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Section 1

HOT graphs
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Problem with “random” graph

Random graphs are formed by taking lots of small, random
operations, and building a larger graph

I most dependencies are quite local
I bottom-up construction
I hope for “emergent” behaviour
I lots of small, local behaviour produces global structure

This is NOT how real, technological, physical networks arise
I the are designed
I often from the top down
I often optimised against a set of constraints

Even if a random network has all the metrics right, does that mean it
is actually a good model?

I for instance, most random graph models don’t include any redundancy
component

I consequently, they can be vulnerable to failures
I real networks have designed redundancy
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Example: Internet

It was noticed early on that the “Internet” has a power-law degree
[FFF99]

I this was one of the motivators for preferential attachment
I ignore some of the holes in the paper for the moment

The preferential attachment model has “central” high-degree node
I if one of these fails, a preferential-attachment network might become

partitioned
I is this a worry for the REAL Internet
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HOT

HOT = Highly Optimised Tolerances

= Highly Organised Tradeoffs

= Highly Optimised Topology

= Heuristically Optimised Topology

Its a generic theory related to emergence or power laws

The idea is that power-laws emerge from system that have been
highly optimised

This is a pretty superficial take on it – there is a lot more, but we
only need to see how it applies to networks
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HOT graphs

Assume that networks are design through an optimisation process

For the Internet
I nodes are routers and edges are links between them

F objective is to minimise the cost of these

I routers have a maximum number of ports
F effectively a maximum node degree
F backbone routers, have a few, high-speed ports, but are very fast
F edge routers have many low-speed ports

I capacity constraint
F must have enough capacity to carry given traffic
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Is HOT a random graph model?

HOT is different from other random graph models
I the operations aren’t random (mostly)
I the optimisation is nearly deterministic

The randomness comes from the environment
I in this case the (random) traffic that must be carried

Random traffic matrix

Tij = αBiBj ,

where the Bi are non-negative random variables.
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Node degree distribution [LAWD04]
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Figure 6: Five networks having the same node degree distribution. (a) Common node degree distribution (degree versus rank on
log-log scale); (b) Network resulting from preferential attachment; (c) Network resulting from the GRG method; (d) Heuristically
optimal topology; (e) Abilene-inspired topology; (f) Sub-optimally designed topology.
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Figure 7: (a) Distribution of end user bandwidths; (b) Router utilization for PA network; (c) Router utilization for GRG network;
(d) Router utilization for HOT topology; (e) Router utilization for Abilene-inspired topology; (f) Router utilization for sub-optimal
network design. The colorscale of a router on each plot differentiates its bandwidth which is consistent with the routers in Figure 6.
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Abilene ecosystem of networks [LAWD04]
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Figure 4: CENIC and Abilene networks. (Left): CENIC backbone. The CENIC backbone is comprised of two backbone networks in
parallel—a high performance (HPR) network supporting the University of California system and other universities, and the digital
California (DC) network supporting K-12 educational initiatives and local governments. Connectivity within each POP is provided
by Layer-2 technologies, and connectivity to the network edge is not shown. (Right): Abilene network. Each node represents a
router, and each link represents a physical connection between Abilene and another network. End user networks are represented
in white, while peer networks (other backbones and exchange points) are represented in gray. Each router has only a few high
bandwidth connections, however each physical connection can support many virtual connections that give the appearance of greater
connectivity to higher levels of the Internet protocol stack. ESnet and GEANT are other backbone networks.

ample, nearly half of all users of the Internet in North America
still have dial-up connections (generally 56kbps), only about 20%
have broadband access (256kbps-6Mbps), and there is only a small
number of users with large (10Gbps) bandwidth requirements [5].
Again, the cost effective handling of such diverse end user traffic
requires that aggregation take place as close to the edge as possi-
ble and is explicitly supported by a common feature that these edge
technologies have, namely a special ability to support high connec-
tivity in order to aggregate end user traffic before sending it towards
the core. Based on variability in population density, it is not only
plausible but somewhat expected that there exist a wide variability
in the network node connectivity.

Thus, a closer look at the technological and economic design
issues in the network core and at the network edge provides a con-
sistent story with regard to the forces (e.g., market demands, link
costs, and equipment constraints) that appear to govern the build-
out and provisioning of the ISPs’ core networks. The tradeoffs that
an ISP has to make between what is technologically feasible versus
economically sensible can be expected to yield router-level connec-
tivity maps where individual link capacities tend to increase while
the degree of connectivity tends to decrease as one moves from the
network edge to its core. To a first approximation, core routers
tend to be fast (have high capacity), but have only a few high-
speed connections; and edge routers are typically slower overall,
but have many low-speed connections. Put differently, long-haul
links within the core tend to be relatively few in numbers but their
capacity is typically high.

3.3 Heuristically Optimal Networks

The simple technological and economic considerations listed above
suggest that a reasonably “good” design for a single ISP’s net-
work is one in which the core is constructed as a loose mesh of
high speed, low connectivity routers which carry heavily aggre-
gated traffic over high bandwidth links. Accordingly, this mesh-
like core is supported by a hierarchical tree-like structure at the
edges whose purpose is to aggregate traffic through high connec-
tivity. We will refer to this design asheuristically optimalto reflect
its consistency with real design considerations.

As evidence that this heuristic design shares similar qualitative
features with the real Internet, we consider the real router-level con-
nectivity of the Internet as it exists for the educational networks of
Abilene and CENIC (Figure 4). The Abilene Network is the In-
ternet backbone network for higher education, and it is part of the
Internet2 initiative [1]. It is comprised of high-speed connections
between core routers located in 11 U.S. cities and carries approxi-
mately 1% of all traffic in North America5. The Abilene backbone
is a sparsely connected mesh, with connectivity to regional and lo-
cal customers provided by some minimal amount of redundancy.
Abilene is built using Juniper T640 routers, which are configured
to have anywhere from five connections (in Los Angeles) to twelve
connections (in New York). Abilene maintains peering connections

5Of the approximate 80,000 - 140,000 terabytes per month of traf-
fic in 2002 [35], Abilene carried approximately 11,000 terabytes of
total traffic for the year [27]. Here, “carried” traffic refers to traf-
fic that traversed an Abilene router. Since Abilene does not peer
with commercial ISPs, packets that traverse an Abilene router are
unlikely to have traversed any portion of the commercial Internet.
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Performance

0  0.2 0.4 0.6 0.8 1  

10
10

10
11

10
12 HOT                      

l(g)=0.05                
perf=1.13×1012   

PA                                 
l(g)=0.46                          
perf=1.19×1010             

L
max

                         

l(g)=1                          
perf=1.08×1010          

P
er

fo
m

an
ce

 (
bp

s)

Relative Likelihood

sub−optimal                   
l(g)=0.07                     
perf=1.86×1010        

GRG                       
l(g)=0.65                 
perf=1.64×1010    

Abilene−inspired                     
l(g)=0.03                            
perf=3.95×1011               

Figure 8: Performance vs. Likelihood for each topology, plus
other networks having the same node degree distribution ob-
tained by pairwise random rewiring of links.

the real Internet, aggregates traffic and disperses it across multi-
ple high-bandwidth routers. We calculate the distribution of end
user bandwidths and router utilization when each network achieves
its best performance. Figure 7 (a) shows that the HOT network
can support users with a wide range of bandwidth requirements,
however the PA and GRG models cannot. Figure 7(d) shows that
routers achieve high utilization in the HOT network, whereas, when
the high degree “hubs” saturate in the PA and GRG networks, all
the other routers are left under-utilized (Figure 7(b)(c)). The net-
works generated by these two degree-based probabilistic methods
are essentially the same in terms of their performance.

Performance vs. Likelihood.A striking contrast is observed by
simultaneously plotting performance versus likelihood for all five
models in Figure 8. The HOT network has high performance and
low likelihood while the PA and GRG networks have high like-
lihood but low performance. The interpretation of this picture is
that a careful design process explicitly incorporating technologi-
cal constraints can yield high-performance topologies, but these
are extremely rare from a probabilistic graph point of view. In
contrast, equivalent power-law degree distribution networks con-
structed by generic degree-based probabilistic constructions result
in more likely, but poor-performing topologies. The “most likely”
Lmax network (also plotted in Figure 8) has poor performance.

This viewpoint is augmented if one considers the process of pair-
wise random degree-preserving rewiring as a means to explore the
space of graphs having the same overall degree distribution. In Fig-
ure 8, each point represents a different network obtained by random
rewiring. Despite the fact that all of these graphs have the same
overall degree distribution, we observe that a large number of these
networks have relatively high likelihood and low performance. All
of these graphs, including the PA and GRG networks, are consistent
with the so-called “scale-free” models in the sense that they con-
tain highly connected central hubs. The fact that there are very few
high performance graphs in this space is an indication that it would
be “hard” to find a relatively good design using random rewiring.
We also notice that low likelihood itself does not guarantee a high
performance network, as the network in Figure 6(f) shows that it
is possible to identify probabilistically rare and poorly performing
networks. However, based on current evidence, it does appear to be
the case that it is impossible using existing technology to construct
a network that is both high performance and high likelihood.

5.2 A Second Example
Figure 6 shows that graphs having the same node degree distri-

bution can be very different in their structure, particularly when it
comes to the engineering details. What is also true is that the same
core network design can support many different end-user band-
width distributions and that by and large, the variability in end-user
bandwidth demands determines the variability of the node degrees
in the resulting network. To illustrate, consider the simple example
presented in Figure 9, where the same network core supports differ-
ent types of variability in end user bandwidths at the edge (and thus
yields different overall node degree distributions). The network in
Figure 9(a) provides uniformly high bandwidth to end users; the
network in Figure 9(b) supports end user bandwidth demands that
are highly variable; and the network in Figure 9(c) provides uni-
formly low bandwidth to end users. Thus, from an engineering per-
spective, not only is there not necessarily any implied relationship
between a network degree distribution and its core structure, there
is also no implied relationship between a network’s core structure
and its overall degree distribution.

6. DISCUSSION
The examples discussed in this paper provide new insight into

the space of all possible graphs that are of a certain size and are con-
strained by common macroscopic statistics, such as a given (power
law) node degree distribution. On the one hand, when viewed in
terms of the (relative) likelihood metric, we observe a dense region
that avoids the extreme ends of the likelihood axis and is popu-
lated by graphs resulting from random generation processes, such
as PA and GRG. Although it is possible to point out details that
are specific to each of these “generic” or “likely” configurations,
when viewed under the lens provided by the majority of the cur-
rently considered macroscopic statistics, they all look very similar
and are difficult to discern. Their network cores contain high con-
nectivity hubs that provide a relatively easy way to generate the
desired power law degree distribution. Given this insight, it is not
surprising that theorists who consider probabilistic methods to gen-
erate graphs with power-law node degree distributions and rely on
statistical descriptions of global graph properties “discover” struc-
tures that are hallmarks of the degree-based models.

However, the story changes drastically when we consider net-
work performance as a second dimension and represent the graphs
as points in the likelihood-performance plane. The “generic” or
“likely” graphs that make up much of the total configuration space
have such bad performance as to make it completely unrealistic that
they could reasonably represent a highly engineered system like an
ISP or the Internet as a whole. In contrast, we observe that even
simple heuristically designed and optimized models that reconcile
the tradeoffs between link costs, router constraints, and user traffic
demand result in configurations that have high performance and ef-
ficiency. At the same time, these designs are highly “non-generic”
and “extremely unlikely” to be obtained by any random graph gen-
eration method. However, they are also “fragile” in the sense that
even a small amount of random rewiring destroys their highly de-
signed features and results in poor performance and loss in effi-
ciency. Clearly, this is not surprising—one should not expect to
be able to randomly rewire the Internet’s router-level connectivity
graph and maintain a high performance network!

One important feature of network design that has not been ad-
dressed here isrobustnessof the network to the failure of nodes or
links. Although previous discussions of robustness have featured
prominently in the literature [4, 42], we have chosen to focus on
the story related to performance and likelihood, which we believe

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 11 / 21



For every complex problem there is an answer that is clear,
simple, and wrong.

M.L. Mencken

Multiple models produce the same node-degree distribution

They are VERY different
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Section 2

COLD graphs
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COLD [BRB14]

COLD = Combined Optimized Layered Design

HOT pointed the way
I but the optimisation model is not quite right
I we really want to optimise actual costs
I but costs in networks are complex

Also, constraints in real networks are complex
I traffic must be carried
I ports limits must be respected
I but real designs also include redundancy

The resulting optimisation is too complex (for me)

Tackle the problems in layers
I the top-layer is inter-PoP

F PoP = Point of Presence
F here we optimise simplified costs

I second layer is between routers
F here we build redundancy
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COLD top layer optimisation

Inter-PoP
I recognise that long links cost more
I so for the moment ignore links inside one city/PoP
I avoids some (router) constraints
I reduces the size of the problem to be tractable

F optimisation is NP-hard

Randomness
I PoP locations (as in SERNs)
I traffic matrix (as in HOT)
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COLD costs

Link costs
ce = k0 + k1`e + k2`ewe ,

where

`e = the length of link e,

we = the capacity of link e,

ki = a set of constants.

Node cost = a “complexity” cost

ci = k3I (i ∈ NH)

when node i ∈ NH means it is a “hub” or a “core” node
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Internet Topology Zoo

We have a collection of (Internet) network topologies
http://www.topology-zoo.org/

One interesting thing is the variety of networks
I some look like Abilene
I others are hub-spoke networks
I others are more meshy

The costs are flexible to allow all of these combinations
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COLD

Optimisation is solved with a GA (Genetic Algorithm)
I we need to use a heuristic because the problem is NP-hard
I GA is still slowish, i.e., O(n3)

Results
I are nicely tunable
I we can’t dispose of any of ki (no simpler model)
I model parameters have operational meaning (costs)
I can match real variations of statistics

Matlab code
https://github.com/rhysbowden/COLD
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Layering, hierarchy, redundancy and structure

Now we need to build the router layer
I incorporate redundancy

But, often, lower layer is build with structure
I hierarchy
I graph operators

We’ll start talking about graph operators next
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Estimation

We haven’t worked out how to do estimation yet!

But I have a good idea how
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Further reading I

Rhys Bowden, Matthew Roughan, and Nigel Bean, COLD: PoP-level topology
synthesis, CoNext (Sydney, Australia), December 2014.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the
Internet topology, ACM SIGCOMM, 1999.

Lun Li, David Alderson, Walter Willinger, and John Doyle, A first-principles
approach to understanding the Internet’s router-level topology, Proceedings of the
2004 conference on Applications, technologies, architectures, and protocols for
computer communications (New York, NY, USA), SIGCOMM ’04, ACM, 2004,
pp. 3–14.

W. Willinger, D. Alderson, and J.C. Doyle, Mathematics and the internet: A source
of enormous confusion and great potential., Notices of the AMS 56 (2009), no. 5,
586–599, http://www.ams.org/notices/200905/rtx090500586p.pdf.
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