Communications Network Design

lecture 19

Matthew Roughan <matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 2, 2009

Networks of networks

The Internet is a network of networks. Most of the problems we have considered up to this point concern a single network. There are many interesting problems when we consider how these networks interconnect.

Communications Network Design: lecture 19 – p.1/32	Communications Network Design: lecture 19 – p.2/
The lecture extends our discussion of routing to allow for more complicated routing objectives	
such as policies, which are used for mer-domain routing.	

Internet Topology
 The Internet is broken into more than 10,000 Autonomous Systems (ASes) AS is a separately managed network within an AS may use different routing, technology, management, may be a LAN, WAN, or combination example ASes: ISP (Internet Service Provider) Campus network Enterprise network Hosting center see RFC 1009 for definition (obsoleted by 1812)
Communications Network Design: lecture 19 – p.4/32

the Internet

the Internet	Different Flavours of Routing
 an AS is a network under one administrative domain from the outside, we don't see the details all we see are a set of subnetworks which are reachable via that AS subnets either a group directly attached computers or a group of customers' computers CIDR (Classless Inter-Domain Routing) subnet = group of IP addresses with a common prefix e.g. private addresses 192.168.0.0/16 all address with same first 16 bits 192.168 192.168.0.0 - 192.168.255.255 	Routing is different inside an AS from between ASes intra-domain (inside an AS) called Interior Gateway Routing (IGP) protocols examples: OSPF, RIP, EIGRP, IS-IS, can use any one of these can even use more than one at once! inter-domain (between ASes) called Exterior Gateway Routing (EGP) protocols one defacto standard BGPv4 Border Gateway Protocol must talk internationally can be only one

An Aside on Gateways

router sometimes called gateway

- RFC 1009 "Requirements for Internet Gateways" has definitions of such
- better to use this term for gateway routers (that join two networks)
- also for high level (e.g. network level) protocol conversion, e.g. IP to IPX
- but routing protocols still get called 'gateway' protocols

Communications Network Design: lecture 19 - p.9/32

Link state vs Distance Vector

- ► We saw OSPF was a link-state routing protocol
 - $\triangleright~$ floods topology (link states), and computes SPF
 - ▷ solves shortest path problem
- ► alternative is called distance-vector protocol
 - ▷ examples: RIP, IGRP, ...
 - ▷ originally also aimed to solve shortest paths
 - but nodes don't need to know complete topology
 - ▷ does BGP still do this?
 - * BGP is a generalization called **path-vector** protocol

Communications Network Design: lecture 19 - p.10/32

Distance Vector reminder

- Make a list of destinations you can reach and the distance to these destinations.
 - ▷ Store in routing table
- ► Share this list with your neighbours
- Add to routing table new information gained from adjacent routers about the destinations they can reach
 - ▷ remember to increment their distance
 - ▷ keep the source as the next hop
- ► If two paths to the same destination exists, keep the shortest distance path.
- ► Repeat periodically (in RIP every 30 seconds).

Distance Vector example

Communications Network Design: lecture 19 - p.11/32

Internet structure/topology

- RIP still used, but only in small networks
 - IGRP similar to RIP, but few improvements to make it more scalable
 - ▷ I don't know how widely IGRP is used
- ► to really understand why distance-vector protocols are so important, we need to look at BGP
- ► BGP needs to support connectivity between ASes
- ► structure of AS graph is therefore important
 - ▷ tiering
 - * customer-provider relationship
 - ▷ peering
 - ▷ routing policy

Communications Network Design: lecture 19 - p.13/32

Tiering

▶ no hard and fast rules, but ▷ tier-1 ISP: international, or national backbone * provide transit * have at least some default-free routers * have connectivity over large geographic area ▷ tier-2 ISP: regional ISP * provide transit within a geographic area * may have default-free routers ▷ tier-3 ISP: local ISP * do not provide commercial transit services. although they may incidentally provide transit among their customers ▷ tier-4 ISP: e.g. company network * Internet access through provider only Communications Network Design: lecture 19 - p.14/32

Tiering

Peering

Tiering and Peering

Peering between tier-1's is **needed**

Communications Network Design: lecture 19 - p.18/32

Peering Connections

What are the physical connections between ASes

- ► private peering
 - a point-to-point connection between a gateway router on each network
 - ▷ usually a WAN link
- ► Internet Exchange Point (IXP)
 - > third party runs a router or switch or network
 - ▷ ISPs connect to the switch
 - > similar concept Network Access Point (NAP)
- ► co-location facility
 - > third party provides premises (and power etc)
 - ▷ multiple ISPs maintain routers in the premises
 - > create local connection between their routers
 - ▷ e.g. carrier hotel

Communications Network Design: lecture 19 - p.19/32

Private Peering Connections

- ► advantage:
 - ▷ high capacity
 - only two parties involved
- ► disadvantages:
 - ▷ not very flexible
 - e.g. can't change peers easily

Communications Network Design: lecture 19 – p.20/32

Exchange points

Exchange points

Distributed Exchange points	Distributed Exchange points
 advantage: multiple parties very flexible disadvantages: subject to a third party 	<pre>Some distributed exchange points LoNAP, London http://www.lonap.net/ see their peering matrix at http://stats.lonap.net/cgi-bin/matrix.cgi LYNX, London http://www.linx.net/ http://www.nanog.org/mtg-9901/ppt/linx/sld001.htm</pre>
Communications Network Design: lecture 19 – p.23/32	Communications Network Design: lecture 19 – p.24/32
Communications Network Design: lecture 19 – p.23/32	Communications Network Design: lecture 19 – p.24/32

Co-Location

- ► advantage:
 - best of private peering and NAPs
- ► disadvantages:
 - \triangleright extra expense
- ► example:
 - ⊳ Internap

http://www.internap.com/products/preferredcollo.html http://www.internap.com/products/locationmap.html

Communications Network Design: lecture 19 - p.25/32

Routing Policy

- ▶ policy is a set of arbitrary rules for routing
- ► examples
 - we prefer to route to peers rather than providers
 - * providers charge us money
 - * traffic exchanged with peers for free
 - \triangleright we prefer to route to route traffic with X
 - \star maybe X provides better QoS
 - \star maybe X's network is more secure
 - ▷ hot-potato routing
 - reduce cost of carrying traffic on our network by dumping onto someone else's as soon as possible

Communications Network Design: lecture 19 – p.26/32

Hot Potato routing

Complexities multiply dump traffic off your network as fast as possible ▶ no hard and fast rules about tiering ▷ companies would like to be called tier-1 ▷ companies operate multiple networks AS X ▷ regional coverages overlap, but aren't equal ▶ peering between lower tiers to avoid transit fees relationships are more than just AS Y ▷ customer-provider ▷ peer-peer physical layers add complexity ▷ two IP networks (layer 3) Perth Sydney \triangleright relate as peers (so they are competing at level 3) ▶ results in intrinsic asymmetry in routing ▷ but both buy layer-1 physical transport from ▶ only fair if traffic is balanced same company Communications Network Design: lecture 19 - p.27/32 Communications Network Design: lecture 19 - p.28/32

Communications Network Design: lecture 19 - p.29/32

Communications Network Design: lecture 19 - p.30/32

Inter-domain optimization

- ▶ network design: e.g., where should peering links go?
- ▶ traffic engineering: balancing loads on peering links
- ▶ routing: optimize WRT policies (BGP)

To work with any of these, we need to know more about how BGP works.

References

- G. Huston, "Peering and settlements part I," The Internet Protocol Journal, vol. 2, March 1999.
- [2] G. Huston, "Peering and settlements part II," The Internet Protocol Journal, vol. 2, June 1999.
- [3] H. Zheng, E. K. Lua, M. Pias, and T. Griffin, "Internet routing policies and round-trip-times," in Passive and Active Measurements Workshop, (Boston, MA, USA), 2005.
- [4] J. Stewart III, BGP4: Inter-domain Routing in the Internet. Addison-Wesley, Boston, 1999.
- [5] T. Griffin, "Does BGP Solve the Shortest Paths Problem?," in The North American Network Operators' Group (NANOG) 18, (San Jose, CA, USA), February 2000. http://www.nanog.org/mtg-0002/ppt/griffin/.
- [6] T. Griffin, F.Shepherd, and G.Wilfong, "The stable paths problem and interdomain routing," IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 232–243, 2002.

Communications Network Design: lecture 19 – p.31/32	Communications Network Design: lecture 19 – p.32/32
Communications Network Design: lecture 19 – p.31/32	