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Note, questions marked by a (*) are harder than normal questions, and are to be for bonus marks.

1. 2 marks Derive (from the definition of FT) the continuous Fourier transform of the following functions

(a) f(t) = r(t), wherer(t), wherer is a rectangular pulse of unit width.
Solution: From the definietion

F{r(t)} =

∫ ∞

−∞
r(t) e−i2πst dt

=

∫ 1/2

−1/2

e−i2πst dt

=

∫ 1/2

−1/2

cos(2πst) − i sin(2πst) dt

But cos is an even function, andsin is odd, so the sin component of the integral is zero, and we need only compute

F{r(t)} =

∫ 1/2

−1/2

cos(2πst) dt

=

[

sin(2πst)

2πs

]1/2

−1/2

=
sin(πs)

2πs
+

sin(πs)

2πs

=
sin(πs)

πs
= sinc(s)

2. 8 marks Give the continuous Fourier transform of the following functions

(a) f(t) = Ae−π(at)2e−i2πs0t

Solution:
Useful facts

• The FT of a Gaussian is given by a Gaussian, e.g.F
{

e−πt2
}

= e−πs2

• Scaling:F{f(at)} = 1
|a|F (s/a), so

F
{

e−π(at)2
}

=
1

|a|
e−π(s/a)2

• From linearityF{Af} = AF{f}, so

F
{

Ae−π(at)2
}

=
A

|a|
e−π(s/a)2
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• Frequency shift:F
{

f(t)e−i2πft
}

= F (s + f), so the final result is

F
{

Ae−π(at)2e−i2πs0t
}

=
A

|a|
e−π((s+s0)/a)2

Note that there is a correction to the frequency shift property in the notes (sign change from − to +), so no
marks were deducted if you used this property.

Note that the time-function is a Gabor function with no time shift applied.

(b) f(t) = cos(2πs0t) ∗ r(t), wherer is a rectangular pulse, of unit width.

Solution:

• From above we knowF{cos(2πs0t)} = (δ(s − s0) + δ(s + s0))/2

• The FT of a rectangular pulse is a sinc function, e.g.F{r(t)} = sinc(s).

• Convolution theorem states that a convolution in the time domain equals a product in the frequency domain,
so the result will be

F{cos(2πs0t) ∗ r(t)} =
sinc(s)

2
(δ(s − s0) + δ(s + s0))

(c) f(t) = d2

dt2 sinc(t)

Solution: The Fourier transform of the sinc function is (by duality)F (s) = r(−s) wherer is the rectangular
pulse. Note thatr is an even function, soFsinc(s) = r(s).

The Fourier transform of a derivative is given by

F

{

d2

dt2
f(t)

}

= (i2πs)2F (s)

and so the results is

F

{

d2

dt2
sinc(t)

}

= (i2πs)2r(s) = −(2πs)2r(s)

(d) f(x, y) = exp
(

−π(xcos(θ) + y sin(θ))2
)

3*. 5 marks Prove that the continuous Fourier Transform, and Inverse Fourier transform, are really inverse operators for
all smooth functions, e.g. show that

F−1{F{f(t)}} = f(t)

for all functions with at least two continuous derivatives.

[Hint: multiply the signal by a Gaussian, and then relax the Gaussian by increasing its standard deviation, taking the
limits. Be careful in taking limits of integrals.]

Solution: Firstly note that I should have included in the question the requirement that the function be continuous, and
so we don’t need to consider functions which vary on sets of measure zero.

From the definitions

F−1{F{f(t)}} =

∫∫ ∞

−∞
f(τ)e−i2πsτ dτ ei2πst ds

We start the problem using Fubini’s theorem, e.g. if
∫∫ ∞

−∞
|h(x, y)| dx dy < ∞

then
∫∫ ∞

−∞
h(x, y) dx dy =

∫ ∞

−∞

[
∫ ∞

−∞
h(x, y) dx

]

dy =

∫ ∞

−∞

[
∫ ∞

−∞
h(x, y) dy

]

dx
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However, for an arbitrary smooth function, we cannot guarantee the condition for Fubini to be applicable. We get
around this by including a Gaussian kernal in the integral, e.g. we consider a new function with Fourier transform
Gσ(s)F (s), so that

Iσ(t) =

∫∫ ∞

−∞
Gσ(s)f(τ)e−i2πsτ dτ ei2πst ds =

∫∫ ∞

−∞
Gσ(s)f(τ)e−i2πs(τ−t) dτ ds

where
Gσ(s) = e−s2/2σ2

which makes the integrals finite. Note that this is anunnormalized Gaussian, i.e., we ommit the factor 1√
2πσ2

that

would lead to
∫ ∞
−∞ Gσ(s)ds = 1.

Now, we can compute this double integral in two different ways (because it satisfies the condition of Fubini’s theorem),
to get firstly

Iσ(t) =

∫ ∞

−∞

[
∫ ∞

−∞
f(τ)e−i2πsτ dτ

]

Gσ(s)ei2πst ds

=

∫ ∞

−∞
F (s)Gσ(s)ei2πst ds

Computing the integral the other way we get

Iσ(t) =

∫ ∞

−∞

[
∫ ∞

−∞
Gσ(s)ei2πs(t−τ) ds

]

f(τ) dτ

=

∫ ∞

−∞
gσ(t − τ)f(τ) dτ

where we note that the inverse Fourier transformF−1{Gσ(s)} = gσ(t) =
√

2σ2/πe−2σ2s2

. Note that this Gaussian
gets taller and narrower asGσ gets flatter (i.e., asσ → ∞. Also gσ(t) is normalized, i.e.,

∫ ∞
−∞ gσ(s)ds = 1 for all σ.

In the limit asσ → ∞, we getgσ(s) → δ(t).

The Dominated Convergence Theorem relates states that, given a family of functions{fn} such that

lim
n→∞

fn(t) = f(t)

almost everywhere, if for alln
|fn(t)| ≤ g(t)

for a functiong(t) such that
∫ ∞
−∞ g(t) dt < ∞ then

lim
n→∞

∫ ∞

−∞
fn(t) dt =

∫ ∞

−∞
f(t) dt

In our case, the series of functions could be given byfσ(t) for σ = n. Firstly note that if the functionf ∈ L1(IR) then

|F (s)| = |F{f(t)} | =

∣

∣

∣

∣

∫ ∞

−∞
f(τ)e−i2πsτ dτ

∣

∣

∣

∣

≤

∫ ∞

−∞
|f(τ)e−i2πsτ | dτ =

∫ ∞

−∞
|f(τ)| dτ < ∞

So forL1 functions, the magnitude of the Fourier transform is finite.HenceF (s)Gσ(s) is dominated byFmax, and so
we can apply the dominated convergence theorem (noting thatlimσ→∞ Gσ = 1) to obtain

lim
σ→∞

Iσ(t) =

∫ ∞

−∞
F (s)ei2πst ds

which is just the inverse Fourier transform of the Fourier transform, i.e.,F−1{F{f}}.
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In the second case, we have (inside the integral)gσ(t − τ)f(τ). Note thatgσ(0) =
√

2σ2/π, which increases withσ,
so we don’t have a simple dominated function here. But theσ term is constant with respect to the integral, and so we
can pull it outside the integral, and simply consider the integral overe−2σ2s2

f(t), which is dominated by|f(t)| (which
must be finite because it is inL1 and continuous). Hence, the integral converges to give

∫ ∞

−∞

δ(t − τ)

σ
f(τ) dτ

and the factors ofσ cancel to give

lim
σ→∞

Iσ(t) =

∫ ∞

−∞
δ(t − τ)f(τ) dτ = f(t)

Hence
F−1{F{f}} = f(t)
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