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Section 1

Network Sampling
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Why sample

Some graphs are very big!
I measurements cost (money, time, resources, ...)
I maybe too big to analyse

Some measurement approaches can’t help it
I missing data is common
I missing data creates a kind of sampling

Visualisation
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Sampling goals

The goal of sampling is to obtain a reasonably accurate measure of the
particular statistics of the overall population.

Your definition of “reasonable” may vary

The statistics you are interested in will vary
I statistics of the nodes, or edges, or triangles, ...

F remember, they represent people, or relationships, ...

I network metrics (we spent 3 lectures on these)
I model parameters (we spent even more time on models)
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(figure stolen from Jono)

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 5 / 31



Notes

We could be
I sampling some graphs from a larger set
I sampling some part of a single graph

Properties of interest
I unbiased: expected value of estimator is the same as the statistic,

e.g., E[s] = σ
I asymptotically unbiased: the above is true as the number of samples

increases (convergence in expectation)
I consistent: estimates converge in probability
I efficient: MSE of estimate is as small as possible for the number of

samples

Assume uniquely labelled nodes
I so we can tell if we hit the same node twice
I sometimes say a node is “burned” if already sampled
I can have a method that “re-samples” nodes deliberately (not my most

favoured idea though)
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Problems

Bias in general
I if we preferentially sample some subgroup we can easily introduce bias

into our statistics estimate
I ideally, we would have random samples to avoid this

Structural bias
I in our problems, the population members are not independent, they

have relationships
I so we don’t just need random sample of the population, we also need

(somehow) to see a random view of their relationships

Some properties are properties of the whole graph
I Hamiltonian and Eulerian cycles
I k-connectivity

We presume that we must sample without knowledge of the
underlying graph

I if you know the graph, why sample?
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Sampling strategies

Somewhat mirror measurement strategies

Node sampling

Edge sampling

Random-walk sampling

Snowball sampling

Path-based sampling
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Node sampling

Graph G (N,E )

Randomly choose a subset of nodes N ′ ⊂ N
I e.g., randomly generate a Facebook ID, and see if it is real

Choose E ′ ⊂ E , such that all edges between nodes in N ′ are in E ′
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Node Sampling Example
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Node Sampling Pros and Cons

Pros:
I simple
I unbiased sample of nodes

F sampled GER random graph will be a GER random graph

Cons:
I sparsifies the network

F Q: is the node degree you measure the degree in the subgraph, or the
degree of the sampled nodes in the original graph?

I breaks the structure, e.g.,
F clustering coefficient will be smaller
F breaks up connected components
F distances will be longer

I not easy to get an unbiased sample of nodes in many situations
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Edge Sampling

Graph G (N,E )

Randomly choose a subset of edges E ′ ⊂ E

Choose N ′ ⊂ N, such that all end-points of edges in E ′ are in N ′
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Edge Sampling Example
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Edge Sampling Pros and Cons

Pros:
I simple
I unbiased sample of edges
I properties such as assortativity preserved

Cons:
I biased sample of nodes, e.g.,

F preferentially samples nodes with high degree
F don’t see nodes with zero degree

I also breaks structure of network
I not all networks can be measured/sampled this way
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Weighting

With either of the above we could weight the sample
I sample as before
I accept/reject with probability dependent on node/edge features
I e.g., sampling with weight depending on centrality of node
I not obvious how to do it without introducing biases, without knowing

something about the network a priori
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Random-walk sampling (with escaping)

Pick a random start

Perform a random walk from each seed
I probability d keep going
I probability 1 − d pick a new random start point

Stop when “enough” nodes are sampled

Alternative is Frontier Sampling [RT10] – start from a set of random
seeds, and process the RWs in parallel
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Random-walk sampling Pros and Cons

Pros:
I uniform distribution on edges
I preserves clustering (better than other approaches), and some other

properties

Cons:
I biased towards higher degree nodes
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Snowball Sampling [Col58]

Sample some seed nodes

Include their neighbours, and their neighbour’s neighbours out to
some number of hops

I might be a sub-sample of neighbours
I might be a fixed number of neighbours
I links might be suggested by survey respondent

Variants are called “chain-referral” or “network” or “forest-fire” sampling.

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 18 / 31



Snowball Sampling Example
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Snowball Sampling Pros and Cons

Pros:
I often driven by practicalities of measurements

F it can be hard to “find” a set of original nodes to sample

I preserves local structure

Cons:
I inefficient if sampling rate is high (get overlaps)
I biased selection of nodes (and edges)
I only preserves local structure
I can make network look MORE clustered
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Path-based Sampling

Start from a (hopefully) random seed

Follow the shortest path tree away from the node
I follow the used pathways
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Path-based Sampling Example
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Path-based Sampling Pros and Cons

Pros:
I often driven by practicalities of measurements
I preserves distances

Cons:
I inefficient if sampling rate is high (get overlaps)
I introduces unexpected biases, e.g., degree distribution, that can be

extreme [LBCX03, ACKM09]
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The degree of distortion depends on the model

GER random graph
I 10,000 nodes
I k̄ = 8

generate and sample 100 instances

sampling rates
I node: 1/10 nodes
I edge: 1/10 edges
I snowball: 2 seeds, 3 hops
I random walk: d = 0.15, 1/10 nodes
I path: 1 seed, all (connected) destinations
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Degree distributions
Degree of nodes in the sampled subgraph
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Degree distributions (2)
Degree of sampled nodes in the original graph
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Clustering

sample method global clustering

node 0.0042
edge 0.0003

snowball 0.0118
random walk 0.0265

path 0.0000

unsampled 0.0038
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Yet More Sampling Strategies

Path-, Random-Walk and Snowball are all traversal sampling
strategies, there are others

I Metropolis-Hastings Random Walk

???
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A Few More Bits

There is no perfect solution here – all methods introduce some type
of bias, or break something

Given a model, and a sampling strategy, we can sometimes reverse
sampling biases

I derive distributions analytically
I invert
I but not guaranteed to be possible as there is some information loss

Haven’t really considered difference for directed graphs
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Further reading II
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