
Transform Methods & Signal Processing
Class Exercise 5: solutions

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

1. 10 marks Figure 1 shows a box diagram of a biquad filter.
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Figure 1: A biquad filter.

(a) Write the z-transform form of the transfer function of the filter.
Solution:

H(z) =
B(z)

A(z)
= b

1 + 2z−1 + 2z−2

1 − 0.9z−1
= b

z2 + 2z1 + 2

z2 − 0.9z

See Figure 2 (a) for a picture of the transfer function.

(b) Find the poles and zeros of the filter.
Solution:

B(z) = z−2(z − (−1 + i))(z − (−1 − i))

So the zeros are at(−1 ± i), and
A(z) = z−2z(z − 0.9)

So the poles are at0 and0.9.
See Figure 2 (b) for a poles and zeros of the transfer function.

(c) Is the filter stable? Why?
Solution: The poles of the filter are inside the unit circle on the complex plane so the filter is BIBO stable.

(d) Is the filter invertible? Why?
Solution: The zeros of the fitler are outside the unit circle on the complex plane so the filter’s inverse is not BIBO
stable.Note this is a correction to the notes, so I dod not deduct marks for incorrect answers to this question.
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(a) z-transform transfer function
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(b) Poles and zeros
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(c) Frequency transfer function

Figure 2: The transfer function for the biquad filter.

(e) Is the filter a high-pass, band-pass, or low-pass filter? Why?
Solution: Given the locations of its poles and zeros, it is clearly a low-pass filter. Figure 2 (c) shows the transfer
function, where we can see that the filter is a low-pass.

(f) Find (analytically) the impulse response of the filter.
Solution:

H(z) =
B(z)

A(z)

= b
1 + 2z−1 + 2z−2

1 − 0.9z−1

We can expand
1

1 − az−1
=

∞
∑

k=0

akz−k

and so the filter can be written

H(z) = b
(

1 + 2z−1 + 2z−2
)

∞
∑

k=0

akz−k

= b

[

∞
∑

k=0

akz−k + 2z−1

∞
∑

k=0

akz−k + 2z−2

∞
∑

k=0

akz−k

]

= b

[

∞
∑

k=0

akz−k + 2

∞
∑

k=0

akz−k−1 + 2

∞
∑

k=0

akz−k−2

]

= b

[

∞
∑

k=0

akz−k + 2
∞
∑

k=1

ak−1z−k + 2
∞
∑

k=2

ak−2z−k

]

= b

[

∞
∑

k=0

akz−k + 2

∞
∑

k=0

ak−1z−k + 2

∞
∑

k=0

ak−2z−k − 2a−1 − 2a−2 − 2a−1z−1

]

= b

∞
∑

k=0

[

ak + 2ak−1 + 2ak−2
]

z−k − 2b
[

a−1 + a−2 + a−1z−1
]

So the impulse response looks like

b(1, a + 2, a2 + 2a + 2, a3 + 2a2 + 2a, . . . , ak + 2ak−1 + 2ak−2, . . .)
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wherea = 0.9.

(g) is the filter linear? time-invariant? causal?
Solution: The filter is a linear, time-invariant, causal filter.

(h) What would be the result of passing a signal through two such filters? Draw a box diagram of the new filter (in
the same form as that of Figure 1, i.e. not as a cascade of two biquads).
Solution: Placing the two filters in sequence results in a transfer functionH2(z) which is the square of the transfer
function of the biquad, e.g.

H2(z) = H2(z) = b2

(

1 + 2z−1 + 2z−2
)2

(1 − 0.9z−1)
2

= b2
1 + 4z−1 + 8z−2 + 8z−3 + 4z−4

1 − 1.8z−1 + 0.81z−2

We can see that this corresponds to a 4th order ARMA filter, which can be drawn in box diagram form as in
Figure 3. Note that the original biquad was a low-pass filter,and so this filter must also be a low pass filter (with
similar stop band), but that the stop-band attenuation willbe the square of that of the biquad.
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Figure 3: A 4th order filter equivalent to 2 of the biquads defined in Figure 1.

2*. 10 marks A filter is BIBO (Bounded Input, Bounded Output) stable iff the impulse response be absolutely summable,
i.e., itsL1 norm exists and is finite, e.g.

∞
∑

i=−∞

|w(i)| < ∞.

(a) Prove that this is a necessary condition for a filter wherew(i) ≥ 0. Explain how we can generalize to the general
case.
Proof: Assumew(i) ≥ 0, and choose a bounded input signal which is just all ones, i.e. x(n) = 1 for all n. Then

w ∗ x =

∞
∑

i=−∞

w(i) =

∞
∑

i=−∞

|w(i)|,
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which must be finite for the output to be bounded. Whenw(i) are not all non-negative, then one needs to choose a
signal which isx(i) = sgn(w(−i)), and the convolution, atn = 0 of the two signals will again be

∑

∞

i=−∞
|w(i)|.

(b) Prove (using the triangle inequality) that this is a sufficient condition for BIBO.

Proof:

|y(n)| =

∣

∣

∣

∣

∣

∞
∑

k=−∞

w(k)x(n − k)

∣

∣

∣

∣

∣

≤
∞
∑

k=−∞

|w(k)x(n − k)|

=

∞
∑

k=−∞

|w(k)| |x(n − k)|

by the triangle inequality. Take||x||∞ = max |x(n)| then

|y(n)| ≤

∞
∑

k=−∞

|w(k)| ||x||∞

≤ ||x||∞

∞
∑

k=−∞

|w(k)|

< ∞

when the condition holds and the input is bounded.

(c) It is often convenient to characterize BIBO filters in thefrequency domain (i.e. using az-transform), i.e., by
noting that all of the filter’s poles must be inside the unit circle (in the complex plane). The proof revolves around
showing that thez-transform of a BIBO filter must converge on the unit circle – show this is the case.

Proof: Take thez-transform on the unit circle in the complex plane, i.e.z = eiθ, so

W (z) =
∞
∑

k=−∞

w(k)z−k

=

∞
∑

k=−∞

w(k)e−ikθ

Now (again using the triangle inequality)

|W (z)| =

∣

∣

∣

∣

∣

∞
∑

k=−∞

w(k)e−ikθ

∣

∣

∣

∣

∣

=

∞
∑

k=−∞

|w(k)| |e−ikθ |

=

∞
∑

k=−∞

|w(k)|

< ∞
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