Information Theory and Networks
Lecture 6: Entropy and Mutual Information

Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide
October 9, 2013

Part I

Entropy and Mutual Information

Section 1

Entropy: properties

Simple Properties

（1）Axiomatic properties hold：e．g．
－$H(X) \geq 0$
－$H(\cdot)$ is a function of probabilities，not the values of X
（2） $0 \leq H(X) \leq \log |\Omega|$
－zero iff X is deterministic
－ $\log |\Omega|$ iff X is uniform（we＇ll prove this in a minute）
（3）For a Bernoulli RV with $p=1 / 2$ ，we have $H(p)=1$ bit
（1）i．e．，this defines the units of information
（c）$H(X \mid Y) \neq H(Y \mid X)$

Information Theory
 ```%) LEntropy: properties \\ \ \\ Limple Properties```

We can do entropy in any base，but unit change：
－base 2：units are bits
－base e：units are nats

Entropy Chain Rule

$$
\begin{aligned}
p(x, y) & =p(x) p(y \mid x) \\
\log p(x, y) & =\log p(x)+\log p(y \mid x) \\
E[\log p(x, y)] & =E[\log p(x)]+E[\log p(y \mid x)]
\end{aligned}
$$

by linearity of expectations，and similarly for the second form．

Entropy Chain Rule: Corollaries

Theorem (Chain Rule Corollary)

$$
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z)
$$

Don't confuse with

$$
H(Y, X \mid Z)=H(X \mid Z)+H(Y \mid X, Z)
$$

Theorem (Chain Rule Corollary)

$$
H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

Theorem (Chain Rule)

Let $X_{1}, X_{2}, \ldots, X_{n}$ have joint PMF $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, then

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right)
$$

Proof.

Just use repeated applications of the two-variable chain rule, or prove directly in the same manner as the two-variable rule.

Example:

$$
H\left(X_{1}, X_{2}, X_{3}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{2}, X_{1}\right)
$$

But remember that $H(X \mid Y) \neq H(Y \mid X)$ in general.

Entropy Chain Rule: General form

옹

```
Information Theory
O- LEntropy: properties
M
```


Relative Entropy Chain Rule

Theorem (Chain Rule)

$$
D(p(x, y) \| q(x, y))=D(p(x) \| q(x))-D(p(y \mid x) \| q(y \mid x))
$$

Proof.

Similar to previous two-variable proof.

```
Information Theory
O) Entropy: properties
Lelative Entropy Chain Rule
~
```

2

Corollary

Theorem

$$
H(X) \leq \log |\Omega| .
$$

Proof.

Take distributions $p(x)$ and compare it to the uniform distribution $u(x)=1 /|\Omega|:$

$$
\begin{aligned}
D(p \| u) & =\sum_{x} p(x) \log \frac{p(x)}{u(x)} \\
& =-\sum_{x} p(x) \log u(x)+\sum_{x} p(x) \log p(x) \\
& =-\log u \sum_{x} p(x)-H(X) \\
& =\log |\Omega|-H(X)
\end{aligned}
$$

And we already know that $D(p \| u) \geq 0$. October 9, 2013

 $=-\log (\underline{P}(x)$

Convexity of relative entropy

Theorem

The relative entropy $D(p \| q)$ is a convex function of (p, q), i.e., for two pairs of distributions $\left(p^{(1)}, q^{(1)}\right)$ and $\left(p^{(2)}, q^{(2)}\right)$.

$$
\begin{aligned}
& D\left(\lambda p^{(1)}+(1-\lambda) p^{(2)} \| \lambda q^{(1)}+(1-\lambda) q^{(2)}\right) \\
& \quad \leq \lambda D\left(p^{(1)} \| q^{(1)}\right)+(1-\lambda) D\left(p^{(2)} \| q^{(2)}\right)
\end{aligned}
$$

for all $0 \leq \lambda \leq 1$.

Proof.

The proof is just another application of Jensen's (or Gibbs') inequality, but is a bit messy, so I leave it to the reader.

Corollary: concavity of H

Theorem

The entropy $H(X)=H(p)$ is a concave function of p, i.e.,

$$
H\left(\lambda p^{(1)}+(1-\lambda) p^{(2)}\right) \geq \lambda H\left(p^{(1)}\right)+(1-\lambda) H\left(p^{(2)}\right) .
$$

Proof.

As before

$$
H(p)=\log |\Omega|-D(p \| u)
$$

so the result follows directly from the convexity of D.
Intuitively this means that if we mixed two random variables, i.e., we take a Bernoulli trial with probability λ, and use it to select either X_{1} or X_{2}, the resulting uncertainty is larger than the weighted mixture of the two uncertainties (as you would expect, I hope)

```
Information Theory
8) LEEntropy: properties
N
```

保

Conditioning reduces entropy

```
Information Theory
8 -Entropy: properties
NOLENtropy: properties
```

$= \pm=-2=x$
$=-$

As we might expect, conditioning on Y (i.e., saying we know Y) reduces the uncertainty about X, unless they are independent.

$$
\begin{aligned}
& \text { Theorem } \\
& \qquad H(X \mid Y) \leq H(X)
\end{aligned}
$$

with equality only when X and Y are independent.

Conditioning reduces entropy

Proof.

Given $p(x, y)$ define $q(x, y)=p_{X}(x) p_{Y}(y)$, where $p_{X}(x)$ and $p_{Y}(y)$ are the marginal distributions of X and Y respectively. Now define

$$
I(X ; Y)=D(p(x, y) \| q(x, y))=E\left[\log \frac{p(X \mid Y)}{p_{X}(X)}\right]
$$

By definition of conditional probabilities
$E\left[\log \frac{p(X, Y)}{p_{X}(X) p_{Y}(Y)}\right]=E\left[\log \frac{p(X \mid Y)}{p_{X}(X)}\right]=E[\log p(X \mid Y)]-E\left[\log p_{X}(X)\right]$, So

$$
I(X ; Y)=-H(X \mid Y)+H(X)
$$

but we also know that $I(X ; Y)$ is defined in terms of relative entropy, and hence $I(X ; Y) \geq 0$, and hence the result.

The quantity $I(X ; Y)$ is called the mutual information, and we will get to that in a moment. In particular, we'll use the result

$$
I(X ; Y)=-H(X \mid Y)+H(X)
$$

again so keep you eye on it.

Section 2

Mutual information

[^0]
Motivation

- We created an "information" metric before, based on a single probability, but found that entropy was a more useful idea.
- Now lets return to trying to say something useful about information
- The mutual information is a measure of the information that we learn about one random variable from another.

2013

Relationship between entropy and mutual information

We already showed that

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

- So the mutual information is the reduction in uncertainty in X given knowledge of Y.
- By symmetry

$$
I(X ; Y)=H(Y)-H(Y \mid X)
$$

- Also the "self-information"

$$
I(X ; X)=H(X)-H(X \mid X)=H(X)
$$

which is the idea we started with, that information and uncertainty about a random variable are really the same.

Mutual Information Properties

- Mutual Information is non-negative, and is zero, iff X and Y are independent (see proof of previous theorem)
- Mutual Information has a conditional form (see [CT91, p.22] for details.)
- Mutual Information has a chain rule (see [CT91, p.22] for details.)

Assignment

There are lots of practice problems in [CT91, Chapter 1], which is available in electronic form in our Library. I recommend you have a go, but I won't mark these.

The assignment is to calculate the entropy of Morse code symbols, given standard frequencies of English letters.
Hints:

- Remember Morse code really has four symbols:

```
Information Theory
og
```

Reading in text can be done in Matlab, but you may find some easier approaches. For instance, in R http://www.r-bloggers.com/ text-mining-the-complete-works-of-william-shakespeare/
I personally prefer to use Perl for tasks like this, and I can pretty much guarantee that a Perl implementation will be faster to run, and faster to write (if you learn a bit about Perl), but its up to you.
dot

- dash
- letter-break
- word-break
- Model the frequencies of word-breaks as well as just letters.
- you may need to make your own measurements of text - lots is available, e.g., at http://www.gutenberg.org/

Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.

[^0]: Information Theory
 of LMutual information

