Assignment 0: Solutions

TOTAL MARKS: 19

1. A set $S \subseteq \mathbb{R}^{n}$ is called a convex set if for all $x, y \in S$ and $0 \leq \alpha \leq 1$.

$$
x, y \in S \Longrightarrow \alpha x+(1-\alpha) y \in S
$$

i.e., the line segment joining x and y lies in S.

Proof: Take two points $\mathbf{x}, \mathbf{y} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$, then form a third $\mathbf{z}=\alpha \mathbf{x}+(1-\alpha) \mathbf{y}$ for some $\alpha \in[0,1]$. As \mathbf{x} and \mathbf{y} are in the intersection of the two sets, they are also in the sets \mathcal{C}_{i}. The fact that the \mathcal{C}_{i} are convex means that $\mathbf{z} \in \mathcal{C}_{i}$ for $i=1,2$. Hence $\mathbf{z} \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$, and hence this set is convex.
2. A function $f: S \rightarrow \mathbb{R}$ is a convex function if for all $x, y \in S$ and $0 \leq \alpha \leq 1$

$$
\alpha f(x)+(1-\alpha) f(y) \geq f(\alpha x+(1-\alpha) y)
$$

i.e., chords don't lie below the function.

Take two points x_{1} and x_{2}. If they have the same sign (or one is zero), then the the chord between them lies exactly on top of $|x|$, so the proof is trivial. WLOG take $x_{1}>0$ and $x_{2}<0$, then the chord between them can be sketched as follows, and evidently lies above the function.

Mathematically, we demonstrate this by noting that by the triangle inequality $|x+y| \leq|x|+|y|$

$$
\left|\alpha x_{1}+(1-\alpha) x_{2}\right| \leq\left|\alpha x_{1}\right|+\left|(1-\alpha) x_{2}\right|=\alpha\left|x_{1}\right|+(1-\alpha)\left|x_{2}\right|
$$

when $\alpha \in[0,1]$, which is exactly what we need to show.
[1 mark]
3. (a) A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is linearly independent if the equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{r} \mathbf{v}_{r}=\mathbf{0}
$$

has only the trivial solution

$$
x_{1}=x_{2}=\cdots=x_{r}=0
$$

Otherwise the vectors are linearly dependent.
(b) If we have $n+1$ vectors in R^{n}, the the above equation has $n+1$ variables x_{i}, but is equivalent to n equations.
The trivial solution is always possible, so the equations aren't inconsistent, so there will always be an infinite number of solutions, and hence the vectors must be linearly dependent.
[1 mark]
4. $\left(M M^{T}\right)^{T}=\left(M^{T}\right)^{T} M^{T}=M M^{T}$, i.e., the transpose equals the matrix, so it is symmetric.
5.

1	1	2	2
1	0	1	0
2	1	3	2

[1 mark]
(a) $x_{1}+4 x_{2} x_{3}+5 x_{3}=1$ no non-linear
(b) $3 x_{1}-x_{2}+x_{3}=0$ yes linear
(c) $x_{1} \leq x_{2}$ no linear but an inequality
(d) $x_{1}-x_{2}+\sqrt{x_{3}}=6$ no non-linear
[2 marks]
7. (a) Two systems of equations are equivalent iff they have exactly the same solutions.
(b) The first set of equations has solution $(4,2,3)$, as does the second, so they are equivalent.
8. (a) $\operatorname{pivot}(3,3)$, which is made up of $R_{2}^{\prime} \leftarrow R_{2}-3 R_{3}$ [1 mark]
(b) $\operatorname{pivot}(1,1)$, which is made up of $R_{2}^{\prime} \leftarrow R_{2}-R_{1}$
9. Reduced row echelon form has

- All non-zero rows are above any rows of all zeros.
- The leading coefficient of each non-zero row (the first non-zero coefficient) is always strictly to the right of the leading coefficient of the row above it.
- The leading coefficients must be one
- The leading coefficient is the only non-zero element of its column.

So the answers are
(a) yes
(b) no, but it can by dividing row 1 by 2 .
(c) no, but it can be by swapping R_{3} with R_{4}.
(d) no, but it can be by performing a pivot(3,3), i.e., by taking $R_{1}^{\prime} \leftarrow R_{1}-5 R_{3}$.

Note the last one is in row echelon form (which doesn't require the last condition, which makes it reduced form).
10. (a) The augmented matrix and row-operations are

The augmented matrix and row-operations are							
0	2	-8	1	0	0	20	
-3	12	-3	0	1	0	-36	
2	-8	-6	0	0	1	14	
-3	12	-3	0	1	0	-36	swap $R_{1} \leftrightarrow R_{2}$
0	2	-8	1	0	0	20	
2	-8	-6	0	0	1	14	
1	-4	1	0	$-1 / 3$	0	12	$R_{1} \leftarrow R_{1} /(-3)$
0	2	-8	1	0	0	20	
0	0	-8	0	$2 / 3$	1	-10	$R_{3} \leftarrow R_{3}+2 R_{1} / 3$
1	0	-15	2	$-1 / 3$	0	52	$R_{1} \leftarrow R_{1}+2 R_{2}$
0	1	-4	$1 / 2$	0	0	10	$R_{2} \leftarrow R_{2} / 2$
0	0	-8	0	$2 / 3$	1	-10	
1	0	0	2	$-19 / 12$	$-15 / 8$	$283 / 4$	$R_{1} \leftarrow R_{1}-15 R_{3} / 8$
0	1	0	$1 / 2$	$-1 / 3$	$-1 / 2$	5	$R_{2} \leftarrow R_{2}-4 R_{3} / 8$
0	0	1	0	$-1 / 12$	$-1 / 8$	$5 / 4$	$R_{3} \leftarrow R_{3} /(-8)$

where all row operations in a block are performed using the rows from the block above.
(b) $A^{\prime}=I$
(c) The matrix products work, and $W=A^{-1}$.
[1 mark]
(d) We can immediately read off the solution $\mathbf{x}=(283 / 4,15,5 / 4)$.
11. Sketch of region

(a) The region is convex, and bounded, with vertices shown.
(b) Including one slack variable for each inequality, the initial tableau is

$$
\begin{array}{rrrrr|r}
-1 & -1 & 1 & 0 & 0 & -6 \\
-2 & 1 & 0 & 1 & 0 & 0 \\
5 & 2 & 0 & 0 & 1 & 27
\end{array}
$$

We can immediately draw a solution with $x_{1}=0$ and $x_{2}=0$, and basic variables x_{3}, x_{4} and x_{5} given by the right-hand column, i.e., $(0,0,-6,0,27)$. Note that this is not feasible because one of the slack variables is negative, so this is not a vertex.
(c) There are potentially $\binom{5}{2}=10$ basic solutions.
(d) The basic solutions, and their values of f and g are given in the table:

basic solution	$f(x, y)$	$\mathrm{g}(\mathrm{x}, \mathrm{y})$
$(3,6,3,0,0)$	-3	12
$(5,1,0,9,0)$	-14	11
$(2,4,0,0,9)$	-2	8

So f is maximised at $(2,4)$ and g is minimised at the same point.
12. The variables are the numbers of lamps x_{A} and x_{B}, so
(objective function)

$\max z=15 x_{A}$
subject to

$20 x_{A}+30 x_{B} \leq 6000$ (Asterix's minutes)
$20 x_{A}+10 x_{B} \leq 4800$ (Pauls's minutes)
(nonnegativity)
$x_{A} \geq 0, \quad x_{B} \geq 0$,

14. Let A be an $n \times n$ matrix.
(a) An eigenvector of A with eigenvalue λ satisfies $A \mathbf{x}=\lambda \mathbf{x}$ for $\mathbf{x} \neq 0$
(b) The characteristic polynomial of A is $|\lambda I-A|$.
(c) (\mathbf{i})

$$
\begin{aligned}
\left|\lambda I-A_{1}\right| & =\left|\begin{array}{rr}
\lambda & -3 \\
-6 & \lambda+3
\end{array}\right| \\
& =\lambda(\lambda+3)-18 \\
& =\lambda^{2}+3 \lambda-18 \\
& =(\lambda+6)(\lambda-3)
\end{aligned}
$$

So the two eigenvalues of A_{2} are $\lambda=-6,3$.

$$
\begin{align*}
\left|\lambda I-A_{2}\right| & =\left|\begin{array}{rrr}
\lambda-2 & -1 & 0 \\
-1 & \lambda-3 & -1 \\
0 & -1 & \lambda-2
\end{array}\right| \tag{ii}\\
& =(\lambda-2)\left|\begin{array}{rr}
\lambda-3 & -1 \\
-1 & \lambda-2
\end{array}\right|+1\left|\begin{array}{rr}
-1 & -1 \\
0 & \lambda-2
\end{array}\right| \\
& =(\lambda-2)[(\lambda-3)(\lambda-2)-1]-(\lambda-2) \\
& =(\lambda-2)[(\lambda-3)(\lambda-2)-2] \\
& =(\lambda-2)\left[\lambda^{2}-5 \lambda+4\right] \\
& =(\lambda-2)(\lambda-1)(\lambda-4)
\end{align*}
$$

So the three eigenvalues of A_{2} are $\lambda=2,1,4$.
15. Calculate
(a) $\sum_{n=0}^{10} n=1+2+3+4+5+6+7+8+9+10=55$. (Cheap trick $\left.\sum_{n=1}^{10} n=n(n+1) / 2\right)$.
(b) $\sum_{m=3}^{6} k m=k \sum_{m=3}^{6} m=k(3+4+5+6)=2.5 \times 18=45$.

