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Section 1

Stochastic Tomography on General Networks
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The general inference problem

We have an arbitrary, but known network
I we also know routes used on the network
I we express this through a routing matrix R

often it is denoted by A but I want to keep A for adjacency matrices

We have some end-to-end measurements
I e.g., delay of packets
I e.g., number of successful packets

We have a statistical model
I e.g., packet loss is an independent Bernoulli process at each link
I e.g., packet delays are independent Gaussian RVs at each link

These models are approximations!!!
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An Aside
Packet losses and (large) delays have varying causes, but the typical
assumption is that they are caused by congestion

Each router has multiple input and output links
I typically, we might have the sum of the input equal to the sum of the

output capacities
I but at any one time, the flow of traffic may funnel towards a single (or

small set) of outputs
I there are queues (buffers) at each input (or output or both) to absorb

this for a transient overload

If the overload continues for some time (say a few seconds), the
buffers fill

I packets are delayed (significantly more than standard transmission
delays)

I if the buffers fill completely, packets overflow, and are dropped

Some loss/delay happens all the time, at random
I e.g., a few tens of ms of propagation delay
I e.g., < 1 % of packets are dropped

but sometimes things get bad
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Notation: Delay

xi is the average delay at link i
I it doesn’t have to be the average, but let’s keep it simple

yj is the average delay along end-to-end path j

R is the routing matrix, which is (usually) a 0-1 incidence matrix
where

Rij =

{
1 if link j appears on path i ,
0 otherwise.

We assume delays add up along a path
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Notation: Packet Loss

xi is the negative-log transmission (success) probability at link i

yj is the negative-log transmission (success) probability along
end-to-end path j

R is the routing matrix, which is (usually) a 0-1 incidence matrix
where

Rij =

{
1 if link j appears on path i ,
0 otherwise.

Note that the probability of successful transmission of a packet over
independent links is the product of the individual probabilities, so

P{success on link i1 and i2} = P{success on link i1}×P{success on link i2},

and so
− logP{success on link i1 and i2} = xi1 + xi2

Once again, these are additive
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Simplifications

won’t worry about direction (assume its symmetric)

shortest-path (minimum hop) routing

I will assume I can only use nodes 1,3 and 4 as end-points
(otherwise the problem is trivial)
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y34

y14

y13

x32

x13
x12 x24

 y14 = x12 + x24

 y13 = x13

 y34 = x32 + x24
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Express the Tomography Equations in Matrix Form

Replace

y13 = x13

y14 = x12 + x24

y34 = x32 + x24

with
y = Rx

where R is the routing matrix

R =


x12 x13 x32 x24

y13 0 1 0 0
y14 1 0 0 1
y34 0 0 1 1


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y = Rx

Looks easy to solve, but
I note there are more unknowns than measurements
I even when R is square, it is usually not full rank
I there is measurement noise, so really

y = Rx + ε

There are many methods to solve this
I they need to take into account that the equations are

F under-constrained
F inconsistent

I approach: use a model
F Bayesian prior
F Max-entropy prior
F Max-sparsity prior

I think of them all as regularisation techniques
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Solution by regularisation
Problem:

y = Rx + ε

where

we know y

want to estimate x

Solution: pose it as an optimisation problem

x̂ = argmin
x
||Rx− y||22 + λd(x,MODEL),

where d(·, ·) is a distance measure, and λ a parameter we have to choose:

L2 norm ||Rx− y||22 linked to “belief” that noise ε is Gaussian

large λ assumes noise ε is large, and/or model is good

small λ puts more faith in the data

specific form of d(·, ·) is problem specific, but ideally should be
convex, so that the optimisation is practical
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Solution by regularisation

We can think of solutions as being in this form, but we still need
I the model
I a method to solve the optimisation

F e.g., In MLE (Max Likelihood Estimation) shown below we are
maximising a likelihood “distance” but we need a practical algorithm to
do so

There is always an underlying ambiguity in the data
I we can only get a statistical solution
I it can only be as good as the data + the model
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Section 2

(Stochastic) Loss Estimation on Trees
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Example MLE for loss measurement

Topology again reduced to a tree

Implicit model is that loss happens as high in the tree as possible

Notation

Ak = P{ packet reaches node k }
T (k) = the dependent tree rooted at node k

f (k) = the parent of node k

= link (f (k), k) is just called link k

αk = P{ packet crosses link k } = Ak/Af (k)

d(k) = children of node k

R(k) = the leaves of the tree, i.e., receivers, under node k

γk = P{ packet reaches at least one node of R(k)}

If a packet is loss at link k , it won’t be seen anywhere below
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Example MLE for loss measurement
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Example MLE for loss measurement
Measurements:

X̂
(k)
m =

{
1 if the mth packet is received at any node ∈ R(k)
0 otherwise

which can be formed recursively by

X̂
(k)
m =

{
X

(k)
m if k ∈ R

maxj∈d(k) X
(j)
m otherwise

where

X
(k)
m =

{
1 if the mth packet is received at node k
0 otherwise

Now, treat the X̂
(k)
m as a set of measurements of a Bernoulli RV, and use

the MLE for the probability, and we get

γ̂k =
1

n

n∑
i=1

X̂
(k)
m

which we evaluate recursively.
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Example (10,000 simulated probes)
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Example (10,000 simulated probes)
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Example (10,000 simulated probes)

1.000

0.902

0.890 0.845

0.807 0.813

0.766 0.7710.728 0.745

0.7360.704 0.7530.672

0.650 0.635

0.590 0.6170.619 0.602

A(k) = prob of packet reaching node k
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Example (10,000 simulated probes)

1.000
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A
est

(k) = estimated prob of packet reaching node k
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Example (10,000 simulated probes)
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Example (10,000 simulated probes)
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Example: summary of results
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Section 3

Inferring the Network
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Inferring Trees

Our approach is a MLE, i.e., we find

α̂T = argmax
α
L(T , α)

where L(T , α) is the log-likelihood of the loss tree (given the

measurements X
(k)
m )

L(T , α) = logP
{
X

(k)
m , m = 1, . . . , n, k = 1, . . . , |V |

∣∣∣ T , α}
where there are n measurements, and |V | nodes, and the tree T is
known, and we assume independent Bernoulli losses.

The work above is to compute it efficiently, using a recursive
structure, and pushing loss up through the tree.
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Inferring Trees

To infer the best tree, just use the consistent MLE

T̂ML = argmax
T ∈T (R)

L(T , α̂T )

That is, find the tree that maximises the likelihoods.

We might imagine taking each possible tree, solve it as above, and then
choose the one whose resulting ML is the best.
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Inferring Trees

Given 1 source, n leaves, and m intermediate nodes, how many trees are
possible?

Simpler, how many trees with n (labelled) nodes?
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Inferring Trees

Given 1 source, n leaves, and m intermediate nodes, how many trees are
possible?

Simpler, how many trees with n (labelled) nodes?
Cayley’s formula nn−2
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Inferring Trees

Even if we limited ourselves to possible trees, there are too many to test
for even a moderate sized problem.
So we need to be clever
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Heuristic approaches

Significant loss often occurs at a few bottlenecks

Receivers with similar loss probabilities might be because they have
the same bottleneck

I actually want to be a bit cleverer
I cluster based on a transform of the loss rates

So form the tree by hierarchical clustering
I multiple algorithms for clustering

Matthew Roughan (School of Mathematical Sciences, University of Adelaide)CNMI January 14, 2025 23 / 27



Direct Statistics Approaches

EM (Expectation Maximisation)

Gaussian Mixture Models

Both have been tried.
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Intractable Issues

Identifiability can be problematic

e.g., if you can only measure the path 1− 3, you can never tell the
difference between these two (delay) networks

OR
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Conclusion

Once we have an estimator (at least an MLE) for performance, we
can extend this to estimate the MLE tree

There is a challenge in terms of computation

Techniques have been applied to trees
I general networks are much harder
I there are big research problems here
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Further reading I
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