star, and break off bits that anbeome substarsWLOG we an hoose initial hub to be node 1another greedy algorithmfor eah node, test to see if the network isheaper if we break it off the main hubhowever, it does reah the optimumwe have a spanning tree at eah stepuse r(k) to denote the parent of node kbeause its a spanning tree, this is a uniquerepresentation
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Gus�eld's Algorithm

Initialize: start with the tree T being star, withnode 1 as the hub, i.e. r(k) = 1 for k = 2,3, . . . ,nalso for eah link (k, r(k)) assign vk1 = 0For: k = 2,3, . . . ,n1. amoung all utsets separating k from its parent

r(k), determine the utset with smallest value of

t(X, X̄), i.e. hoose (X, X̄) that solves
min{t(X, X̄)|k∈ X, r(k) ∈ X̄}2. assign ve = t(X, X̄) to the link e= (k, r(k)) ∈ T3. For: i = 2,3, . . . ,nif i ∈ X and i 6= k and (i, r(k)) ∈ Tthen replae link (i, r(k)) in T by (i,k) withvalue equal to the old link, e.g. vik = vi,r(k)
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Gus�eld's Algorithm Example

The traf� tpq(zero entries not shown)

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Initial star networkalso showing vk1

0

0

0

0

0

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 1: k = 2

r(k) = 1, so we �nd minimal utset that separatesnode 2 from node 1this is just the same as step 1 of G-H, and so theminimal utset is X = {2,4,5,6} and X̄ = {1,3}

ν2,1 = t(X, X̄) = 6for i ∈ X = {2,4,5,6}, we get i 6= k and i ∈ X for

i = 4,5,6for i = 4,5,6, hek whether e= (i, r(k)) ∈ T, e.g.

(4,1) ∈ T, so set r(4) = k = 2
(5,1) ∈ T, so set r(5) = k = 2
(6,1) ∈ T, so set r(6) = k = 2
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Gus�eld's Algorithm Example

The traf� tpqand the �rst utset
6

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 1: k = 2also showing values
0

6

0

0

0

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 2: k = 3
r(k) = 1, so we �nd minimal utset that separatesnode 3 from node 1this is just the same as step 2 of G-H, and so theminimal utset is X = {2,3,4,5,6} and X̄ = {1}

ν3,1 = t(X, X̄) = 8for i ∈ X = {2,3,4,5,6}, we get i 6= k and i ∈ X for

i = 2,4,5,6for i = 2,4,5,6, hek whether e= (i, r(k)) ∈ T, e.g.

(2,1) ∈ T, so set r(2) = k = 3
(4,1) 6∈ T, so take no ation

(5,1) 6∈ T, so take no ation

(6,1) 6∈ T, so take no ation
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Gus�eld's Algorithm Example

The traf� tpqand the seond utset

8

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 2: k = 3also showing values

0
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8
6

1 2
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5 6
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Gus�eld's Algorithm Example

Iteration 3: k = 4

r(k) = 2, so we �nd minimal utset that separatesnode 4 from node 2minimal utset is X = {4,6} and X̄ = {1,2,3,5}

ν4,2 = t(X, X̄) = 6for i ∈ X = {4,6}, we get i 6= k and i ∈ X for i = 6for i = 6, hek whether e= (i, r(k)) ∈ T, e.g.

(6,2) ∈ T, so set r(6) = k = 4
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Gus�eld's Algorithm Example

The traf� tpqand the third utset

6

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 3: k = 4also showing values

0

8
6

0

6

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 4: k = 5

r(k) = 2, so we �nd minimal utset that separatesnode 5 from node 2minimal utset is X = {1,3,4,5,6} and X̄ = {2}

ν5,2 = t(X, X̄) = 7for i ∈ X = {1,3,4,5,6}, we get i 6= k and i ∈ X for

i = 1,3,4,6for i = 1,3,4,6, hek whether e= (i, r(k)) ∈ T, e.g.

(1,2) 6∈ T, so no ation

(3,2) ∈ T, so set r(3) = k = 5
(4,2) ∈ T, so set r(4) = k = 5
(6,2) 6∈ T, so no ation
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Gus�eld's Algorithm Example

The traf� tpqand the forth utset

7

1

2

6

37

4 1

2

1

1 2

3 4

5 6

Iteration 4: k = 5also showing values
8
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6

6

7

1 2

3 4

5 6
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Gus�eld's Algorithm Example

Iteration 5: k = 6

r(k) = 4, so we �nd minimal utset that separatesnode 6 from node 4minimal utset is X = {6} and X̄ = {1,2,3,4,5}

ν6,4 = t(X, X̄) = 8for i ∈ X = {6}, we get i 6= k and i ∈ X for no values of

iso there are no hanges to the links
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Gus�eld's Algorithm Example

The traf� tpqand the �fth utset
8
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1
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Iteration 5: k = 6also showing values
8

6
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Communications Network Design: lecture 17 – p.45/47



Gus�eld's Algorithm Example

Final result is the same as for Gomory-Hu, whih weexpetdidn't need to look for non-rossing utsetsatually we ould have used different utsetsget a different treesame ost thoughnon-unique solution to this partiular problem
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