Transform Methods \& Signal Processing Class Exercise 5: solutions

Matthew Roughan

 matthew.roughan@adelaide.edu.au1. 10 marks Figure 1 shows a box diagram of a biquad filter

Figure 1: A biquad filter.
(a) Write the z -transform form of the transfer function of the filter. Solution

$$
H(z)=\frac{B(z)}{A(z)}=b \frac{1+2 z^{-1}+2 z^{-2}}{1-0.9 z^{-1}}=b \frac{z^{2}+2 z^{1}+2}{z^{2}-0.9 z}
$$

See Figure 2 (a) for a picture of the transfer function.
(b) Find the poles and zeros of the filter.

Solution:

$$
B(z)=z^{-2}(z-(-1+i))(z-(-1-i))
$$

So the zeros are at $(-1 \pm i)$, and

$$
A(z)=z^{-2} z(z-0.9)
$$

So the poles are at 0 and 0.9
See Figure 2 (b) for a poles and zeros of the transfer function
(c) Is the filter stable? Why?

Solution: The poles of the filter are inside the unit circle on the complex plane so the filter is BIBO stable.
(d) Is the filter invertible? Why?

Solution: The zeros of the fitler are outside the unit circle on the complex plane so the filter's inverse is not BIBO stable. Note this is a correction to the notes, so I dod not deduct marks for incorrect answers to this question.

(c) Frequency transfer function

Figure 2: The transfer function for the biquad filter.
(e) Is the filter a high-pass, band-pass, or low-pass filter? Why?

Solution: Given the locations of its poles and zeros, it is clearly a low-pass filter. Figure 2 (c) shows the transfer function, where we can see that the filter is a low-pass.
(f) Find (analytically) the impulse response of the filter

Solution:

$$
\begin{aligned}
H(z) & =\frac{B(z)}{A(z)} \\
& =b \frac{1+2 z^{-1}+2 z^{-2}}{1-0.9 z^{-1}}
\end{aligned}
$$

We can expand

$$
\frac{1}{1-a z^{-1}}=\sum_{k=0}^{\infty} a^{k} z^{-k}
$$

and so the filter can be writte

$$
\begin{aligned}
H(z) & =b\left(1+2 z^{-1}+2 z^{-2}\right) \sum_{k=0}^{\infty} a^{k} z^{-k} \\
& =b\left[\sum_{k=0}^{\infty} a^{k} z^{-k}+2 z^{-1} \sum_{k=0}^{\infty} a^{k} z^{-k}+2 z^{-2} \sum_{k=0}^{\infty} a^{k} z^{-k}\right] \\
& =b\left[\sum_{k=0}^{\infty} a^{k} z^{-k}+2 \sum_{k=0}^{\infty} a^{k} z^{-k-1}+2 \sum_{k=0}^{\infty} a^{k} z^{-k-2}\right] \\
& =b\left[\sum_{k=0}^{\infty} a^{k} z^{-k}+2 \sum_{k=1}^{\infty} a^{k-1} z^{-k}+2 \sum_{k=2}^{\infty} a^{k-2} z^{-k}\right] \\
& =b\left[\sum_{k=0}^{\infty} a^{k} z^{-k}+2 \sum_{k=0}^{\infty} a^{k-1} z^{-k}+2 \sum_{k=0}^{\infty} a^{k-2} z^{-k}-2 a^{-1}-2 a^{-2}-2 a^{-1} z^{-1}\right] \\
& =b \sum_{k=0}^{\infty}\left[a^{k}+2 a^{k-1}+2 a^{k-2}\right] z^{-k}-2 b\left[a^{-1}+a^{-2}+a^{-1} z^{-1}\right]
\end{aligned}
$$

So the impulse response looks like

$$
b\left(1, a+2, a^{2}+2 a+2, a^{3}+2 a^{2}+2 a, \ldots, a^{k}+2 a^{k-1}+2 a^{k-2}, \ldots\right)
$$

where $a=0.9$.
(g) is the filter linear? time-invariant? causal?

Solution: The filter is a linear, time-invariant, causal filter.
(h) What would be the result of passing a signal through two such filters? Draw a box diagram of the new filter (in the same form as that of Figure 1, i.e. not as a cascade of two biquads).
Solution: Placing the two filters in sequence results in a transfer function $H_{2}(z)$ which is the square of the transfer function of the biquad, e.g.

$$
H_{2}(z)=H^{2}(z)=b^{2} \frac{\left(1+2 z^{-1}+2 z^{-2}\right)^{2}}{\left(1-0.9 z^{-1}\right)^{2}}=b^{2} \frac{1+4 z^{-1}+8 z^{-2}+8 z^{-3}+4 z^{-4}}{1-1.8 z^{-1}+0.81 z^{-2}}
$$

We can see that this corresponds to a 4th order ARMA filter, which can be drawn in box diagram form as in We can see that this corresponds to a 4th order ARMA filter, which can be drawn in box diagram form as in
Figure 3. Note that the original biquad was a low-pass filter, and so this filter must also be a low pass filter (with similar stop band), but that the stop-band attenuation will be the square of that of the biquad.

Figure 3: A 4th order filter equivalent to 2 of the biquads defined in Figure 1.

2*. 10 marks A filter is BIBO (Bounded Input, Bounded Output) stable iff the impulse response be absolutely summable, i.e., its L^{1} norm exists and is finite, e.g.

$$
\sum_{i=-\infty}^{\infty}|w(i)|<\infty .
$$

(a) Prove that this is a necessary condition for a filter where $w(i) \geq 0$. Explain how we can generalize to the general case.
Proof: Assume $w(i) \geq 0$, and choose a bounded input signal which is just all ones, i.e. $x(n)=1$ for all n. Then

$$
w * x=\sum_{i=-\infty}^{\infty} w(i)=\sum_{i=-\infty}^{\infty}|w(i)|,
$$

which must be finite for the output to be bounded. When $w(i)$ are not all non-negative, then one needs to choose a signal which is $x(i)=\operatorname{sgn}(w(-i))$, and the convolution, at $n=0$ of the two signals will again be $\sum_{i=-\infty}^{\infty}|w(i)|$.
(b) Prove (using the triangle inequality) that this is a sufficient condition for BIBO.

Proof:

$$
\begin{aligned}
|y(n)| & =\left|\sum_{k=-\infty}^{\infty} w(k) x(n-k)\right| \\
& \leq \sum_{k=-\infty}^{\infty}|w(k) x(n-k)| \\
& =\sum_{k=-\infty}^{\infty}|w(k)||x(n-k)|
\end{aligned}
$$

by the triangle inequality. Take $\|x\|_{\infty}=\max |x(n)|$ then

$$
\begin{aligned}
|y(n)| & \leq \sum_{k=-\infty}^{\infty}|w(k)|\|x\|_{\infty} \\
& \leq\|x\|_{\infty} \sum_{k=-\infty}^{\infty}|w(k)| \\
& <\infty
\end{aligned}
$$

when the condition holds and the input is bounded.
(c) It is often convenient to characterize BIBO filters in the frequency domain (i.e. using a z-transform), i.e., by noting that all of the filter's poles must be inside the unit circle (in the complex plane). The proof revolves around showing that the z-transform of a BIBO filter must converge on the unit circle - show this is the case.
Proof: Take the z-transform on the unit circle in the complex plane, i.e. $z=e^{i \theta}$, so

$$
\begin{aligned}
W(z) & =\sum_{k=-\infty}^{\infty} w(k) z^{-k} \\
& =\sum_{k=-\infty}^{\infty} w(k) e^{-i k \theta}
\end{aligned}
$$

Now (again using the triangle inequality)

$$
\begin{aligned}
|W(z)| & =\left|\sum_{k=-\infty}^{\infty} w(k) e^{-i k \theta}\right| \\
& =\sum_{k=-\infty}^{\infty}|w(k)|\left|e^{-i k \theta}\right| \\
& =\sum_{k=-\infty}^{\infty}|w(k)| \\
& <\infty
\end{aligned}
$$

