Assignment 3: Solutions

TOTAL MARKS: 20

1. (a) Together, these constraints specify that $x_{1}+x_{2}=1$
[1 mark]
(b) The equality reduces the dimension of the feasible set by 1
2. Consider the LP

$$
\begin{aligned}
\max z= & x_{1}-x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+x_{2}+5 x_{3} \leq 6 \\
& -3 x_{1}-2 x_{2}+4 x_{3} \leq-3 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

(a) Multiply the second constraint by -1 and add slack variables and we get

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	b
2	1	5	1	0	6
-3	-2	4	0	1	-3
cost row	-1	1	-3	0	0

The dual (D) of (P) is
(D) $\quad \min w=6 y_{1}-3 y_{2}$
subject to $2 y_{1}-3 y_{2} \geq 1$
$y_{1}-2 y_{2} \geq-1$
$5 y_{1}+4 y_{2} \geq 3$
$y_{1} \quad \geq 0$
$y_{2} \geq 0$
where y_{1} and y_{2} are nominally free, but in this case are not because of the last two constraints. You should see how these would arise for any problem where we introduce slack variables.
[2 marks]
(b) Solving (P) using the simplex algorithm. Start by introducing non-negative slack variables for each inequality and wite down the tableau. We notice that we need to use simplex phase I as we are not in feasible canonical form. (note that we do have a feasible dual solution, so we also could use dual simplex here)

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	b
2	1	5	1	0	6
cost row	-3	-2	4	0	1

Continue by mutiplying the second inequality by -1 to get a non-negative entry in the \mathbf{b} column. Then establish the u-row.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	b	
2	1	5	1	0	6	
	3	2	-4	0	-1	3
cost row	-1	1	-3	0	0	0
u-row	-5	-3	-1	-1	1	-9

0	$-\frac{1}{23}$	1	$\frac{3}{23}$	$\frac{2}{23}$	$\frac{12}{23}$	
1	$\frac{14}{23}$	0	$\frac{4}{23}$	$-\frac{5}{23}$	$\frac{39}{23}$	
0	$\frac{34}{23}$	0	$\frac{13}{23}$	$\frac{1}{23}$	$\frac{75}{23}$	
	0	0	0	0	0	0

At the end of phase I we have feasible solutions as $u=0$ and in fact we have the optimal solution

$$
x_{1}^{*}=\frac{39}{23}, x_{2}^{*}=0, x_{3}^{*}=\frac{12}{23}, z^{*}=\frac{75}{23} .
$$

(c) The optimal solution of (D) can be obtained in a number of ways
(i) We could have used Simplex, but that is overkill.
(ii) We could draw a picture of the feasible region (as this is 2D problem), see below (note though that the right-hand edge is unbounded not bounded - that's just a trick so Matlab can plot it).

From this, we see the maximum is at the intersection point is on the vertex defined by the two boundary lines $2 y_{1}-3 y_{2}=1$ and $5 y_{1}+4 y_{2}=3$. Thus the optimal solution is

$$
y_{1}^{*}=\frac{13}{23}, y_{2}^{*}=\frac{1}{23}
$$

(iii) You could use the CSRs themselves (see next question).
(iv) You might also note that in the final Simplex tableau these values occur in the costor c-row of the Tablea in columns 4 and 5, corresponding to the slack variables. This is not a coincidence.

The objective is then

$$
w^{*}=6 y_{1}^{*}-3 y_{2}^{*}=\frac{78}{23}-\frac{3}{23}=\frac{75}{23}=z^{*}
$$

(d) The Complementary Slackness Relations (CSRs) are

$$
\begin{aligned}
& x_{1}^{*}\left(2 y_{1}^{*}-3 y_{2}^{*}-1\right)=0 \quad \text { as } \quad 2 y_{1}^{*}-3 y_{2}^{*}-1=0 \\
& x_{2}^{*}\left(y_{1}^{*}-2 y_{2}^{*}+1\right)=0 \quad \text { as } \quad x_{2}^{*}=0 \\
& x_{3}^{*}\left(5 y_{1}^{*}+4 y_{2}^{*}-3\right)=0 \quad \text { as } \quad 5 y_{1}^{*}+4 y_{2}^{*}-3=0
\end{aligned}
$$

[3 marks]
3. Consider the LP

$$
\begin{aligned}
(P) \quad \max z=-x_{1} & +2 x_{2}-x_{3} \\
\text { subject to } \quad 2 x_{1} & +x_{2}+3 x_{3} \leq 2 \\
& x_{1}+4 x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

(a) The dual (D) of (P) is

$$
(D) \quad \begin{aligned}
& \min w=\quad 2 y_{1}+4 y_{2} \\
& \text { subject to } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& y_{1}+4 y_{1}+2 y_{2} \geq-1 \\
& \\
& \\
& y_{1} \geq 0, y_{2} \geq 0
\end{aligned}
$$

where non-negativity arises as in the previous question.
(b) The Complementary Slackness Relations, for the Primal (P) are

$$
\begin{array}{r}
x_{1}^{*}\left(2 y_{1}^{*}+y_{2}^{*}+1\right)=0 \\
x_{2}^{*}\left(y_{1}^{*}+4 y_{2}^{*}-2\right)=0 \\
x_{3}^{*}\left(3 y_{1}^{*}+2 y_{2}^{*}+1\right)=0
\end{array}
$$

(c) Using the optimal solution of the primal (P) given by $x_{1}^{*}=x_{3}^{*}=0, x_{2}^{*}=1$, we require

$$
y_{1}^{*}+4 y_{2}^{*}-2=0, \quad \text { or } \quad y_{1}^{*}=2-4 y_{2}^{*}
$$

but if the solution is optimal, then

$$
w^{*}=z^{*}=-x_{1}^{*}+2 x_{2}^{*}-x_{3}^{*}=2
$$

and hence we have that

$$
w^{*}=2 y_{1}^{*}+4 y_{2}^{*}=4-8 y_{2}^{*}+4 y_{2}^{*}=2, \quad \text { or } \quad y_{2}^{*}=\frac{1}{2}, y_{1}^{*}=0
$$

