Complex-Network Modelling and Inference Lecture 16: Operations on graphs (unary operators)

Matthew Roughan <matthew.roughan@adelaide.edu.au> https://roughan.info/notes/Network_Modelling/

> School of Mathematical Sciences, University of Adelaide

> > January 14, 2025

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Operations on graphs

Operations of graphs are important for a number of reasons

- We can use them to build new graph models
- We can calculate properties of graphs
- We use them in proofs of graph properties

Think of them of constructing a grammar or an algebra of graphs.

Operators on graphs

Types of operators

operators that calculate properties of graphs (e.g., metrics)

- Operators that produce a new graph
- Operators that work on weighted graphs to calculate new weights
- extra notation: for G = (N, E), we define

$$N(G) = N$$

 $E(G) = E$

i.e., N(G) is the nodes of G and E(G) the edges.

need to start by defining isomorphic graphs

Graph Isomorphism (reminder)

- First need to know when graphs are the "same"
- Labels often don't matter (or aren't known)
- Two graphs G and H are *isomorphic* if there exists a bijection f between the nodes of G and H

$$f: N(G) \rightarrow N(H)$$

such that it preserves adjacency, i.e.,

$$(u,v) \in E(G) \Leftrightarrow (f(u),f(v)) \in E(H)$$

- call the bijection (function) f an isomorphism
- We write two graphs are isomorphic as $G \simeq H$

Section 1

Unary operators

æ

< □ > < □ > < □ > < □ > < □ >

Unary Operators

Operations that map G to G'

- Complement G^C
- Transpose G^T of a digraph
- Line graph L(G) of graph G
- Power G^k , for $k = 1, 2, \ldots$
- Subdivision
- Others
 - Graph Minor
 - Mycielskian

Complement G^{C}

Complement G^{C}

Transpose G^T

- Adjacency matrix is transposed
- Reverse directions of links (in digraph)
- Also called converse, or reverse

Transpose G^T

- Adjacency matrix is transposed
- Reverse directions of links (in digraph)
- Also called converse, or reverse

Line graph L(G)

- Sometimes called adjoint, conjugate, edge-to-vertex dual, ...
- Every edge becomes a node
- Node in *L*(*G*) a adjacent if the corresponding edges in *G* share a common end-point.
- Formally:

$$G = (N, E) \Rightarrow L(G) = (E, E')$$

where

$$((i,j),(k,m)) \in E' \Leftrightarrow (i=k) \lor (i=m) \lor (j=k) \lor (j=m)$$

Example Line Graph

Each node in G creates a little clique in L(G).

Example Line Graph

Each node in G creates a little clique in L(G).

Example Line Graph

Each node in G creates a little clique in L(G).

Properties of Line Graph

- If G is connected, then L(G) is connected
 - converse is not true
- not all graphs are a line graph
- for a finite connected graph the sequence G, L(G), L(L(G)), L(L(L(G))), ... has only 4 cases
 - ▶ If G is a cycle graph then they are all isomorphic
 - ► If *G* is a path graph then each subsequent graph is a shorter path until eventually the sequence terminates with an empty graph.
 - If G is a star with 4 nodes, then all subsequent graphs are triangles
 - The graphs in the sequence increase indefinitely

Line Graph: case 1

Line Graph: case 1

▶ < ∃ >

• • • • • • • • • •

æ

< □ > < □ > < □ > < □ > < □ >

Line Graph: case 2 Path

The line graph of a ring is an isomorphic ring (a ring with the same number of nodes).

Line Graph: case 2

The line graph of a ring is an isomorphic ring (a ring with the same number of nodes).

The line graph of a ring is an isomorphic ring (a ring with the same number of nodes).

æ

< □ > < □ > < □ > < □ > < □ >

æ

A D N A B N A B N A B N

æ

< □ > < □ > < □ > < □ > < □ >

э

< □ > < □ > < □ > < □ > < □ >

Line Graph growth

If G has n nodes, and e edges, then L(G) has n' = e nodes and e' edges where

$$e'=\frac{1}{2}\sum_{i=1}^n k_i^2-e$$

where k_i are the node degrees

Graph Power G^k

- *G^k* is the graph formed from the nodes of *G*, and with edges between all pairs of nodes with (hop) distance no more than *k*.
- For example:

Graph Power G^k

- *G^k* is the graph formed from the nodes of *G*, and with edges between all pairs of nodes with (hop) distance no more than *k*.
- For example:

Graph Power G^k

- *G^k* is the graph formed from the nodes of *G*, and with edges between all pairs of nodes with (hop) distance no more than *k*.
- For example:

Graph-Power Adjacency Matrix

• We can obtain the adjacency matrix of a graph power G^k , by taking the sum of the first *k*th powers of the adjacency matrix of *G*, and thresholding,

● i.e.,

$$A^{(k)} = I\left[\left(\sum_{i=1}^{k} A^{i}\right) > 0\right]$$

- A is the adjacency matrix of a graph power G
- ► A^(k) is the adjacency matrix of a graph power G^k
- $I(\cdot)$ is an indicator function, applied elementwise to the matrix.
- NB: Element (*i*, *j*) in A^k counts the **number** of paths of length k between *i* and *j* in the original graph.

Graph Power G^k example

Adjacency matrix powers

< 4 ₽ >

Graph Power G^k example

Adjacency matrix powers

$$A^{2} = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 1 \\ 1 & 3 & 1 & 0 & 1 & 2 \\ 1 & 1 & 3 & 2 & 0 & 0 \\ 1 & 0 & 2 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 2 & 0 & 0 & 1 & 2 \end{pmatrix}$$

< 4 ₽ >

Graph Power G^k example

Adjacency matrix powers

$$A^{3} = \begin{pmatrix} 2 & 4 & 4 & 2 & 1 & 2 \\ 4 & 2 & 6 & 6 & 0 & 1 \\ 4 & 6 & 2 & 1 & 2 & 5 \\ 2 & 6 & 1 & 0 & 3 & 5 \\ 1 & 0 & 2 & 3 & 0 & 0 \\ 2 & 1 & 5 & 5 & 0 & 0 \end{pmatrix}$$

< 47 ▶

Graph-Power Adjacency Matrix

- To understand the above, count the number of a length 2 path between nodes *i* and *j*
- Such a path goes through an intermediate node $k \neq i, j$
- Hence the number of length two paths is

- By definition $B = A^2$
- Induction extends the argument to length k paths.

Graph-Power Properties

- For a (strongly) connected (di)graph G with n nodes, is Gⁿ is a complete graph (or clique)?
- If the graph has diameter d, then G^d is complete.
- For an unconnected graph, the *n*th power will be a block-diagonal matrix whose blocks are formed by connected components.
- Square-root graph $G^{1/2}$ is a graph H such that $H^2 = G$.
- NOTE: $G^2 \neq G \times G$
 - we will talk about multiplication in the next lecture

Subdivision

• Add an extra node into an edge e

Further reading I

æ

< □ > < □ > < □ > < □ > < □ >