Transform Methods \& Signal Processing Class Exercise 7: before lecture, Monday 2nd November.

Matthew Roughan
matthew.roughan@adelaide.edu.au

1
4 marks
We can define a 2D z-transform as follows:

$$
G(z, w)=\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} g(i, j) z^{-i} w^{-j}
$$

Given a 2D z-transform of the following form

$$
G(z, w)=\left(z^{-1}-z\right)\left(w^{-1}+2+w\right)
$$

describe the type of filter that would result.
26 marks The Hilbert transform of a signal $f(t)$ is defined by

$$
f^{+}(t)=\mathcal{H}(f)=\int_{-\infty}^{\infty} f(\tau) h(t-\tau) d \tau=(f * h)(t)
$$

where

$$
h(t)=\frac{1}{\pi t} .
$$

(a) Given that the Fourier transform of h is

$$
H(s)=-i \operatorname{sgn}(s),
$$

describe the Hilbert transform in terms of Fourier transforms, and hence derive an inverse Hilbert transform.
(b) Hence or otherwise calculate the Hilbert transform of $\cos (t)$.
(c) Assume a real signal can be written in the form

$$
f(t)=A \cos (\phi(t))
$$

where $\phi(t)=\omega t+x(t)$ and we assume that $x(t)$ varies much more slowly than the carrier ωt, and so can be treated as a constant. Consider the complex signal

$$
c(t)=f(t)+i f^{+}(t)
$$

Calculate the magnitude $|c(t)|$ and the phase angle of the signal, and relate these to the original signal.
(d) Show that the inverse Fourier transform of $H(s)$ is $h(t)$, or visa versa (using results given in lectures).

