Communications Network Design lecture 20

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

March 2, 2009

Communications Network Design: lecture 20 – p.1/29

BGP

BGP (the Border Gateway Protocol) version 4 is the defacto inter-domain routing protocol.

BGP

Border Gateway Protocol [1]

- BGP has to support all of this "policy" stuff
 - generically called policy based routing
 - I will use the term path-vector routing
- incredibly flexible
- large, complex dynamic system
 - hard to understand
 - hard to predict
 - hard to optimize

Path Vector

similar procedure to distance vector

- transmission of updates is similar
- nodes select best route to transmit to neighbours
- metric for choosing paths is not purely distance based
- added loop detection
- choice is based on policy
- distance vector is a special case
 - metric is distance
 - simple uniform policy (shortest paths)
 - guaranteed convergence
- unlike distance vector, path vector is not guaranteed to converge

BGP means

- RFC 1771
- optional extensions:
 - RFC 1997 BGP Communities Attribute
 - RFC 2439 BGP Route Flap Damping
 - RFC 2796 BGP Route Reflection
 - RFC 3065 AS Confederations for BGP
- implementation details
 - timers, proprietary extensions (WEIGHT), ...
- routing policy configuration languages
 - vendor specific
- current practises in management of inter-domain routing (e.g. RFC 1772, RFC 2270, ...)

How BGP works

Messages sent between "peers"

- note peer just means two routers that communicate
 not ISP "peers"
- note BGP peers don't have to be adjacent!
- hard-state protocol (no periodic updates)
 - scalability requirement

Types of message

- open: establish peering session
- keep alive: handshake at regular intervals
- notification: shuts down peering session
- update: announcing or withdrawing routes
 - route to a prefix

BGP attributes

- route announcements = prefix + attributes
 - not all attributes needed for all announcements
- BGP gives attributes to routes it distributes
- important attributes
 - 2: AS-path (primarily to avoid loops)
 - 3: next hop
 - 4: Multi-Exit Discriminator (MED)
 - 5: local pref
 - 8: community
 - 9: originator ID

How BGP works

Policy is implemented by a set of rules

- import rules
 - can ignore routes by filtering them on input
 - changing route attributes
 make the route appear more attractive
- export rules
 - can prevent customer from using a route by filtering export of rules
 - don't tell someone about a route, and they can't use it
 - by changing route attributes on export, we can make a route appear less attractive

BGP decision process

To know how to change routes to be more or less attractive, we need to know how BGP makes decisions. A simplified (ignoring vendor specific bits) version of that process follows (in order of precedence).

- don't select paths with inaccessible next hops
- prefer the path with higher local preference
- prefer the path the shortest AS-path
- prefer the route with the lowest MED
- prefer the route that can be reached through the closest IGP neighbour (hot potato)
- prefer the route that has been around the longest
- tie-break: prefer the path with the lowest IP address, as specified by the BGP router ID.

How BGP works

Communications Network Design: lecture 20 – p.10/29

Filtering inputs

we don't use "untrusted" networks

filter out any routes that cross untrusted networks

Changing route attributes (on input)

- university network prefers academic network routes to commercial provider
 - when academic network route is input give it a high local pref.
 - we prefer routes with high local pref

Communications Network Design: lecture 20 – p.12/29

Filtering of outputs

an ISP doesn't provide transit to peers

- don't send routes learnt from peers, or providers to our peers or providers
- only send customer routes to peers, so they will only route traffic to our customers through us

Communications Network Design: lecture 20 – p.13/29

Filtering of outputs

an ISP doesn't provide transit to peers

- don't send routes learnt from peers, or providers to our peers or providers
- only send customer routes to peers, so they will only route traffic to our customers through us

Communications Network Design: lecture 20 – p.13/29

Example (from RFC 2650) of policy for AS2

- aut-num: AS2 CAT-NET as-name: Catatonic State University descr: import: from AS1 accept ANY from AS3 accept <^AS3+\$> import: export: to AS3 announce ANY export: to AS1 announce AS2 AS3 admin-c: AO36-RIPE tech-c: CO19-RTPE
- mnt-by: OPS4-RIPE
- changed: orangeripe.net

source: RIPE

Does BGP solve SPF?

- what is SPF here?
 - prefer routes with shorter AS-path
 - but AS path doesn't have anything to do with physical distance
- policies may prefer longer AS-paths explicitly
 - e.g. prefer cheaper transit charges
- all else being equal we prefer shorter IGP distances
 - hot potato routing
 - does do some distance minimization, but not SPF
- No, BGP does not solve SPF
 - except in limited situations

Does BGP try to optimize?

- BGP is trying to satisfy policy
- what is policy?
 - a bunch of rules
 - usually these rules are related to an optimization objective
 - e.g. reduce load (and congestion) on our network
 - e.g. reduce transit costs
- so BGP is solving an optimization problem
 - many individuals (ASes)
 - each has its own different optimization objectives, and constraints
 - objectives are all coupled

maybe the largest distributed computations on the planet.

Stable Paths Problem

- we call this optimization problem
 - the stable-paths problem [2, 3]
 - looking for a set of stable paths which match policies
 - should still be a sink tree
- let's abstract the implementation (BGP)
 - \blacksquare abstract metric for paths f(p,d)
 - \blacksquare p is the path, d is the destination
 - better paths have smaller metric
 - each AS
 - chooses the path with the smallest metric
 - changes the metric
 - sends the path to its neighbours
 - they do not decrease the metric at each hop
 - the change can depend on the neighbour

Communications Network Design: lecture 20 – p.17/29

destination is AS 0, arrows show traffic's route

- tables show acceptable routes in order of preferences
- result is a shortest-path tree

destination is AS 0, arrows show traffic's route

- tables show acceptable routes in order of preferences
- result is a shortest-path tree

result is not a SPF tree

Communications Network Design: lecture 20 – p.19/29

show the process of obtaining the solution

- no solution
- endless oscillation

- no solution
- endless oscillation

- no solution
- endless oscillation

- no solution
- endless oscillation

- no solution
- endless oscillation

- no solution
- endless oscillation

- no solution
- endless oscillation

Is this a problem?

route oscillation has been observed in the Internet

- MED oscillation ("churn")
 - MED used for "cold-potato" routing
- Cisco fix bgp deterministic med command plus a bit more

http://www.cisco.com/warp/public/770/fn12942.html

- it could happen again
 - mostly it doesn't
- can we fix it in general

not easily

- either need to restrict policy
- or have central admin check all policies

A Real Example

- A real example of BGP convergence can be seen at http://bgplay.routeviews.org/bgplay/
- Choose prefix 198.133.206.0/24 (AS 3130) to see a prefix withdrawn, and then announced.
- Choose prefix 192.83.230.0/24 (AS 3130) to see a prefix change its preferred provider.
- Other "Beacon" prefixes
 - **192.135.183.0**/24
 - 203.10.63.0/24
 - **198.32.7.0**/24
 - for Beacon details see
 http://www.psg.com/~zmao/BGPBeacon.html

BGP optimization

- has anyone written this as a formal optimization problem?
 - companies have built tools that treat as inter-AS routing as an optimization problem, e.g.
 - optimize performance, by choosing shorter paths
 - optimize cost, by choosing cheaper paths
 - tend to keep their methods a secret (unfortunately)
- is this a solved problem no way!
 - above is for simply connected network
 - what happens when people apply these methods effectively against each other:
 - really a game theory problem
 - will we get a tragedy of the commons?

could this result in large scale oscillation/instability?

Link state vs Path Vector

Link state

- topology information flooded
- best end-to-end paths computed locally at each router
- based on minimizing some notion of distance
- best end-to-end paths determine next hops
- works only if policy is shared and uniform

Path-vector

- each router knows little about overall topology
- only best next hops are chosen by each router for each destination
- best end-to-end paths result from compositions of all next-hop choices
- does not require a notion of distance
- does not require uniform policies

OSPF vs BGP comparison

OSPF

- link state
- topology discovered
- soft-state
- one administrative control
- common routing policy
- shortest paths
- fast(ish) convergence (10's of seconds down to sub-second)
- limited policy
- limited scaling (one level hierarchy)

BGP

path-vector

- each router knows little about overall topology
- hard-state
- best end-to-end paths result from compositions of all next-hop choices
- policy based
- scalable (to the size of the Internet)
- slower convergence (minutes)

What haven't I told you

A lot

most implementation details

particularly proprietary stuff

- many other features, and uses
 - confederations, route reflectors, ...
- eBGP vs iBGP
- interactions between BGP and IGP
 - many rules about preference of routes learnt from one being redistributed into the others
- BGP is an active area of research
 - much is not entirely understood

BGP the musical

Theme song (sung to the tune of "Yesterday")

Yesterday, All the withdrawals seemed so far away I thought my prefixes were here to stay Oh, I believe in Yesterday.

Suddenly, It's not half the table it used to be There's a black hole hanging over me Oh, I believe in Yesterday.

Why they had to flap, announce and draw away? They sent something bad, now I long for yesterday.

Yesterday, Routing was such an easy game to play Now my packets all hide away Oh, I believe in Yesterday

Avi Freedman, http://www.caida.org/workshops/isma/0112/agenda.xml

References

- [1] J. Stewart III, BGP4: Inter-domain Routing in the Internet. Addison-Wesley, Boston, 1999.
- [2] T. Griffin, "Does BGP Solve the Shortest Paths Problem?," in The North American Network Operators' Group (NANOG) 18, (San Jose, CA, USA), February 2000. http://www.nanog.org/mtg-0002/ppt/griffin/.
- [3] T. Griffin, F.Shepherd, and G.Wilfong, "The stable paths problem and interdomain routing," IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 232–243, 2002.