Complex-Network Modelling and Inference Lecture 20: Path algebras

Matthew Roughan
<matthew.roughan@adelaide.edu.au>
https://roughan.info/notes/Network_Modelling/

School of Mathematical Sciences, University of Adelaide

January 14, 2025

Section 1

Matrix version of shortest paths

Matrix Version

We can rewrite shortest paths as the solution in the form find A^* where A^*_{ij} is the shortest-path distance between i and j and then

$$A_{ij}^* = \min_{p \in P_{ij}} w(p) = \min_{p \in P_{ij}} \sum_{e \in p} w_e,$$

where

- P_{ij} is the set of paths from i to j
- w(p) is the total length of path p
- w_e is the length (or weight) of edge e

Min-plus intro

Define new operations

$$a \oplus b = \min(a, b)$$

 $a \otimes b = a + b$

• Redefine matrix multiplication $C = A \otimes B$

Normal
$$C = AB$$
 New version $C = A \otimes B$

$$C_{ij} = \sum_{k} A_{ik} \times B_{kj} \qquad C_{ij} = \bigoplus_{k} A_{ik} \otimes B_{kj}$$

The new version means

$$C_{ij} = \min_{k} \left(A_{ik} + B_{kj} \right)$$

• We can redefine matrix *powers*

$$A^k = A \otimes A \otimes \cdots \otimes A = A \otimes A^{k-1}$$

Generalising the weighted adjacency matrix

A is a weighted adjacency matrix

$$A_{ij} = \begin{cases} w_{ij}, & \text{if } (i,j) \in E, \\ \infty & \text{otherwise.} \end{cases}$$

Notice ∞ instead of 0 in off-diagonal non-adjacencies

• Now A^2 using the new operators is not the number of two-hop paths, it is

$$A^2 = \bigoplus_k A_{ik} \otimes A_{kj} = \min_k \left(A_{ik} + A_{kj} \right)$$

which is the length of the *shortest 2-hop path* (where we allow self-loops of zero length)

The meaning of matrix powers

- With the new operators we define A^k , whose elements give the shortest k-hop distances
- We have a special identity matrix I for the new operators
 - definition

$$A \otimes I = I \otimes A = A$$

matrix which satisfies this is

$$I = \left(\begin{array}{cccc} 0 & \infty & \infty & \dots \\ \infty & 0 & \infty & \dots \\ \infty & \infty & 0 & \dots \\ \vdots & \vdots & \vdots & \end{array}\right)$$

• for consistency we want $A^0 = I$, which means the length of 0-hop paths, so the definition above makes sense

Matrix Version

The shortest path distances are then

$$A^* = min(I, A, A^2, A^3, ...)$$

where I is a special identity matrix for our new operators

• We can write this as

$$A^* = I \oplus A \oplus A^2 \oplus \cdots = \bigoplus_{k=0}^{\infty} A^k$$

- ▶ But does this sum converge?
- ▶ How would we find it without all this work?

Matrix Version

In normal matrix algebra

$$I + AA^* = I + A(I + A + A^2 + \cdots)$$

= $I + A + A^2 + A^3 \cdots$
= A^*

ullet For new operators: \oplus commutes and \otimes distributes over \oplus

$$A^* = \left(A \otimes A^*\right) \oplus I$$

So another way to think about finding A^* is to look for a solution to this equation.

- When does one exist?
- Is it unique?

Bellman-Ford algorithm

We want to solve

$$A^* = \left(A \otimes A^*\right) \oplus I$$

One approach is successive iteration

$$A^{< k+1>} = \left(A \otimes A^{< k>}\right) \oplus I$$

Hopefully it converges to a *fixed-point*, *i.e.*, the solution

• Writing this out in full, for $i \neq j$

$$A_{ij}^{< k+1>} = \min_{m} \left(A_{im}^{< k>} + A_{mj}^{< k>} \right)$$

This isn't Floyd-Warshall, but you can see the similarities, e.g., FW recursion is

$$D_{ij}^{(k)} = \min\{D_{ij}^{(k-1)}, D_{ik}^{(k-1)} + D_{kj}^{(k-1)}\}$$

 Idea is the same: shortest-paths are built from shortest paths, but the new approach is called Bellman-Ford

Bellman-Ford algorithm

- The above is not the usual definition of Bellman-Ford
 - usually described in terms of dynamic programming
- Implementation in the Internet is distributed and asynchronous and still works!
 - there are a couple of tweaks needed
 - but its a robust, scalable approach
- The description above is nice because it generalises

Section 2

General path problems

General path problems

There are many path problems other than shortest-paths

- connectivity: find if a path exists
- widest paths: find the path with the widest "bottleneck" link
- path reliability: find the most reliable path
- path security: find the properties of the set of all possible paths

We can tackle all of these (and more) by generalising the previous matrix algebra operations \oplus and \otimes , but we have to do so to preserve important properties – you saw that, for instance we needed:

- o commutativity of ⊕
- distributivity
- identity

what else?

Semirings [?]

- ullet A semiring¹ is a set S closed under 2 binary operators such that
- (S, \oplus) is a commutative monoid² with identity $\bar{0}$
 - ▶ \oplus is associative $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
 - ▶ \oplus commutes: $a \oplus b = b \oplus a$
 - ▶ \oplus has identity $\overline{0}$: $a \oplus \overline{0} = \overline{0} \oplus a = a$
- (S, \otimes) is a monoid with identity $\overline{1}$
 - ightharpoonup \otimes is associative: $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
 - ightharpoonup \otimes has identity $\bar{1}$: $a \otimes \bar{1} = \bar{1} \otimes a = a$
- Multiplication distributes over addition (left and right)
 - $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$
 - $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$
- Multiplication by 0

 annihilates
 - $ightharpoonup \bar{0} \otimes a = a \otimes \bar{0} = \bar{0}$

¹Some definitions vary

²A monoid is a semigroup with an identity

Example Semirings $(S, \oplus, \otimes, \bar{0}, \bar{1})$

Name	S	\oplus	\otimes	ō	1	Graph problem
Real Field	\mathbb{R}	+	×	0	1	
Boolean	$\{F,T\}$	OR	AND	F	T	Reachability
(Min-+) Tropical	$\mathbb{Z}^+ \cup \infty$	min	+	∞	0	Shortest paths
Viterbi	[0, 1]	max	×	0	1	Most probable path
						(e.g., HMMs)
Bottleneck	$\mathbb{R} \cup \pm \infty$	max	min	$-\infty$	$\mid \infty \mid$	Bottleneck paths

- *S* is the set we work on
- $\bullet \ \oplus \ \mathsf{and} \ \otimes \ \mathsf{replace} \ + \ \mathsf{and} \ \times \\$
- \bullet $\bar{0}$ is the identity for \oplus
- \bullet $\,\overline{1}$ is the identity for \otimes

Less obvious examples

S	\oplus	\otimes	ō	1	Graph problem
$\mathbb{R}\cup -\infty$	max	+	$-\infty$	0	Longest paths
$\mathcal{P}\{\Omega\}$	U	\cap	ϕ	Ω	Path properties
$\mathcal{P}\{\Omega^*\}$	U	concat	ϕ	λ	List all paths

- ullet Ω is an arbitrary set of "symbols"
- $\mathcal{P}\{\Omega\}$ is the powerset, *i.e.*, the set of all subsets of Ω
- \bullet Ω^* is the set of all finite sequences of symbols from Ω
- ullet λ is the empty sequence

Other operator properties

Given a set and operator (S, \bullet) there are other interesting properties selective means

$$\forall a, b \in S, \quad a \bullet b \in \{a, b\}$$

- *i.e.*, the operator "selects" one of the inputs
- e.g., MIN, MAX
- e.g., \vee and \wedge
- e.g., LEFT where we define

a left
$$b = a$$

idempotent means

$$\forall a \in S, \quad a \bullet a = a$$

- i.e., the operator applied to the input twice does nothing
- Note selectivity implies idempotence
 Hence, e.g., MIN, MAX, LEFT are idempotent
- e.g., \cup and \cap

Min-plus Semiring

The Min-plus (or Tropical) semiring defined above has

$$(S,\oplus,\otimes,ar{0},ar{1})=(\mathbb{R},\min,+,\infty,0)$$

Note that

• The zero element $\bar{0} = \infty$, because

$$\min(\infty, a) = \min(a, \infty) = a, \ \forall a \in \mathbb{R}$$

so ∞ is the "additive" identity

ullet The multiplicative identity $ar{1}=0$, because

$$0 + a = a + 0 = a \ \forall a \in \mathbb{R}$$

- So the *ordering* in this semiring is the opposite to what you are used, *i.e.*,
 - $ightharpoonup \infty$ is small, or "bad"
 - ▶ 0 is big, or "good"

How to use the semiring

- Remember that the min-plus operators formed the basis for shortest-paths
- Other semirings form the basis for other path algebras
 - we need to choose the right semiring
 - extend it to its matrix version

Min-plus Semiring, Mark II

- Find the shortest-hop path, but only as long as it has length less than 6 hops, otherwise, treat it as invalid
- Semiring is

$$\left(\textit{\textbf{S}}, \oplus, \otimes, \bar{\textbf{0}}, \bar{\textbf{1}}\right) = \left(\{0, 1, 2, 3, 4, 5, \infty\}, \text{min, "+"}, \infty, 0\right)$$

where

$$a \otimes b = a$$
"+" $b =$

$$\begin{cases} a+b & \text{if } a+b < 5 \\ \infty & \text{if } a+b \ge 6 \end{cases}$$

Matrices over a Semiring form a Semiring [?]

Take $M_n(S)$ to be the set of square $n \times n$ matrices, with elements from a semiring $(S, \oplus, \otimes, \bar{0}, \bar{1})$, then we get a new semiring

$$(M_n(S), \hat{\oplus}, \hat{\otimes}, 0, I)$$

• $A \hat{\oplus} B$ is element-wise addition

$$\left[A \hat{\oplus} B\right]_{ij} = a_{ij} \oplus b_{ij}$$

• $A \hat{\otimes} B$ is the generalisation of standard matrix multiplication

$$[A \hat{\otimes} B]_{ij} = \bigoplus_{k=1}^{n} a_{ik} \otimes b_{kj}$$

• Identities are the same generalisation, e.g.,

$$0 = \begin{bmatrix} \overline{0} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix}, \quad I = \begin{bmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{bmatrix}$$

where $\bar{1}$ and $\bar{0}$ are the identities for S

Generalised Adjacency Matrix

When working on graphs:

- give each edge a *weight*, which is an element of a S from our semiring $(S, \oplus, \otimes, \bar{0}, \bar{1})$
- ullet describe the graph by a *generalised adjacency matrix* A where $A_{ij} \in S$ and

$$A_{ij} = \left\{ egin{array}{ll} s_{ij} \in S, & ext{if } (i,j) \in E \ \overline{0}, & ext{otherwise} \end{array}
ight.$$

where here $\bar{0}$ is the additive identity of $(S, \oplus, \otimes, \bar{0}, \bar{1})$

• These are matrices over a semiring, and so the generalised adjacency matrices also form a semiring

Graph algorithms generalise [?, ?]

Now most graph problems can be written using this model

• Our specification from before works

$$A^* = I \oplus A \oplus A^2 \oplus \cdots$$

- ▶ remember powers in terms of \otimes , e.g., $A^2 = A \otimes A$
- There are more efficient algorithms
 - ▶ Floyd-Warshall is $O(n^3)$ for a network with n nodes
 - ▶ Bellman-Ford
 - Dijkstra

Reachability/connectivity [?]

Simplest example on a graph is connectivity

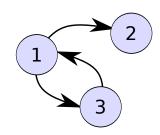
• use the Boolean semiring

$$(S, \oplus, \otimes, \bar{0}, \bar{1}) = (\{T, F\}, \vee, \wedge, F, T)$$

- $[A^k]_{ij} = T$ means, there is a path of exactly length k from i to j• longest path is length n for network with n nodes
- $[A^*]_{ij} = T$ means there is a path between i and j

Reachability Example

$$A = \left(\begin{array}{ccc} F & T & T \\ F & F & F \\ T & F & F \end{array}\right)$$



where

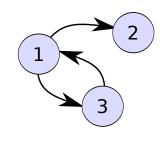
$$A_{ij} = \begin{cases} T, & \text{if } (i,j) \in E \\ F, & \text{if } (i,j) \notin E \end{cases}$$

Note $A_{ii} = F$

Reachability Example

$$A = \left(\begin{array}{ccc} F & T & T \\ F & F & F \\ T & F & F \end{array}\right)$$

$$A^{2} = A \hat{\otimes} A = \begin{pmatrix} T & F & F \\ F & F & F \\ F & T & T \end{pmatrix}$$



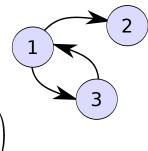
$$[A^2]_{ij} = \begin{cases} T, & \text{if a path of length 2 exists from } i \text{ to } j \\ F, & \text{otherwise} \end{cases}$$

Reachability Example

$$A = \left(\begin{array}{ccc} F & T & T \\ F & F & F \\ T & F & F \end{array}\right)$$

$$A^* = I \oplus A \oplus A^2 \oplus A^3 = \begin{pmatrix} T & T & T \\ F & T & F \\ T & T & T \end{pmatrix}$$

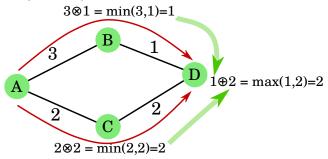
$$[A^*]_{ij} = \begin{cases} T, & \text{if a path exists from } i \text{ to } j \\ F, & \text{otherwise} \end{cases}$$



Intuition of semirings on graphs

Bottleneck Semiring Example

- ⊗ extends paths *in series*
- \oplus combines paths in parallel



ullet result tells us the widest-bottleneck path from A o D

Further reading I

Michel Gondran and Michel Minoux, *Graphs, dioids and semirings: New models and algorithms (operations research/computer science interfaces series)*, 1st ed., Springer Publishing Company, Incorporated, 2008.