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Admin

Exam, Thursday the 11th, in the morning.
Check your timetables!
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Quidquid latine dictum sit, alutum viditur.
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Self-similarity
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Self-similarity

So, Nat'ralists observe, a flea
Hath smaller fleas that on him prey:;

And these have smaller still to bite ‘em
And so proceed ad infinitum

Jonathon Swift, 1733

Great fleas have little fleas upon their backs to bite ‘em,

And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go on;

While these again have greater still, and greater still, and so on.

De Morgan: A Budget of Paradoxes, p. 377.
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Self-similarity: Koch Snowflake
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Self-similarity: Koch Snowflake
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Self-similarity: IFS Fern

C code from
http://astronony. sw n. edu. au/ ~pbour ke/ fract al s/
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http://astronomy.swin.edu.au/~pbourke/fractals/

Mandelbrot set I

http://al ephO. cl arku. edu/ ~dj oyce/julia/julia. htm
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http://aleph0.clarku.edu/~djoyce/julia/julia.html

Mandelbrot set IT

http://al ephO. cl arku. edu/ ~dj oyce/julia/julia. htm
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http://aleph0.clarku.edu/~djoyce/julia/julia.html

Mandelbrot set ITI

http: //. sof t source. conf softsource/fractal . htmni

Modeling Telecommunications Traffic: Long-range dependence — p.10/78


http://www.softsource.com/softsource/fractal.html

Statistical Self-similarity

Statistical Self-similarity (SS)

m this is not a course on fractals
m Fractals (such as above) are deterministic
m we are interested in statistical properties of traffic

m look for statistical self-similarity
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Statistical Self-similarity

8000

6000F
4000}

2000}

-2000
0

Fractional Brownian Motion

6800

6600[

6400¢

6200

6000}
5800¢

5600
2

Fractional Brownian Motion

2.2

24

time

2.6

2.8

v 10

Fractional Brownian Motion
6080 T

s0s0},|
8040} |

6020}
6000}
5980}
5960}

5940¢

9920 :
g2.25 2.3 2.35
time v 102

Modeling Telecommunications Traffic: Long-range dependence — p.12/78



Ethernet traffic

Traditional Model, H=0.5 Real Data, H~0.8
Time Unit = 0.01 Second
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Random Processes
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Random processes

A discrete time random process is just a random vector
X = (X1,X2,. .., Xn).

m in general, the x; may have dependencies, so we need
to describe the random sequence, we specify the
N-th order distribution functions, for all N > 1

FX(Xnyxn—l—ly e >Xn+N—1) = P{Xn < Xn, X1 < Xnt 1y« -5 XngpN-1 < Xn+N—1]

m typically, we don't need to know all of this, e.g. for

White noise, the values at each time interval are
independent, so we only need to know the first

order distribution functions F(x,).
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Densities and distributions

Where the distribution function is continuous (e.g. for
well-behaved continuous random variables), we can
define a density function, e.g.

d

with the meaning that

fx (X)dx = P{X € [x,x+dx)}
We can define fy(x)dx = dFx(x), where the latter term is
more general (applying to badly behaved random
variables t00). Integrals defined WRT to dF«(x) are
Lebesgue-Stieltjes integrals rather than just Lebesgue
integrals.
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Moments of the process

Sometimes it is enough to specify the moments of the
process, e.g. the mean jix(n) and variance o%(n) at time n.

ux(n) = E[X(n)]
= /xde(xn)

_ / xfx(x2)dx, where this is defined

Q
SN
N

-
N——"

|

= Var[X(n)]
E [(X(n) — ux(n))?]
[ ()2 )

Can extend definition to the n-th central moment.
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Covariance

The covariance of two random variables X and Y if
defined by

CoviX,Y} =E[(X-E[X])(Y —E[Y])

It tells us about second-order correlations between X
and Y.

The auto-covariance of a process is
Ryx (N:K) = Cov{X (n),X(n+Kk)}

and this tells us about correlations between the process
at different times n, and different lags k.
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Stationarity

m A process is strictly stationary if all of its
distribution functions are invariant under time
shifts, e.g.

|:X (Xm Xn+1y--- 7Xn—|-N—l) — |:X (Xn—|—k7 Xnt-k+1s--- 7Xn—|—k—|-N—l)

m a process is called wide-sense, or weakly, or
second-order stationary if its mean, variance and
auto-covariance are time-shift invariant, e.qg.

x(n) = Hx
ox(n) = ox
Rxx(n;k) — Rxx(k):y(k)

for all n.
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Auto-correlation

The auto-correlation of a process is

_ YK

m not a great term, but standard usage
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Marginal distribution

The marginal distribution of a stationary process is
defined by the distribution of X, e.q.

R (Xn)

which will be identical for all values of n for a stationary
process.

Examples:
m Bernoulli process: the marginal distribution takes
values 0 or 1 with probabilities p and 1 —p,
respectively.

m random dice rolls: the marginal distribution is
uniform on {1,2,3,4,5,6}.
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Gaussian processes

m are processes with a Gaussian marginal distribution

1 1 /X—Ux 2
e 1(55)
21102 2\ Ox

m completely characterized by mean, variance and
auto-covariance

m hence the value of second-order stationarity!
m Gaussian processes are the “linear-time invariant”
processes of the noise world
m simple, tractable, sometimes reasonable

m Central Limit Theorem: sums of well behaved
random variables tend towards Gaussian
distributions
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Useful fact

If X and Y are independent Gaussian random variables,

then their sum X +Y (and difference X —Y) will also be
Gaussian, with mean and variances

Ux+y = Hx +Hy
Ux—y = Hx —Hy
2 2 2
Ox,y = Ox Oy
02y = 0%+0%
We could easily generalize this to include correlations,

with the only effect being a modification to 0%, and
0%_vy.

Also note that pgx = Olx, and 02y = 0°0%.

Modeling Telecommunications Traffic: Long-range dependence — p.23/78



Spectral density

The spectral density of a random process is given by
the Fourier Transform of the Autocovariance function.

)= 3 e @y (hy

h:—OO

(k) = / 1 e'2TA £ (X)) A

1
m f(A) is non-negative
mf(A)iseven
m f(A) is the Fourier transform of the autocovariance.
m the autocovariance is the inverse FT of f(A)
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White noise

Typically, everyone assumes nhoise is "white", or
“uncoloured”.

m Gaussian (typically implied, though not necessary)

m its spectral density is flat
i.e., the noise includes all frequencies (up to fs)

f(A) = 0°

m Uncorrelated (same as independent for Gaussian)

= follows from duality of the spectrum and
auto-covariance, i.e. flat spectrum implies delta

function (at zero) for auto-covariance, and so
the autocovariance is zero at non-zero lags.
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Example: white noise

White Gaussian noise

0 0.002 0.004 0.006 0.008 0.01 10

time (seconds) 0 5 10 15 20

frequency (kHz)
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Statistical
Self-similarity
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Statistical Self-similarity

SS block aggregation definition
(another definition exists)

We define he aggregated time series {Xém)} at level m by

(M) . _ Xk=1)yme1+ -+ Xim
k . m .

A stationary time series X = {X3,Xy,...} is called
self-similar with Hurst parameter H if, for all m, the

aggregated process m* " X(™ has the same distributions
as X.
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Example fGN: (H = 0.5)

0 50 100 150 200 250 300 350 400
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Example fGN: (H = 0.75)

0 50 100 150 200 250 300 350 400

Modeling Telecommunications Traffic: Long-range dependence — p.30/78



Example fGN: (H = 0.99)

_1.5 '] '] '] '] '] '] ']
0 50 100 150 200 250 300 350 400
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Properties of Self-Similar Process

m Stationary so EX; =0, VarX; = 0% (constant).
m Cov(Xi, Xi;k) depends only on the lag k and is given by

v(K) = 5.0 (Ko 12— 2k k- 12).
O Cov(Xi(m),Xm) IS given by
v(k) = %mZ(H—l)O.Z (k=120 —2[k|2 + |k — 1|2).
m Asymptotic behaviour of the autocorrelation
fim s =H(@H = 1)

m The variance varies with the aggregation level as
VarX™ = m?H-Yg2
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Asymptotic Statistical Self-similarit

Alternative definitional property

p™ (k) = p(k)
Useful because we can define asymptotic self-similarity
by the limit as m —

p(m) (1) N 22H—1 1

1
p(m)(k) N E52 (kZH)

where for some function f (k)
5°(k) = f(k—1)—2f(k)+ f(k+1)
for example f(k) = [K|
52(k2H) _ “(— 1’2H —2’k|2H + “(— l‘ZH
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Long-range dependence

Long-range dependence (LRD) for stationary process
m LRD = slow (power-law) decay in the autocovariance

yx (k) ~ cylk| =7
as k — oo, for some a € (0,1)
m can define LRD by regularly varying decay
yic(K) = LK) k|~
for some a € (0,1) and slowly varying function L
m both results imply for all N

> yx(k) — oo
N

this is sometimes used as an alternative definition
m also called long-memory process
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LRD and SS

Notice that self-similarity implies LRD with
a=2H-1
for05<H<1,and0<a<1

10°

. o
N

— H=0.50
— H=0.75
— H=0.99

-0.1 . . . . 10_ 0 1 * 2
0 200 400 600 800 1000 10 10 10

0.9

— H=050

0.8 == H =0.75 |
- H=0.99

0.7

0.6

0.5

0.4}

0.3}

0.2

0.1

M 3

Modeling Telecommunications Traffic: Long-range dependence — p.35/78



LRD in the frequency domain

Long-range dependence (LRD) can also be defined in the
frequency domain using the Fourier transform of the
autocovariance

fx(s) ~ct[s| ™, |s| = O

When a = 1 we get 1/f noise, but the term is often
applied to the range of values of a =2H —1.

m frequency spectrum of white noise is flat
m frequency spectrum of Brownian motion is 1/f?
m frequency spectrum of "pink" noise is 1/f
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Example fGN spectrum (H = 0.5)
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Example fGN spectrum (H = 0.75)
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Example fGN spectrum (H = 0.99)
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1/f noise

LRD and SS are also seen elsewhere
m cardiac rhythms (in healthy hearts)

m hydrological data (rainfall, and river flow)
m Hurst's early work was actually in Nile river data

B music seems to have similar characteristics
m turbulence
m chaotic processes in general
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LRDc vs LRDi

LRD for counts vs LRD for intervals

m Point process can look at correlations in
m intervals (actual intervals between points)
m counts (number of points in certain time
intervals)

m we can look for LRD in either of these two
m LRDi = LRD correlations in intervals
m LRDc = LRD correlations in counts

m are they related
m LRDi = LRDc

m | RDc = LRDi
you can have a renewal process that is LRDc
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Link between LRD and SS

Central Limit Theorem again - another condition of the
CLT is that the data not be correlated.

m Often this is approximately true, and even more so
when you block the data into groups.

m With LRD data it is never true, no matter how large
a block size you choose.

m Hence CLT does not apply - hence as we aggregate,
we can see SS properties

m Hence LRD leads to SS
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Central Limit Theorem for LRD

The standard Central Limit Theorem does not apply with
LRD correlations in the data, so we get an alternate, e.g.
when we take the mean of a set of n LRD random
variables X rp = £ >_i*; Xi the variance of the mean
estimate

cyn2H—2
"HH—1)

var (XLRD)

asn— o
m results, under aggregation, in SS

m estimates of the mean of LRD traffic will converge
much slower than for IID traffic
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LRD and SS

Also (almost) universally observed in data traffic

m Ethernet: WELeland, M.S.Tagqu, W.Willinger, D.V.Wilson, On
the self-similar nature of Ethernet traffic (extended version),
TEEE/ACM Transactions on Networking, v.2 n.1, p.1-15, Feb. 1994

B WAN: VPaxson, S.Floyd, Wide area traffic: the failure of Poisson
modeling, LEEE/ACM Transactions on Networking, v.3 n.3, p.226-244,
June 1995

m CSS7: D.EDuffyand A.A.McIntosh and M.Rosenstein and
W.Willinger, "Statistical Analysis of CCSN/SS7 Traffic Data from
Working CCS Subnetworks”, TEEE Journal on Selected Areas in
Communications, 12, 3, 1994,

B ATM: Judith L. Jerkins and Jonathan L. Wang, "A measurement
analysis of ATM cell-level aggregate traffic”, LEEE GLOBECOM'97,
1997
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LRD and SS

Also (almost) universally observed in data traffic

m Web traffic: M.E.Crovella, A.Bestavros, "Self-similarity in
World Wide Web traffic: evidence and possible causes”, Proceedings of
the 1996 ACM SIGMETRICS, p.160-169, May, 1996, Philadelphia, PA,
USA

m VBR video: MW.Garrett and W. Willinger, "Analysis, Modeling,
and Generation of Self-Similar VBR Video Traffic", Proceedings of ACM
Sigcomm, pp. 269-280, London, UK, 1994
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Models
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fractional Gaussian Noise

f6N (fractional Gaussian Noise) is stationary Gaussian
process X; with mean y, variance o2 and autocorrelation
function

(k) = 5 (K-+ 2% — |k + [k~ 1)
which asymptotically goes like
p(k) ~H(2H —1)|k|*" %, k— o
so ¢y =H(2H —1). In the frequency domain,

‘1—2H

fx(S) ~ Ct|s , |s|]—0

where now
¢t =02-2(2m)"H(2H — 1) (2H — 1) sin(m(1 — H)),
where I'(x) is the gamma function.
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fractional Gaussian Noise

Synthesis of fGN:

m Durbin-Levinson: generate white noise, and then
impose exact correlation structure. Slow O(N?)
algorithm

m Spectral synthesis:

m generate white noise

= take FFT
m multiply by desired spectrum

m inverse FFT, to get back to time domain

Note that discrete version of continuous process is no
longer exactly self-similar.
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fractional Brownian Motion

The (non-stationary) Gaussian process with covariance
function given by

1
M(s,t) = 502 (8" — (t—s)™ +t27)
variance o and expectation O is called fractional

Brownian motion (fBM).

Note the increment process
of fBM is fGN, just as the

increments of BM are white
noise.

FBM with H=0.7 and o2 =1.
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fARIMA

fARIMA (fractional Auto-Regressive Moving Average)
m start with Gaussian white noise Xy

m run through an fARIMA(p.d,q) filter, e.g.
®(B)A%Y = O(B) X«
where B is the backshift operator,
®B) = 1-@B—- —@B"
O(B) = 1-6;B—---—6yBA

1-BP=Y (ﬂ) (-8)"

K

Ad

m Asymptotically SS withH =d+1/2

advantages: more flexible correlations/Fourier spectrum
disadvantage: more parameters, less simple
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Link between heavy-tails and LRD

Heavy-tails generate LRD, e.g. superposition of On/Off
sources in the limit as n — o,

m renormalize, i.e. reduce the rate of individual
sources so that we keep rn = const

m take the Gaussian process that is the limit of the
superposition of n sources as n — oo

m mean and variance will be fixed in the limit. The
correlation structure is determined by the On/Off

time distributions
m if On or Off times have (infinite variance)
power-law tail with decay parameter c € (1,2),
then the superposition process will be
asymptotically SS with H = (3—-c¢)/2, and LRD
witha=2-—c.
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Link between heavy-tails and LRD

Actually you can get a number of different processes
depending on how you renormalize

® reduce rate — fGN
m reduce On time — a-stable process

m increase Off time — M/G/
On/Off models become explanatory

m explain why we see SS and LRD in traffic
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hon-Gaussian processes

fGN and fARIMA are both Gaussian processes

m advantage: they can be characterized by 2nd order
stats: mean, covariance and autocovariance.

m disadvantage: they all have a Gaussian marginal
distribution

Other marginal distributions through the transform
Y =F " (G(X))
where F (X) and G(x) are the desired and Gaussian CDFs.
m gives a given marginal
m also distorts correlations

m process is ho longer Gaussian, so we can't
characterize completely by 2nd order stats.
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Multi-fractals

See "Data networks as cascades: investigating the

multifractal nature of Internet WAN traffic”, A.
Feldmann, A. C. Gilbert, and W. Willinger, Proceedings of

ACM SIGCOMM ‘98, Vancouver, British Columbia,
Canada, pp. 42-55, 1998.

m related to the fact that variability at small time
scales is caused by different processes to long time
scales, e.g. TCP congestion control, rather than

offered traffic
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Estimators
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Estimators for Self-Similarity

m Regression on the autocovariance in log-log graph

m R/S statistic
m Aggregated Variance Method

m Whittle (approximate MLE)
m Wavelets
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R/S statistic

R/S statistic
m X; = number of bytes in time period i

mY =YX
i
R(t,k) = (I)’Qic’i<><k [Yt+i —Yi— R(Yt+k —Yt)]
_ i
— orgilgnk [Yt+i — Yt — E(Yt+k —Yt)]
t+k
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R/S Statistic

The R/S statistic is Q(t,k) := %

m construct a two-dimensional table of Q(t, k) values
for various starting times t and lags k

m plot logQ(t,k) against logk on a log-log scale
m H estimated as the slope of the line of best fit.
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R/S Statistic

Plot of R/S vs K
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R/S method for the Ethernet data set
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Aggregated Variance Method

Calculate the sample variance of X™

N/n

sz(m)::ﬁZ( ) (N/mzxk ) .

Plot logs?(m) against logm. Line of best fit has slope
2H — 2.
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Aggregated Variance Method

Aggregated variances (log10)
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Estimating H for the Ethernet data set
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Whittle

m Assume fGN
m Gaussian process, with known autocorrelations

m for particular H we can compute the likelihood
exactly

m complication is that the likehood involves inverting
an N x N matrix, which is painful

m Whittle estimator uses some approximations to the
likehood to make the computations tractable

m properties

m probably most accurate estimator, if the data is
actually fGN

®m assumes a model, so not robust
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Wavelets: interpretation

m extend aggregation idea (MRA)
m aggregation at different scales is like
approximating the data at different scales
m data stats have known scaling properties
® a more general way of doing multi-scale
approximation is wavelets
has the advantage of decorrelation of wavelet

coefficients
m sub-band filters (logarithmically placed)

m |ogarithmically placed, so natural log scale arises

in frequency domain.
m sub-bands sampled at frequency appropriate to

the bandwidth
m analogy to FT, but retaining some temporal

information
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Pyramidal decomposition algorithm

x(n) <
VO

L

G V2 —\\\/;
G V2 —\\\/5
H V2 < G 2 P—Ws
Vi H V2 <
Vs

H 2 Vs
BP Filter V2 = d(1,)
LP Filter {2 V2 = d(2,)

‘|:: BP Filter
LP Filter

V2

~|:: BP Filter  [={¥2—= d(3,")
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Dyadic grid

Downsampling automatically results in dyadic grid.
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Ideal wavelet and scaling

The idea (looking across frequencies or scales) is that
the transform breaks frequency spectrum into bands.
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Ideal wavelet and scaling

m we know the distribution of energy in each sub-band

m this franslates to energy in each scale of wavelet
coefficients djjk

m estimate the energy in each band, which will follow a
power-law

m regress on a log-log graph (called a Logscale
diagram)
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Logscale diagram
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Wavelet estimator properties

m asymptotically efficient and unbiased
®m almost as accurate as Whittle

m joint estimator of H and ¢,

m knowh variance of estimates

m robustness
® non-Gaussianity

m trends in the data
m short-range correlative structure

® much better than Whittle in these cases

http://ww. cubi nl ab. ee. nu. oz. au/ ~darryl / secondorder code. htm /
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Performance
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Queueing with LRD

Assume the traffic follows the Norris model where the
total traffic up to timet is

A(t) = mt + v/amz(t),
where Z(t) is fBM, a is the traffic peakedness, and m is
the mean traffic rate. The loss rate, for a system can
be estimated using

c—m)H
CLR ~ exp (— Z(amK(I)—I)2b22H>

where
mK(H)=H"(1-H)H)
m Cis the link capacity
m b is the buffer size
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Example of Norris loss formula

m 155 Mpbs ATM link (capacity 353207 cells/sec)

m a of 10 cells-ms
m cell loss rate on this link below 1078
mbis 32000 cells

m Safe Operating Point, CLR below the target rate,

given errors in the estimates of the traffic
parameters, e.g.

Mimodel = Msop + 1.961/amsopn2H-2,
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Example of Norris loss formula

Operating Poi nt
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Self-similarity and Queueing

Simulation Example Model
m single server queue

m deterministic service rates

m assumptions
m only complete packets are accepted
m no time spent in checking packets

m some of the statistics gathered
m departure process
® fime in queue
m queue utilization
m queue lengths
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Departure Process - 10 Mbits

Self Similar Data UncorrelaTedDaTa
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Departure Process 2 Mbits

Self Similar Data Uncorrelated Data

Departure Process — 0.01 second arrivals
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Departure Process

Results - 10 Mbits

Self Similar Data

Uncorrelated Data

utilization 11.05% 11.14 %
average time in queue 0.000414 0.000387
max queue (packets) 6 6

Results - 2 Mbits

Self Similar Data

Uncorrelated Data

utilization 55.27% 55.69 %
average time in queue 0.458592 0.004973
max queue (packets) 3604 24
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General properties

m reduction in performance for heavier-correlations
m buffer insensitivity

m more difficulty in estimation of traffic parameters
like the mean, so a wider margin of safety must be
used.
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