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Section 1

Graph features/metrics
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Graph Notation

The network is defined by the graph,

G (N,E )

We will assume (unless stated) that it is undirected.

By default label the nodes {1, 2, . . . , n}
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Graph Features/Metrics

When graphs are small, we can draw them, and look at them, and its
still hard to assess them, e.g., isomorphism

When they are large it is impossible to visually assess them

But we still need ways to analyse them
I categorise
I predict
I assess for unusual characteristics

There is a growing trend to do so using a common set of numbers
called variously

I statistics
I metrics
I features
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Graph Features/Metrics

There are two type of metrics/features

Local (to the nodes)
I node degree
I local clustering coefficient
I centrality (various versions)
I eccentricity

Local (to a pair of nodes)
I (shortest path) distance

Global (for the whole network)
I average node degree and degree distribution
I radius, average distance and diameter
I global clustering coefficient
I assortativity/homophily
I graph spectrum
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Section 2

Node degree distributions
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Neighbourhood and node degree

Definition

The neighbourhood of node i is defined by

Ni = {j | (i , j) ∈ E},

i.e., the set of nodes adjacent to i .

Definition

The node degree ki is the number of neighbours of node i , i.e.,

ki = |Ni |.

Definition (Alternative definition)

The node degree ki is the number of edges incident to i , i.e.,

ki =
∣∣∣{(i , j)|(i , j) ∈ E}

∣∣∣ .
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Global node-degree statistics

An often used statistic/feature of a graph is its average node degree

k̄ = <k> =
1

|N|
∑
i∈N

ki =
2|E |
|N|

.

the last result by the Handshake theorem.

More generally the node degree distribution pk gives the probability
that a node has degree k (or relative frequency)

I an r -regular graph has

pk =

{
1, for k = r ,
0, otherwise.
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Friendship paradox [Fel91]

Friendship paradox = your friends have more friends than you

Actually the theorem is statement about averages
“On average, your friends will have more friends than you.”

Stated mathematically

E [ki ] ≤ E [kneighbours(i)].

Some versions are about “most” people, i.e., most people’s friends
have more friends than them

Intuition is that sampling the node-degree distribution by looking at
friends artificially biases the high-degree nodes because they are
friends more often.
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Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Betty Sue Alice Jane

Pam Dale

Carol

Tina
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Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Betty Sue Alice Jane

Pam Dale

Carol

Tina

Friends

1 4 4 2

3

3

2
1

Average overall
= 2.5 
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Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Betty Sue Alice Jane

Pam Dale

Carol

Tina

Friends
of
Friends

4 11 12 7
10

10

4
2
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Friendship paradox example [Fel91]

Marketville High School Girls (subgraph)

Betty Sue Alice Jane

Pam Dale

Carol

Tina

Average
Friends
of
Friends

4 2.75 3 3.5
3.3

3.3

2
2

Average overall
= 2.99
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Friendship paradox

Proof.

The average number of friends is

k̄ =
1

n

n∑
i=1

ki .

When we calculate the number of friends of friends k
(2)
i , Feld [Fel91]

argued that each individual is “a friend ki times and has ki friends, so that
individual contributes ... a total of k2i friends’ friends”. Thus the total
friends’ friends is

n∑
i=1

k
(2)
i =

n∑
i=1

k2i ,

and we average this over the total number of friends, i.e.,
∑

i ki , to get

k(2) =

∑n
i=1 k

2
i∑n

i=1 ki
.
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Friendship paradox

Proof.

Standard result
Var(X ) = E

[
X 2
]
− E[X ]2.

Re-arranging we get

E
[
X 2
]

E[X ]
= E[X ] +

Var(X )

E[X ]
.

In our context

k(2) =

∑n
i=1 k

2
i∑n

i=1 ki
= E[ki ] +

Var(ki )

E[ki ]
,

and we know the mean and variance are ≥ 0 so

k(2) ≥ k̄ .
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Friendship paradox

Proof (part 2)

I find the first part a little hand-wavy

There is a nice little lesson to learn in doing it mathematically

Proof.

We can write the number of friends of i using the adjacency matrix
A = [aij ]

ki =
∑
j

aij =
∑
j

aji .

We can similarly write the number of friends of friends for i using the
adjacency matrix by considering that a friend j of i will be reached by aij ,
so

k
(2)
i =

∑
j

aijkj .
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An aside

The number i ’s friends’ friends can be seen as

k
(2)
i =

∑
j

aijkj =
∑
j

aij
∑
k

ajk =
∑
k

∑
j

aijajk

Which is just the matrix squared, i.e., if A2 = [a
(2)
ij ] then we can think of

this as

a
(2)
ik =

∑
j

aijajk = the number of 2 hop paths from i to j ,

and k
(2)
i is the sum over the possible end-points of such paths.

The main point is A2 contains the number of two-hop paths between each
pair of nodes.
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An aside: example
Example directed graph

1

3

2

A =

 0 1 1
0 0 0
1 0 0


Now

A2 =

 1 0 0
0 0 0
0 1 1


So there are

exactly one 2-hop path from 1 to 1: 1-3-1
exactly one 2-hop path from 3 to 2: 3-1-2
exactly one 2-hop path from 3 to 3: 3-1-3
no other 2-hop paths

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 15 / 23



Friendship paradox

Proof.

k
(2)
i =

∑
j

aijkj .

So the total number of friends’ friends is∑
i

k
(2)
i =

∑
i

∑
j

aijkj .

Principle of perversity (of sums) leads us to change the order of summation∑
i

∑
j

aijkj =
∑
j

∑
i

aijkj =
∑
j

kj
∑
i

aij =
∑
j

k2j .

Hence ∑
i

k
(2)
i =

∑
j

k2j .
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Section 3

Homophily and Assortativity

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 17 / 23



Homophily

Birds of a feather, flock together.

Homophily expresses the idea that many relationships (that we might
express in a graph) are more likely between similar entities.

Many studies have confirmed it in many contexts
I characteristics: age, gender, class, geography, ...
I relationships: collaboration, friendship, ...

In random graphs (see next week) assume the probability of a link
depends on similarity of characteristics of the nodes

I we’ll define in terms of eij = fraction of edges that connect a vertex of
type i to one of type j .
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Homophily and assortativity

Assortative mixing, or just assortativity expresses homophily between
nodes based on their node degree.

The definition is slightly circular: edges are more common between
nodes with similar numbers of edges ...

I But we can work with that

Measure using Pearson correlation coefficient of “remaining” degrees
at either ends of a random edge.

I start with the idea of a correlation of nodes on a random link
I but eliminate the link in question ⇒ remaining
I ejk is the joint probability distribution of the remaining degree at either

end of a randomly chosen link
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Remaining degree distribution
The degree distribution of a node reached by a random link

q′k =
k pk∑
j j pj

, k = 1, 2, . . .

The remaining degree distribution, ignores the link we came in on

qk = q′k+1 =
(k + 1)pk+1∑

j j pj
, k = 0, 1, 2, . . .

σ2q variance of of distribution qk

σ2q =
∑
k

k2qk −

[∑
k

kqk

]2
qk is the marginal distribution of ejk , i.e.,

qk =
∑
j

ejk
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Metric 2: assortativity

Assortativity

r =

∑
j ,k jk(ejk − qjqk)

σ2q

r is the Pearson correlation coefficient of remaining degrees at either
ends of a random edge.

−1 ≤ r ≤ 1

cases
I r near 1 means high degree nodes often connect to high degree nodes
I r near -1 means high degree nodes often connect to low degree nodes
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Evaluating assortativity

In a real network, we evaluate r by taking

r̂ =
w
∑

e∈E jeke −
[
w
∑

e∈E (je + ke)/2
]2

w
∑

e∈E (j2e + k2e )/2−
[
w
∑

e∈E (je + ke)/2
]2 ,

where

w = |E |−1

je = degrees of vertex at one end of the edge e

ke = degrees of vertex at other end of the edge e
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Further reading I

Scott L. Feld, Why your friends have more friends than you do, American Journal
of Sociology 96 (1991), no. 6, 1464–1477.
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