Transform Methods \& Signal Processing Class Exercise 4: Hand in before lecture, 14th Sept

Matthew Roughan
$<$ matthew.roughan@adelaide.edu.au>

Note, questions marked by a (*) are harder than normal questions, and are for masters students. Bonus marks may be awarded to other students who solve these.

1. 4 marks Look at the images displayed in figure below (the first is sinusoidal in one direction, and constant in the other, the second is zero outside, and one inside a circle). Describe what the power-spectrum of these images would look like.

2. 4 marks Calculate the two-dimensional convolution of $f(x, y)=\delta(x) r(y)$ with $g(x, y)=r(x) \delta(y)$. Hint a 2D convolution is

$$
[f * g](x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}\right) g\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

Derive the Fourier transform of this function.
3. 2 marks Write down the natural generalization of the Fourier transform to 3 dimensions.

4*. 5 marks Give the continuous Fourier transform of the following function
(a) $f(x, y)=\exp \left(-\pi(x \cos (\theta)+y \sin (\theta))^{2}\right)$

