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Section 1

Binary operators
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Binary Operators

Disjoint union G ∪ H

Graph products based on the Cartesian product of the vertex sets:
I Cartesian product G2H
I Tensor product G × H
I Strong product G ∗ H
I Lexicographic product G • H
I Rooted product G ◦ H

Others (not discussed here)
I Clique sum
I Corona and Zig-zag products
I Series and Parallel compositions
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Disjoint union G ∪ H

For two graphs G and H with disjoint node sets, i.e.,

N(G ) ∩ N(H) = φ

the disjoint union G ∪ H is the graph formed by taking the union of
the nodes and edges, i.e.,

N(G ∪ H) = N(G ) ∪ N(H)

E (G ∪ H) = E (G ) ∪ E (H)

Properties
I Commutative (for unlabelled graphs)
I Associative (for unlabelled graphs)

Graph join: disjoint union with all edges that join nodes from G to H
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Cartesian product of vertices/nodes

Cartesian (or direct) product defined on two sets X and Y

Cartesian product of two sets of nodes results in all pairs of nodes
with one from each set

X × Y = {(x , y) | x ∈ X and y ∈ Y }

I its just a generalised vector

Number of members of product

|X × Y | = |X | × |Y |

Generalizes to n-ary products
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Properties of Cartesian Products

Associative (effectively)

X × (Y × Z ) = (X × Y )× Z

Doesn’t commute X × Y 6= Y × X
I order is important
I in some of what follows we can ignore order because unlabelled graphs

are isomorphic

Distributive over intersections

A× (B ∩ C ) = (A× B) ∩ (A× C )

and unions
A× (B ∪ C ) = (A× B) ∪ (A× C )
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Cartesian product of graphs

N(G2H) = N(G )× N(H)

any two vertices (u, u′) ∈ G2H and (v , v ′) ∈ G2H are adjacent iff
one of the following is true

I u = v and (u′, v ′) ∈ E (H); or
I u′ = v ′ and (u, v) ∈ E (G )
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Example Cartesian Product 1

The Cartesian product of two (single) edges is a cycle with four vertices

H

G
1

2
(2,a)

(1,a) (1,b)

(2,b)

a b

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 8 / 33



Example Cartesian Product 2

The Cartesian product of an single edge and a path graph is a ladder graph

H

G
1

2
(2,a) (2,b)

(1,a) (1,b)

a b

3
(3,a) (3,b)
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Example Cartesian Product 3

The Cartesian product of two path graphs is a grid graph.

G

H
1

2

3

4

b c

(1,b)

(2,b)

(4,b)

(3,b)

(1,c)

(2,c)

(4,c)

(3,c)

a

(1,a)

(2,a)

(4,a)

(3,a)
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Example Cartesian Product 4

More complicated example

H

G

b

1

2

3
4

c

(1,a)

(2,a)

(3,a)

(4,a)

(3,b)

(2,b)

(4,b)

(1,b)

(1,c)

(2,c)

(3,c)

(4,c)

a
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Properties Cartesian product of graphs

Commutes in the sense that G2H ' H2G

Associative in the sense that F2(G2H) ' (F2G )2H

Square symbol 2 used because Cartesian product of two edges is a
“box” (a cycle with four edges).

A Cartesian product is bipartite if and only if each of its factors is.
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Cartesian product: Why?

Ladder graphs approximate connectivity in some networks

bi-connectivity is easy to achieve in a simple “cookie cutter” manner

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 13 / 33



Kronecker or Tensor product A⊗ B

Kronecker product of matrices A and B

A⊗ B =

 a11B · · · a1nB
...

...
am1B · · · amnB


bi-linear and associative

non-commutative

A⊗ B 6= B ⊗ A (in general)

transposition is distributive over Kronecker product

(A⊗ B)T = AT ⊗ BT

lots of other well-known properties
See http://en.wikipedia.org/wiki/Kronecker_product
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Tensor product of graphs G × H

Tensor product (direct product, categorical product, cardinal product,
or Kronecker product) G × H

Defined by
I N(G × H) = N(G )× N(H)
I any two vertices (u, u′) and (v , v ′) are adjacent iff (u′, v ′) ∈ E (H) and

(u, v) ∈ E (G )
I That is u′ is adjacent to u in G and v ′ is adjacent to v in H.

Equivalent to taking the Kronecker (or tensor) product of the
adjacency matrices of G and H.

AG×H = AH ⊗ AG
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Example Tensor product

H

G
1

2
(2,a)

(1,a) (1,b)

(2,b)

a b
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Tensor product by adjacency matrices

H

G
1

2
(2,a)

(1,a) (1,b)

(2,b)

a b

(
0 1
1 0

)
⊗
(

0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
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Tensor product properties

There can be multiple (or no) factorizations of a graph into different
tensor products.

If either G or H is bipartite then their tensor product is also.

The tensor product is connected iff both G and H are connected, and
at least one factor is non-bipartite.

Properties derived from those of Kronecker products
I bilinear
I associative
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Strong product G ∗ H

Defined by
I N(G ∗ H) = N(G )× N(H)
I any two vertices (u, u′) and (v , v ′) are adjacent iff

F (u′, v ′) ∈ E(H) and (u, v) ∈ E(G); or
F u = v and (u′, v ′) ∈ E(H); or
F u′ = v ′ and (u, v) ∈ E(G)

I Its like the union of the Cartesian and Tensor products.
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Strong product G ∗ H

Example network design pattern (within a PoP)

Backbone

Distribution

Access
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Lexicographic product G • H

Lexicographic product (graph composition) G • H
Defined by

I N(G • H) = N(G )× N(H)
I Any two vertices (u, u′) and (v , v ′) are adjacent iff

F (u, v) ∈ E(G); or
F u = v and (u′, v ′) ∈ E(H)

I This is the first one in which order is really important
F non-commutative
F Lexicographic order = dictionary order
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Example Lexicographic product

H

G
1

2

a b

3

(2,a) (2,b)

(1,a) (1,b)

(3,a) (3,b)
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Example Lexicographic product

H

G

a b

1

2

3

(a,2) (b,2)

(a,1) (b,1)

(b,3)(a,3)
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Rooted product G ◦ H

Product of G with rooted graph H

Defined by
I N(G ◦ H) = N(G )× N(H)
I Take the root of H to be h ∈ N(H)
I Any two vertices (u, u′) and (v , v ′) are adjacent iff

F u′ = h and v ′ = h and (u, v) ∈ E(G); or
F u = v and (u′, v ′) ∈ E(H)

I Imagine taking |N(G )| copies of H, and associating the root of H with
each node of G .
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Example Rooted Product

H

G
1

2

a b

3

(2,a) (2,b)

(1,a) (1,b)

(3,a) (3,b)
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Example Rooted Product

H

G

b

1

2

3
4

c

(1,a)

(2,a)

(3,a)

(4,a)

(1,b)

(2,b)

(1,c)

(2,c)

(3,b)

(4,b)

(4,c)

(3,c)

a
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Rooted Product Properties

Non-commutative

If G is also rooted then G ◦ H is rooted.

The rooted product of two trees is a tree.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 26 / 33



COLD part II

COLD generated PoP-level map

Use graph products to construct the layer below
I multiple-routers as part of PoP
I multiple links between PoPs (for redundancy)
I structure inside the PoP
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Section 2

Operators on a graph and an edge
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Binary Operators on a graph and an edge

Deletion (E ← E\e)

Insertion (E ← E ∪ e)

Edge contraction
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Edge Contraction

Merge two adjacent nodes along an edge e = (u, v), u, v ∈ N, u 6= v .

New graphs G ′, which has
I nodes N ′ = (N\{u, v}) ∪ {w}
I edges E ′ = E\{e}
I every edge (u, i) ∈ E is replaced by (w , i) ∈ E ′

(and the same for links (v , i) ∈ E )
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Section 3

Operators on a graph and a node
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Binary Operators on a graph and a node

Deletion
I remove node n from the graph
I also delete all edges (n, i) ∈ E from the graph

Insertion
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Further reading I
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