Information Theory and Networks
 Lecture 8: Decodability

Matthew Roughan
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/
Lecture_notes/InformationTheory/

School of Mathematical Sciences, University of Adelaide

September 18, 2013

Part I

Decodability

There are 10 types of people in the world: those who understand binary, and those who don't

Morse code

Morse code has a problem

- its not really a binary code because we need letter and word separators
- e.g., to tell the difference between

$$
\begin{aligned}
a n & =\cdot--\cdot \\
p & =\cdot--\cdot
\end{aligned}
$$

- we end up with 4 "symbols", and that
- complicates the transmission and reception processes
- reduces the efficiency
- introduces a source of errors
- In general we want codes that are decodable without adding extra symbols
- e.g., true binary codes

Definitions [CT91, pp.78-81]

Definition (Source code)

A source code C for a random variable X is a mapping from Ω, the range of X to \mathcal{D}^{*} (the set of all finite length strings of symbols from the alphabet \mathcal{D}).

Our code "alphabet" is made up of symbols from \mathcal{D}. If the size of this set is $D=|\mathcal{D}|$ then we call this a D-ary code.

If we only allowed single symbols in the output, then this would be the range of $C(\cdot)$, but usually we allow finite strings in our "codewords".

The set of strings of length n is called \mathcal{D}^{n}, and the set of all finite length strings is called $\mathcal{D}^{*}=\cup \mathcal{D}^{n}$, So the source code is a mapping $C: \Omega \rightarrow \mathcal{D}^{*}$, which might, for instance, look like

$$
C(x)=d_{1} d_{2} d_{3} \ldots d_{n}
$$

for some $d_{i} \in \mathcal{D}$. The length of the code is denoted $\ell(x)$, which in the case above would be n.

Definitions [CT91, pp.78-81]

Definition (Non-singular)

A code is said to be non-singular if every element of the range of X maps into a different string in \mathcal{D}^{*}, i.e.,

$$
x_{i} \neq x_{j} \Rightarrow C\left(x_{i}\right) \neq C\left(x_{j}\right)
$$

Non-singularity is a necessary condition for decodability

- otherwise we can't decode a single symbol uniquely but it isn't sufficient to guarantee decodability of a sequence, at least not without an extra "separator" symbol, which is inefficient.

Definitions [CT91, pp.78-81]

Definition (Extension)

The extension C^{*} of a code C is the mapping from finite length strings Ω^{*} to finite length strings \mathcal{D}^{*} defined by

$$
C^{*}\left(x_{1} x_{2} \cdots x_{n}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \cdots C\left(x_{n}\right)
$$

where $C\left(x_{i}\right) C\left(x_{j}\right)$ indicates concatenation of codewords.

Definition (Uniquely decodable)

A code is called uniquely decodable if its extension is non-singular.

Definitions [CT91, pp.78-81]

Definition (Prefix-free codes)

A code is called a prefix-free code or an instantaneous code if no codeword is a prefix of any other codeword.

For Example:

X	Prefix-free code
1	0
2	10
3	110
4	111

Prefix-free codes

Theorem
 Prefix-free codes are uniquely decodable (and in fact can be decoded without reference to the future codewords).

Proof.

In a prefix-free code, the end of a codeword is immediately recognisable because if we find a string that is a valid codeword, it can't be the prefix of a longer codeword, so we can stop decoding the word at that point.

We can think of prefix-codes as self-punctuating.
The result above means that prefix-free codes are not just uniquely decodable, but also that we can decode using a single-pass, making them an attractive option for codes.

Prefix-free codes

We can represent codewords as a D-ary tree: e.g., for binary codes

For a prefix-free code, no codeword can be an ancestor of another.

Morse code is not prefix-free

Code classes

Code classes [CT91, pp.82]

| | | Non-singular,
 but not
 uniquely
 decodable | Uniquely
 decodable,
 but not | prefix-free |
| :--- | :--- | :--- | :--- | :--- |\quad Prefix-free | X | Singular code | 0 | 10 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 010 | 00 |
| 2 | 0 | 01 | 11 |

Variable vs fixed length codes

- If we fix the length of the codewords, then, its easy to determine the boundaries
- such codes are implicitly prefix free (as long as they are non-singular)
- But variable length codes can be more efficient
- e.g., use shorter codes for more common symbols
- now we have to make sure they are uniquely decodable and the easiest thing is to ensure they are prefix free

Kraft inequality

Theorem (Kraft inequality)
There exists a D-ary prefix-free code with codeword lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{m}$, iff the Kraft inequality

$$
\sum_{k=1}^{m} D^{-\ell_{k}} \leq 1
$$

is satisfied.

Kraft inequality example

X	Prefix-free code	length ℓ_{i}
1	0	1
2	10	2
3	110	3
4	111	3

its a binary code, so $D=2$, so

$$
\sum_{k=1}^{m} D^{-\ell_{k}}=2^{-1}+2^{-2}+2^{-3}+2^{-3}=1
$$

Prefix-free codes

We can represent codewords as a D-ary tree: e.g., for binary codes

For a prefix-free code, no codeword can be an ancestor of another.

Kraft proof

Kraft inequality \Rightarrow.

Consider the D-ary tree corresponding to a prefix-free code. Let $\ell_{\max }$ be the longest codeword. The tree has $D^{\ell_{\text {max }}}$ possible nodes at level $\ell_{\text {max }}$ (but not all are actual codewords).
The k th codeword is at level ℓ_{k}, and has $D^{\ell_{\text {max }}-\ell_{k}}$ descendents at level $\ell_{\text {max }}$, and each of these sets of descendents is disjoint, and so the total number of such descendents can't be greater than the possible nodes at level $\ell_{\text {max }}$, i.e.,

$$
\sum_{k=1}^{m} D^{\ell_{\max }-\ell_{k}} \leq D^{\ell_{\max }}
$$

and (dividing by $D^{\ell_{\text {max }}}$) the Kraft inequality must hold for any prefix-free code.

Kraft proof

Kraft inequality \Leftarrow.

Conversely, given a set of codeword lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{m}$ which satisfy the inequality, we can always construct a D-ary tree corresponding to a prefix-free code. The construction is as follows:

- WLOG order the lengths so that $\ell_{1} \leq \ell_{2} \leq \cdots \leq \ell_{m}$
- There are $D^{\ell_{1}}$ possible nodes at depth ℓ_{1} suitable for the first code.
- Assume the first i codewords have been chosen successfully, and we now want to choose a codeword of length ℓ_{i+1}. It can't be a descendent of any of the previous codewords, so we have eliminated

$$
\sum_{k=1}^{i} D^{\ell_{i+1}-\ell_{k}}
$$

nodes at level ℓ_{i+1} of the tree, but by the Kraft inequality we know that this must leave at least one possible choice.

Further reading I

是
Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.
\square Raymond W. Yeung, Information theory and network coding, Springer, 2010.

