Information Theory and Networks Lecture 8: Decodability

Matthew Roughan <matthew.roughan@adelaide.edu.au> http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/

> School of Mathematical Sciences, University of Adelaide

> > September 18, 2013

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Part I

Decodability

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

There are 10 types of people in the world: those who understand binary, and those who don't

< 4 →

э

Morse code

Morse code has a problem

- its not really a binary code because we need letter and word separators
 - e.g., to tell the difference between

 $an = \cdot - - \cdot$ $p = \cdot - - \cdot$

- we end up with 4 "symbols", and that
 - complicates the transmission and reception processes
 - reduces the efficiency
 - introduces a source of errors
- In general we want codes that are decodable without adding extra symbols
 - e.g., true binary codes

Definition (Source code)

A source code C for a random variable X is a mapping from Ω , the range of X to \mathcal{D}^* (the set of all finite length strings of symbols from the alphabet \mathcal{D}).

Our code "alphabet" is made up of symbols from \mathcal{D} . If the size of this set is $D = |\mathcal{D}|$ then we call this a *D*-ary code.

If we only allowed single symbols in the output, then this would be the range of $C(\cdot)$, but usually we allow finite strings in our "codewords".

The set of strings of length *n* is called \mathcal{D}^n , and the set of all finite length strings is called $\mathcal{D}^* = \cup \mathcal{D}^n$, So the source code is a mapping $\mathcal{C} : \Omega \to \mathcal{D}^*$, which might, for instance, look like

$$C(x) = d_1 d_2 d_3 \dots d_n$$

for some $d_i \in \mathcal{D}$. The length of the code is denoted $\ell(x)$, which in the case above would be *n*.

Definition (Non-singular)

A code is said to be non-singular if every element of the range of X maps into a different string in \mathcal{D}^* , i.e.,

$$x_i \neq x_j \Rightarrow C(x_i) \neq C(x_j)$$

Non-singularity is a necessary condition for decodability

• otherwise we can't decode a single symbol uniquely

but it isn't sufficient to guarantee decodability of a sequence, at least not without an extra "separator" symbol, which is inefficient.

Definition (Extension)

The extension C^* of a code C is the mapping from finite length strings Ω^* to finite length strings \mathcal{D}^* defined by

$$C^*(x_1x_2\cdots x_n)=C(x_1)C(x_2)\cdots C(x_n)$$

where $C(x_i)C(x_j)$ indicates concatenation of codewords.

Definition (Uniquely decodable)

A code is called uniquely decodable if its extension is non-singular.

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Definition (Prefix-free codes)

A code is called a prefix-free code or an instantaneous code if no codeword is a prefix of any other codeword.

For Example:

Χ	Prefix-free code
1	0
2	10
3	110
4	111

3

くほと くほと くほと

Prefix-free codes

Theorem

Prefix-free codes are uniquely decodable (and in fact can be decoded without reference to the future codewords).

Proof.

In a prefix-free code, the end of a codeword is immediately recognisable because if we find a string that is a valid codeword, it can't be the prefix of a longer codeword, so we can stop decoding the word at that point.

We can think of prefix-codes as self-punctuating. The result above means that prefix-free codes are not just uniquely decodable, but also that we can decode using a single-pass, making them an attractive option for codes.

Prefix-free codes

We can represent codewords as a *D*-ary tree: e.g., for binary codes

For a prefix-free code, no codeword can be an ancestor of another.

Morse code is not prefix-free

3

Code classes

3

Code classes [CT91, pp.82]

		Non-singular,	Uniquely	
		but not	decodable,	
		uniquely	but not	
Χ	Singular code	decodable	prefix-free	Prefix-free
1	0	0	10	0
2	0	010	00	10
3	0	01	11	110
4	0	10	110	111

3

<ロ> (日) (日) (日) (日) (日)

Variable vs fixed length codes

- If we fix the length of the codewords, then, its easy to determine the boundaries
 - such codes are implicitly prefix free (as long as they are non-singular)
- But variable length codes can be more efficient
 - e.g., use shorter codes for more common symbols
 - now we have to make sure they are uniquely decodable and the easiest thing is to ensure they are prefix free

Kraft inequality

Theorem (Kraft inequality)

There exists a D-ary prefix-free code with codeword lengths $\ell_1, \ell_2, \ldots, \ell_m$, iff the Kraft inequality

$$\sum_{k=1}^m D^{-\ell_k} \le 1,$$

is satisfied.

Kraft inequality example

Х	Prefix-free code	length ℓ_i
1	0	1
2	10	2
3	110	3
4	111	3

its a binary code, so D = 2, so

$$\sum_{k=1}^{m} D^{-\ell_k} = 2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1.$$

Matthew Roughan (School of Mathematical

3

< □ > < ---->

Prefix-free codes

We can represent codewords as a D-ary tree: e.g., for binary codes

For a prefix-free code, no codeword can be an ancestor of another.

Kraft proof

Kraft inequality \Rightarrow .

Consider the *D*-ary tree corresponding to a prefix-free code. Let ℓ_{\max} be the longest codeword. The tree has $D^{\ell_{\max}}$ possible nodes at level ℓ_{\max} (but not all are actual codewords).

The *k*th codeword is at level ℓ_k , and has $D^{\ell_{\max}-\ell_k}$ descendents at level ℓ_{\max} , and each of these sets of descendents is disjoint, and so the total number of such descendents can't be greater than the possible nodes at level ℓ_{\max} , i.e.,

$$\sum_{k=1}^m D^{\ell_{\max}-\ell_k} \le D^{\ell_{\max}}$$

and (dividing by $D^{\ell_{\max}}$) the Kraft inequality must hold for any prefix-free code.

Kraft proof

Kraft inequality \Leftarrow .

Conversely, given a set of codeword lengths $\ell_1, \ell_2, \ldots, \ell_m$ which satisfy the inequality, we can always construct a *D*-ary tree corresponding to a prefix-free code. The construction is as follows:

- WLOG order the lengths so that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_m$
- There are D^{ℓ_1} possible nodes at depth ℓ_1 suitable for the first code.
- Assume the first *i* codewords have been chosen successfully, and we now want to choose a codeword of length ℓ_{i+1} . It can't be a descendent of any of the previous codewords, so we have eliminated

$$\sum_{k=1}^{\prime} D^{\ell_{i+1}-\ell_k},$$

nodes at level ℓ_{i+1} of the tree, but by the Kraft inequality we know that this must leave at least one possible choice.

Further reading I

Thomas M. Cover and Joy A. Thomas, *Elements of information theory*, John Wiley and Sons, 1991.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.