Complex-Network Modelling and Inference Lecture 19: Shortest paths (Floyd-Warshall algorithm)

Matthew Roughan <matthew.roughan@adelaide.edu.au> https://roughan.info/notes/Network\_Modelling/

> School of Mathematical Sciences, University of Adelaide

> > January 14, 2025

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

## Shortest-path problems

The shortest-path problem is a VERY common problem when we work with graphs and networks (and other problems too!)

- Used in metrics: e.g.,
  - distance
  - betweenness
- Its important in network routing
  - how do your packets find the best way to their destination in the Internet?
  - how does Google maps work out your best route?
  - how do illegal wildlife traffickers work out which way to ship their goods?
- Many other practical uses
  - image segmentation
  - AI
  - solving the Rubik's Cube
  - integrated circuit layout
- Shortest paths can also be part of another algorithm

▲ 同 ▶ → 三 ▶

#### Variants

- single-source shortest path problem
  - implicit that we find path to all destinations
  - no point solving in single source, single destination problem
- *all-pairs* shortest path problem

And there are other generalisations that we will talk about later.

## Challenge

- Exponentially many possible paths
  - ▶ we can't even hope to list them all, let alone search through all of them
- Its an Integer Linear Program
  - but we can't write down all constraints for a large problem
- We could solve by taking matrix powers, but might need to compute  $A^n$ , which is a lot of computation

But it is NOT NP-hard

# Algorithms

There are quite a few algorithms

- Dijkstra
- Bellman-Ford (dynamic programming)
- Floyd-Warshall

#### • ...

All use the idea that a shortest path is built of of shortest path (segments), but they use this idea in different ways.

Solves the all-pairs shortest path problem

- Can cope with negative weights, but assumes no negative cycles
- The approach is to add nodes in one by one, and re-compute shortest paths at each step
  - shortest path is either the same
  - or changes to include the new node

#### Input

- An undirected or directed graph (N, E)
  - WLOG label the nodes  $\{1, 2, \ldots, n\}$
- Link weights  $\alpha_e$ , define link distances

$$d_{ij} = \begin{cases} 0 & \text{if } i = j \\ \alpha_e & \text{where } (i,j) = e \in E \\ \infty & \text{where } (i,j) = e \notin E \end{cases}$$

< 1 k

э

## Recursive description

Assume we have a function

shortestPath(i, j, k) which finds the shortest path distance from *i* to *j* using only the nodes  $\{1, 2, ..., k\}$ , where shortestPath(i, j, 0) = d(i,j), the distance of the direct link if it exists and  $\infty$  otherwise. Then Floyd-Warshall computes

## Shortest Paths

As written, the algorithm is only finding the distance – its doesn't actually tell us the path itself

- Results of algorithm must be a *sink tree* 
  - a "sink" is a destination
  - we get a tree leading to the destination
  - must be a tree: can't have loops
- We can represent a tree by listing each nodes "parent"
  - here we call it a predecessor
  - the node immediately before it in the path
- We get one such tree per destination, so we need to store a matrix of predecessor nodes we will call *V*, where

 $V_{ij}$  = the predecessor of node *i* on the path to destination *j* 

A zero will indicate we haven't found a path.

## Floyd-Warshall

Let  $D_{ij}^{(k)}$  denote the shortest path length from node *i* to node *j* using intermediate nodes from 1 to *k* only.

Initialise: 
$$D_{ij}^{(0)} = d_{ij} \quad \forall i, j \in N$$
  
 $V^{(0)} = [0]$ , an  $|N| \times |N|$  zero matrix.

**Step:** for k = 1, 2, ..., n, compute new distance estimates  $D_{ij}^{(k)} = \min\{D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}\} \quad \forall i \neq j$ 

Compute the predecessor nodes

If 
$$D_{ij}^{(k)} < D_{ij}^{(k-1)}$$
 then  
 $V_{ij}^{(k)} = k;$   
else  
 $V_{ij}^{(k)} = V_{ij}^{(k-1)}$ 

## Floyd-Warshall

- The initialisation step gives the shortest path lengths subject to no intermediate nodes
- For a given k,  $D_{ij}^{(k-1)}$  gives the shortest path from i to j using only nodes 1 through k-1 as possible intermediate nodes.
- On allowing node k as an intermediate node, either k IS on the shortest path, or it isn't.
  - it isn't: keep the same distance, and path

★ 
$$D_{ij}^{(k)} = D_{ij}^{(k-1)}$$
 and  $V_{ij}^{(k)} = V_{ij}^{(k-1)}$ 

▶ it is: the new path must be made of two shortest paths, joined by node k, i.e. i−k and k−j

\* 
$$D_{ij}^{(k)} = D_{ik}^{(k-1)} + D_{kj}^{(k-1)}$$
  
\*  $V_{ii}^{(k)}$  shows where the join occurred

(4個) (4回) (4回) (日)

## Floyd-Warshall

- The 0's in  $V^{(n)}$  determine the adjacencies (links) in the final network.
  - V<sup>(n)</sup><sub>ij</sub> indicates that we never found a shorter path than d<sub>ij</sub> along the direct path.
  - hence i and j are adjacent in the SPF tree
- The other terms in  $V^{(n)}$  show the predecessor nodes for each end-to-end path.
  - construct paths, by concatenating predecessor nodes

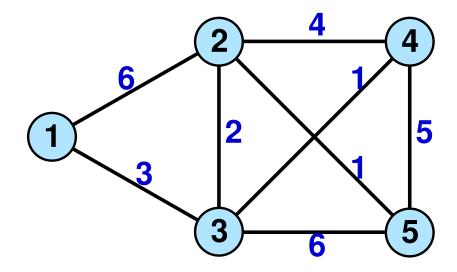
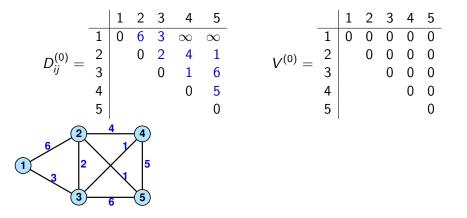


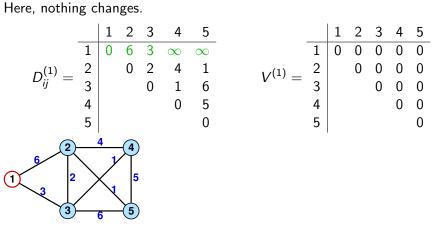
Image: A matched by the second sec

æ

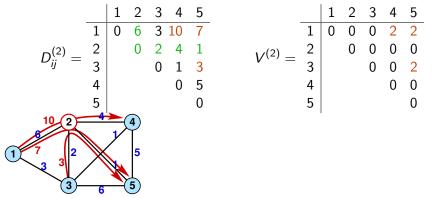
Initially, we put direct links into the matrix D



k = 1: include node 1 on existing direct paths (so any path already containing node 1 e.g. top line and first column of D, can be ignored). Here, nothing changes.



k = 2: try including node 2 on existing paths (so any path already containing node 2 e.g. line 2 and second column of *D*, can be ignored).

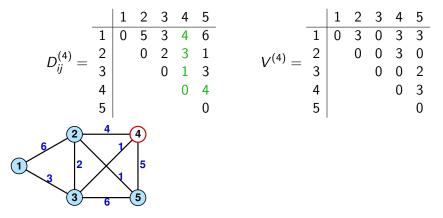


k = 3: try including node 3 on existing paths (so any path already containing node 3 e.g. line 3 and third column of *D*, can be ignored).

|                    |   | 1 | 2 | 3 | 4 | 5    |                             |   | 1 | 2 | 3 | 4 | 5 |
|--------------------|---|---|---|---|---|------|-----------------------------|---|---|---|---|---|---|
| $D_{ij}^{(3)} = 0$ | 1 | 0 | 5 | 3 | 4 | 6    |                             | 1 | 0 | 3 | 0 | 3 | 3 |
|                    | 2 |   | 0 | 2 | 3 | 1    | $V^{(3)} =$                 | 2 |   | 0 | 0 | 3 | 0 |
|                    | 3 |   |   | 0 | 1 | 3    | $\mathbf{v}$ $\mathbf{v}$ = | 3 |   |   | 0 | 0 | 2 |
|                    | 4 |   |   |   | 0 | 4    |                             | 4 |   |   |   | 0 | 3 |
|                    | 5 |   |   |   |   | 0    |                             | 5 |   |   |   |   | 0 |
| 1 3                | 2 |   |   | 4 |   | Pata |                             |   |   |   |   |   |   |

E.G. The old path joining 4-5 was a direct link with distance  $D_{45}^{(2)} = 5$ . But when we are allowed to include node 3, we get an alternative  $D_{43}^{(2)} + D_{35}^{(2)} = 4$ , which is better, so we set  $D_{45}^{(3)} = 4$ , and  $V_{45}^{(3)} = 3$ .

k = 4: try including node 4 on existing paths: No changes.



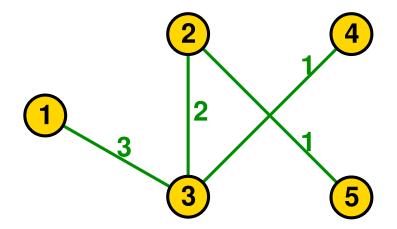
э

k = 5: try including node 5 on existing paths. The entries  $D_{ij}^{(5)}$  give the length of the shortest path from each node *i* to each other node *j*.

| $D_{ij}^{(5)} =$ |   | 1 | 2 | 3 | 4 | 5 |               | 1 | 2 | 3 | 4 | 5 |
|------------------|---|---|---|---|---|---|---------------|---|---|---|---|---|
|                  | 1 | 0 | 5 | 3 | 4 | 6 | 1             | C | 3 | 0 | 3 | 3 |
|                  | 2 |   | 0 | 2 | 3 | 1 | $V^{(5)} = 2$ |   | 0 | 0 | 3 | 0 |
|                  | 3 |   |   | 0 | 1 | 3 | v = 3         |   |   | 0 | 0 | 2 |
|                  | 4 |   |   |   | 0 | 4 | 4             |   |   |   | 0 | 3 |
|                  | 5 |   |   |   |   | 0 | 5             |   |   |   |   | 0 |

Use the boxed zero entries in the final V to determine links: (1,3), (2,3), (2,5), (3,4).

## Floyd-Warshall shortest paths



э

# Floyd-Warshall complexity

- In calculating  $D_{ij}^{(k)}$  at each step, we need to compare two possibilities for each of  $\frac{|N|(|N|-1)}{2}$  pairs of nodes.
- The algorithm has |N| steps
- Total computational complexity is  $O(|N|^3)$ .
- This is OK for a dense graph  $E = O(N^2)$  but we can do much better for sparse graphs

# Further reading I



Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson, *Introduction to algorithms*, 2nd ed., McGraw-Hill Higher Education, 2001.

э

< □ > < 同 >