Transform Methods \& Signal Processing

Class Exercise 4: solutions

Matthew Roughan

matthew.roughan@adelaide.edu.au

1. 4 marks Look at the images displayed in figure below (the first is sinusoidal in one direction, and constant in the other, the second is zero outside, and one inside a circle). Describe what the power-spectrum of these images would look like.

Solution: In the first case, the image shows a sinusoid in the x direction, and a constant in the y direction. Note that there are 10 repetitions of the sinusoid, so it is frequency 10 . Hence, the power-spectrum will have a delta at the frequency bin corresponding to frequency 10 horizontally, and zero vertically, and the corresponding term for frequency 10 . The figure below shows this FT

In the second case, the function is (approximately) radially symmetric, and so the FT will also have (approximate) radial symmetry. Further, if we took a single slice through the image (say at $y=50$) we would see a profile that looked like a rectangular pulse. Therefore, we should expect to see the FT of a rectangular pulse (a sinc) when we examine a slice of the image's FT. Therefore the power-spectrum will look like a sinc 2 function rotated around the zero frequency point.
2. 4 marks Calculate the two-dimensional convolution of $f(x, y)=\delta(x) r(y)$ with $g(x, y)=r(x) \delta(y)$. Hint a 2D convolution is

$$
[f * g](x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}\right) g\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

Derive the Fourier transform of this function.
Solution

$$
[f * g](x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x^{\prime}, y^{\prime}\right) g\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y^{\prime}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \delta\left(x^{\prime}\right) r\left(x-x^{\prime}\right) d x^{\prime} \int_{-\infty}^{\infty} r\left(y^{\prime}\right) \delta\left(y-y^{\prime}\right) d y^{\prime} \\
& =r(x) r(y)
\end{aligned}
$$

which is just a 2D rectangular pulse. It is a separable function, so we can calculate the FT of the x and y component rarately, and as each is a rectangular pulse, the FTs will be sinc functions, ie.

$$
\mathcal{F}\{r(x) r(y)\}=\operatorname{sinc}(x) \operatorname{sinc}(y)
$$

Note that the product in space doesn't seem to become a convolution in frequency. However, if we were to write this another way, using the fact that the $r(x)$ is constant with respect to y, and so its FT will be a delta in the y direction, i.e. the $\mathrm{FT} \mathcal{F}\{r(x)\}=\mathcal{F}\{r(x) \operatorname{const}(y)\}=\operatorname{sinc}(x) \delta(y)$ then we get

$$
\begin{aligned}
\mathcal{F}\{r(x) r(y)\} & =(\operatorname{sinc}(x) \delta(y)) *(\operatorname{sinc}(y) \delta(x)) \\
& =\operatorname{sinc}(x) \operatorname{sinc}(y)
\end{aligned}
$$

in much the same way that we calculated the previous convolution.
3. 2 marks Write down the natural generalization of the Fourier transform to 2 dimensions. Solution:

$$
F(u, v, w)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) e^{-i 2 \pi(u x+v y+w z)} d z d y d z
$$

4* 5 marks Give the continuous Fourier transform of the following function
(a) $f(x, y)=\exp \left(-\pi(x \cos (\theta)+y \sin (\theta))^{2}\right)$

Solution: The function is a Gaussian $f(x, y)=\exp \left(-\pi x^{2}\right)$ rotated through θ degrees. The Fourier transform of Gaussian, is a Gaussian, e.g. for $f(x, y)=\exp \left(-\pi x^{2}\right)$, we get FT $F(s, t)=\exp \left(-\pi s^{2}\right) \delta(t)$, but we must als otate the Fourier transform in the Fourier domain to get
$F(s, t)=\exp \left(-\pi(s \cos (\theta)+t \sin (\theta))^{2}\right) \delta(-s \sin (\theta)+t \cos (\theta))$
In more detail
$\mathcal{F}\{f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)\}=\iint_{-\infty}^{\infty} f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta) e^{-i 2 \pi(s x+t y)} d x d y$
Take the change of variables (a rotation) $\tilde{x}=x \cos \theta+y \sin \theta$ and $\tilde{y}=-x \sin \theta+y \cos \theta$, then the inverse transform i just a reverse rotation $x=\tilde{x} \cos \theta-\tilde{y} \sin \theta$ and $y=\tilde{x} \sin \theta+\tilde{y} \cos \theta$ and $d x d y=d \tilde{x} d \tilde{y}$ so we can write the integration as

$$
\begin{aligned}
\mathcal{F}\{f(x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta)\} & =\iint_{-\infty}^{\infty} f(\tilde{x}, \tilde{y}) e^{-i 2 \pi(s(\tilde{x} \cos \theta-\tilde{y} \sin \theta)+t(\tilde{x} \sin \theta+\tilde{y} \cos \theta))} d \tilde{x} d \tilde{y} \\
& =\iint_{-\infty}^{\infty} f(\tilde{x}, \tilde{y}) e^{-i 2 \pi(\tilde{x}(\operatorname{sos} \theta+t \sin \theta)+\tilde{y}(-s \sin \theta+t \cos \theta))} d \tilde{d} d \tilde{y} \\
& =\iint_{-\infty}^{\infty} f(\tilde{x}, \tilde{y}) e^{-i 2 \pi(\tilde{x} \tilde{s}+\tilde{y} \tilde{t})} d \tilde{x} d \tilde{y}
\end{aligned}
$$

where (\tilde{s}, \tilde{t}) are the rotated versions of (s, t), and so $\mathcal{F}\{f(\tilde{x}, \tilde{y})\}=F(\tilde{s}, \tilde{t})$.

