
Information Theory and Networks
Lecture 8: Decodability

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

http://www.maths.adelaide.edu.au/matthew.roughan/

Lecture_notes/InformationTheory/

School of Mathematical Sciences,
University of Adelaide

September 18, 2013

http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/
http://www.maths.adelaide.edu.au/matthew.roughan/Lecture_notes/InformationTheory/


Part I

Decodability
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There are 10 types of people in the world: those who under-
stand binary, and those who don’t
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Morse code

Morse code has a problem

its not really a binary code because we need letter and word
separators

I e.g., to tell the difference between

an = · − − ·
p = · − − ·

we end up with 4 “symbols”, and that
I complicates the transmission and reception processes
I reduces the efficiency
I introduces a source of errors

In general we want codes that are decodable without adding extra
symbols

I e.g., true binary codes
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Definitions [CT91, pp.78-81]

Definition (Source code)

A source code C for a random variable X is a mapping from Ω, the range
of X to D∗ (the set of all finite length strings of symbols from the
alphabet D).

Our code “alphabet” is made up of symbols from D. If the size of this set
is D = |D| then we call this a D-ary code.

If we only allowed single symbols in the output, then this would be the
range of C (·), but usually we allow finite strings in our “codewords”.

The set of strings of length n is called Dn, and the set of all finite length
strings is called D∗ = ∪Dn, So the source code is a mapping C : Ω→ D∗,
which might, for instance, look like

C (x) = d1d2d3 . . . dn

for some di ∈ D. The length of the code is denoted `(x), which in the
case above would be n.
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Definitions [CT91, pp.78-81]

Definition (Non-singular)

A code is said to be non-singular if every element of the range of X maps
into a different string in D∗, i.e.,

xi 6= xj ⇒ C (xi ) 6= C (xj)

Non-singularity is a necessary condition for decodability

otherwise we can’t decode a single symbol uniquely

but it isn’t sufficient to guarantee decodability of a sequence, at least not
without an extra “separator” symbol, which is inefficient.
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Definitions [CT91, pp.78-81]

Definition (Extension)

The extension C ∗ of a code C is the mapping from finite length strings Ω∗

to finite length strings D∗ defined by

C ∗(x1x2 · · · xn) = C (x1)C (x2) · · ·C (xn)

where C (xi )C (xj) indicates concatenation of codewords.

Definition (Uniquely decodable)

A code is called uniquely decodable if its extension is non-singular.
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Definitions [CT91, pp.78-81]

Definition (Prefix-free codes)

A code is called a prefix-free code or an instantaneous code if no codeword
is a prefix of any other codeword.

For Example:

X Prefix-free code

1 0
2 10
3 110
4 111
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Prefix-free codes

Theorem

Prefix-free codes are uniquely decodable (and in fact can be decoded
without reference to the future codewords).

Proof.

In a prefix-free code, the end of a codeword is immediately recognisable
because if we find a string that is a valid codeword, it can’t be the prefix
of a longer codeword, so we can stop decoding the word at that point.

We can think of prefix-codes as self-punctuating.
The result above means that prefix-free codes are not just uniquely
decodable, but also that we can decode using a single-pass, making them
an attractive option for codes.
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Prefix-free codes

We can represent codewords as a D-ary tree: e.g., for binary codes
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For a prefix-free code, no codeword can be an ancestor of another.
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Morse code is not prefix-free
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Code classes
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Code classes [CT91, pp.82]

X Singular code

Non-singular,
but not
uniquely
decodable

Uniquely
decodable,
but not
prefix-free Prefix-free

1 0 0 10 0
2 0 010 00 10
3 0 01 11 110
4 0 10 110 111
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Variable vs fixed length codes

If we fix the length of the codewords, then, its easy to determine the
boundaries

I such codes are implicitly prefix free (as long as they are non-singular)

But variable length codes can be more efficient
I e.g., use shorter codes for more common symbols
I now we have to make sure they are uniquely decodable and the easiest

thing is to ensure they are prefix free
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Kraft inequality

Theorem (Kraft inequality)

There exists a D-ary prefix-free code with codeword lengths `1, `2, . . . , `m,
iff the Kraft inequality

m∑
k=1

D−`k ≤ 1,

is satisfied.
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Kraft inequality example

X Prefix-free code length `i
1 0 1
2 10 2
3 110 3
4 111 3

its a binary code, so D = 2, so

m∑
k=1

D−`k = 2−1 + 2−2 + 2−3 + 2−3 = 1.
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Prefix-free codes

We can represent codewords as a D-ary tree: e.g., for binary codes
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For a prefix-free code, no codeword can be an ancestor of another.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)Information Theory September 18, 2013 17 / 20



Kraft proof

Kraft inequality ⇒.

Consider the D-ary tree corresponding to a prefix-free code. Let `max be
the longest codeword. The tree has D`max possible nodes at level `max

(but not all are actual codewords).
The kth codeword is at level `k , and has D`max−`k descendents at level
`max, and each of these sets of descendents is disjoint, and so the total
number of such descendents can’t be greater than the possible nodes at
level `max, i.e.,

m∑
k=1

D`max−`k ≤ D`max

and (dividing by D`max) the Kraft inequality must hold for any prefix-free
code.
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Kraft proof

Kraft inequality ⇐.

Conversely, given a set of codeword lengths `1, `2, . . . , `m which satisfy the
inequality, we can always construct a D-ary tree corresponding to a
prefix-free code. The construction is as follows:

WLOG order the lengths so that `1 ≤ `2 ≤ · · · ≤ `m

There are D`1 possible nodes at depth `1 suitable for the first code.

Assume the first i codewords have been chosen successfully, and we
now want to choose a codeword of length `i+1. It can’t be a
descendent of any of the previous codewords, so we have eliminated

i∑
k=1

D`i+1−`k ,

nodes at level `i+1 of the tree, but by the Kraft inequality we know
that this must leave at least one possible choice.
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Further reading I

Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley
and Sons, 1991.

Raymond W. Yeung, Information theory and network coding, Springer, 2010.
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