Information Theory and Networks

Lecture 17: Gambling with Side Information

Paul Tune
paul.tune@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/
Lecture_notes/InformationTheory/

School of Mathematical Sciences, University of Adelaide

October 9, 2013

Part I

Gambling with Side Information

A good hockey player plays where the puck is. A great hockey player plays where the puck is going to be.

Wayne Gretzky

Section 1

More about Horse Racing

Horse Racing Redux

- Suppose you know: horse 3 is an older horse, fatigues easily
- how has your edge changed?
- what strategy should you employ?

Horse	Odds
1	10
2	2
3	20
4	5

Background

- Kelly's original paper talks about "private wire"
- AT\&T's main customers were horse racing rackets
- transmit race results from East to West Coast
- some races allow bets up until the results
- lag between East and West Coast in taking bets
- Mostly mob controlled
- Title change to paper to remove "unsavoury" elements

Reinterpretation of Doubling Rate

- Write $r_{i}=1 / o_{i}, \mathbf{r}$ is the bookie's estimate of horse win probabilities
- technically, this has been determined by the bettors themselves
- Recall doubling rate: $W(\mathbf{b}, \mathbf{p})=\sum_{i} p_{i} \log b_{i} o_{i}$
- Similarly, $W(\mathbf{b}, \mathbf{p})=D(\mathbf{p} \| \mathbf{r})-D(\mathbf{p} \| \mathbf{b})$
- comparison between estimates of the true winning distribution between the bookie and gambler
- when does the gambler do better?
- Special case - uniform odds: $W^{*}(\mathbf{p})=D\left(\mathbf{p} \| \frac{1}{m} \mathbf{1}\right)=\log m-H(\mathbf{p})$

Section 2

Side Information

Incorporating Side Information

- Based on reinterpretation, want to minimise KL divergence
- any form of side information can provide better estimates
- Let $X \in\{1,2, \cdots, m\}$ denote the horse that wins the race
- Consider (X, Y), where Y is the side information
- $p(x, y)=p(y) p(x \mid y)$ is the joint distribution
- betting $b(x \mid y) \geq 0, \sum_{x} b(x \mid y)=1$
- given $Y=y$, now want to estimate $p(x \mid y)$
- clearly, the better the estimate, the better wealth growth rate

Effect on Doubling Rate

- Unconditional doubling rate

$$
W^{*}(X):=\max _{\mathbf{b}(x)} \sum_{x} p(x) \log b(x) o(x)
$$

- Conditional doubling rate

$$
W^{*}(X \mid Y):=\max _{\mathbf{b}(x \mid y)} \sum_{x, y} p(x, y) \log b(x \mid y) o(x)
$$

- Want to find the bound on the increase $\Delta W=W^{*}(X \mid Y)-W^{*}(X)$
- Turns out: $\Delta W=I(X ; Y)$
- by Kelly, $b^{*}(x \mid y)=p(x \mid y)$
- calculate $W^{*}(X \mid Y=y)$, then compute $W^{*}(X \mid Y)$, then take difference
- In turn, this is upper bounded by the channel capacity

Dependent Horse Races

- Side information can come from past performance of the horses
- if horse is performing well consistently, then more likely for it to win
- For each race i, bet conditionally (fair odds)
- $b^{*}\left(x_{i} \mid x_{i-1}, \cdots, x_{1}\right)=p\left(x_{i} \mid x_{i-1}, \cdots, x_{1}\right)$
- Let's assume fair odds (m-for- 1), then after n races,

$$
\frac{1}{n} E\left[\log S_{n}\right]=\log m-\frac{H\left(X_{1}, X_{2}, \cdots, X_{n}\right)}{n}
$$

- Link this with entropy rate by taking $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} E\left[\log S_{n}\right]+H(\mathcal{X})=\log m
$$

- Expectation can be removed if S_{n} is ergodic (property holds w.p. 1)

Betting Sequentially vs. Once-off

- Consider a card game: red and black
- a deck of 52 cards, 26 red, 26 black
- gambler places bets on whether the next card is red or black
- payout: 2-for-1 (fair for equally probably red/black cards)
- Play this sequentially
- what are the proportions we should bet? (hint: use past information)
- Play this once-off for all $\binom{52}{26}$ sequences
- proportional betting allocates $1 /\binom{52}{26}$ wealth on each sequence
- Both schemes are equivalent: why?

$$
S_{52}^{*}=\frac{2^{52}}{\binom{56}{26}}=9.08
$$

- Return does not depend on actual sequence: sequences are typical (c.f. AEP)

Part II

Data Compression and Gambling

Gambling-Based Compression

- Consider $X_{1}, X_{2}, \cdots, X_{n}$ a sequence of binary random variables to compress
- Gambling allocations are $b\left(x_{k+1} \mid x_{1}, x_{2}, \cdots, x_{k}\right) \geq 0$ with

$$
\sum_{x_{k+1}} b\left(x_{k+1} \mid x_{1}, x_{2}, \cdots, x_{k}\right)=1
$$

- Odds: uniform 2-for-1
- Wealth:

$$
S_{n}=2^{n} \prod_{k=1}^{n} b\left(x_{k+1} \mid x_{1}, x_{2}, \cdots, x_{k}\right)=2^{n} b\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

- Idea: use $b\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ as a proxy for $p\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, if S_{n} is maximised, then have log-optimal and best compression

Algorithm: Encoding

- Assumption: both encoder and decoder knows n
- Encoding:
- arrange 2^{n} sequences lexicographically
- sees $x(n)$, calculate wealth $S_{n}\left(x^{\prime}(n)\right)$ for all $x^{\prime}(n) \leq x(n)$
- compute $F(x(n))=\sum_{x^{\prime}(n) \leq x(n)} 2^{-n} S_{n}\left(x^{\prime}(n)\right)$, where $F(x(n)) \in[0,1]$
- express $F(x(n))$ in binary decimal to $k=\left\lceil n-\log S_{n}(x(n))\right\rceil$ accuracy
- codeword of $F(x(n)): . c_{1} c_{2} \cdots c_{k}$
- the sequence $c(k)=\left(c_{1}, c_{2}, \cdots, c_{k}\right)$ is transmitted to the decoder

Algorithm: Decoding

- Decoding:
- computes all $S_{n}\left(x^{\prime}(n)\right)$ for all 2^{n} sequences exactly; knows $F\left(x^{\prime}(n)\right)$ for any $x^{\prime}(n)$
- calculate $F\left(x^{\prime}(n)\right)$ in lexicographical ordering until first time output exceeds.$c(k)$: determines index
- size of $2^{-n} S(x(n))$ ensures uniqueness: no other $x^{\prime}(n)$ will have this wealth value
- Bits required: k, bits saved: $n-k=\left\lfloor\log \left(S_{n}(x(n))\right)\right\rfloor$
- With proportional gambling, $S_{n}(x(n))=2^{n} p(x(n))$, so $E[k] \leq H\left(X_{1}, X_{2}, \cdots, X_{n}\right)+1$

Estimating Entropy of English

- Use the algorithm to estimate the entropy per letter of English
- Odds: 27-for-1 (including space, but no punctuations)
- Wealth: $S_{n}=(27)^{n} b\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
- After n rounds of betting

$$
E\left[\frac{1}{n} \log S_{n}\right] \leq \log 27-H(\mathcal{X})
$$

- Assuming English is ergodic, $\hat{H}(\mathcal{X})=\log 27-\frac{1}{n} \log S_{n}$ converges to $H(\mathcal{X})$ w.p. 1
- Example for "Jefferson the Virginian" gives 1.34 bits per letter

Further reading I

易
Thomas M. Cover and Joy A. Thomas, Elements of information theory, John Wiley and Sons, 1991.

