Transform Methods &

Signal Pr‘ocessing ConTanOUS Four'ler'

Transforms

lecture 02
Matthew Roughan Fourier's Theorem is not only one of the most
<mat t hew. roughan@del ai de. edu. au> beautiful results of modern analysis, but it is
Discipline of Applied Mathematics said to furnish an indispensable instrument in
School of Mathematical Sciences the treatment of nearly every recondite
University of Adelaide question in modern physics.

September 8, 2010 Lord Kelvin
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The lecture concerns the definition and properties of the continuous Fourier transform. The
course itself will be primarily occupied by the discrete Fourier transform, but the two are directly
analogous, and many of the properties are more straight-forward to prove in the continuous
case.
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Jean Baptiste Joseph Fourier Fourier series

» son of a tailor (in Auxerre, France) Can write a periodic function as an (infinite) discrete
> 12th of 15 children sum of trigonometric terms, e.g. for period 2m
» involved in the French revolution o -
> at one point was arrested f(x) = %a(ﬁ— Zan cognx) + Z bn sin(nx)
n= n=1

» 1798 Fourier joined Napoleon's
army in its invasion of Egypt as

scientific adviser 1/
ag = — / f(x)dx
Tt —mt

> helped in archaeological

explorations. 1 [T
» 1802 made Prefect of Grenoble @ = ﬁ/n f(x) cognx) dx
> work on heat propagation, and 1 /m _
Fourier series bh = = / f(X) sin(nx) dx
—Tt
March 21,1768 — » survived Napoleon's arrest, and
May 16, 1830 return, and exile
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For more of Fourier’s life see Note that Fourier series are NOT the Fourier transform (though they are related as we shall
http://turnbull.dcs. st-and. ac. uk/ hi story/ Mat hemati ci ans/ Fouri er. ht m see below).
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http://turnbull.dcs.st-and.ac.uk/history/Mathematicians/Fourier.html

Fourier series as a representation

Fourier series is representing the set of functions with
period 21tin terms of the basis functions cosand sin,
exploiting orthogonality of these functions

/ncos(nx)dx =0 /ncos(nx) cogmx)dx = TOmn

—Tt —Tt

/nsin(nx)dx =0 /nsin(nx) sin(mx)dx = T®mn

—T —T

/n sin(nx) cogmx)dx = 0

—Tt

1, ifm=n

Omn is th necker delta, dnn = )
mn IS the Kronecker delta, omn {0, otherwise.
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Complex Fourier series

Can write Fourier series in complex form

[o0]

f) =Y Ae™

n=—oo

An=— ! /Hf(x)e"‘xdx

21
NB: €™ = cognx) +i sin(nx)
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Example: note the trigonometric formulae
cosBcosp= [cogB — @) +cog6+@)] /2

SofornmeN, n#m

/j[ cognx) cogmx)dx = X) 4 cog (n+m)x) dx

m)X) sin((n+m)x)
(n+m | o

.—.\

O NIk NIk

Fornme N, n=m

/j;co§(nx)dx = / 1+ cog2nx) dx

_sin 2nx }

3 NIk Nl
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Fourier series for other periods

For a function with period L, we need to scale the basis
functions by 2m/L

f(X): i AneiZTlnX/L

n=—oo

An= }/L/z f(x)e 2™t dx
)
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Example Fourier Series

Fourier series for the saw-tooth f(x) =x for x=[—L, L]

Saw-tooth
2-I T T T T T I-
l_ -
0_ -
_1- -
_2-I L L L L L I-
-6 4 - 0 2 4 6
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It is expected that students of this course will already know how to use Fourier series.

For more information on Fourier series see
http:// mat hworl d. wol fram coml Fouri er Seri es. ht m

For an instructive java applet see
http://ww.j hu. edu/ ~si gnal s/ fourier2/index. htm
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For a function with period L

f(X _ ad AneiZTInX/L
=2,
where for n# 0

(=D

An= —2itn

Ao is a special case and Ag = 0. If we take the two components

A2 | A izl _ L(=1)(nth) g2mit —e-2mdt | (—1)™Dsin2mx/L)

™ 2i ™
we get
® L(—1)™D sin(2rmx/L
(9= § LU sinEmL)
n=1

which is the standard Fourier series representation of the saw-tooth wave form f(x).
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http://mathworld.wolfram.com/FourierSeries.html
http://www.jhu.edu/~signals/fourier2/index.html

Integral transforms

» An integral transform is a tfransform defined in
terms of an integral

F(t) — / f(t)g(t, s)dt

» Map a function (say of time) to a function of s
» g(-) is called the kernel of the transform
» notation (several alternatives)

> T{f(t);s} = J f(t)g(t,s)dt

> F(s)= [ f(t)g(t,s)dt, H(s) = [h(t)g(t,s)dt

> F(s) = [ f(t)g(t,s)dt, H(s) = [h(t)g(t,s)dt

> f(s)= [f(t)g(t,s)dt
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Fourier Transform

[o0]

Fourier transform F(s) :/ f(t)e '7Stdt

—00
(o]

Inverse transform f(t) = / F(s)é?™ds

—00

We are writing function f(t) as a continuous integral of
trigonometric functions, weighted by F(s).

» think of as a representation of a function
» sines and cosines are forming a basis
» integral transform with kernel function g(st) = e 2™
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We will use several of these variants of notation in this course, and you will see other forms,
usually as some kind of abbreviation. Part of the goal here is to get you used to some of the
different forms of notation you may come across in practise.
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Example: FT of a delta function

From the definition of FT

F{o(t—tg)} = /m d(t —tg) & 12 ™Stett

—o00

from the definition of a delta
| _twait-tod= (o)

—i 2115
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Gaussian

f (X; I, O') — ief(tfu)Z/Zoz

oV 21

0.8 ;
—p=0, 0=1.0

0.7r =—p=0, 0=0.5H
——p=2, 0=1.5

0.6F R

0.5F B

0.4+ B

0.3F i

0.2F B

0.1+ B

L L Il L L L
-3 -2 -1 0 1 2 3 4 5 6
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The Gaussian (or normal) probability density is normalized so that its integral is one, i.e.
/:: f(xp0)dx=1.
But in general a Gaussian is a function of the form
f(t;a,b) = be~at-w*
and we often use this slightly simpler form for signal processing, or even simpler

f(t)=e ™
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Example: FT of a Gaussian

From the definition of FT

e} -

(o)

e Tit? —|2T|stdt

[o0]

2
e T[ t +|2$t) dt

/oo
/.
_ errsz/ T(t+is)® )" ot

— ™ / e ™ du
2
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FT of some simple functions

Function | Transform Function | Transform
3(t) 1 1 o(t)
6(t _ tO) e—iZTIIoS eiznsot 6(8_ a))

r(t) sind(s) sindt) r(s)

—|t] 2 2 — ||
€ 4P +1 4ret?+1 €
g’ e g’ e
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See
http://cnyack. honest ead. conf fil es/afourtr/ftgauss. htm

Actually the derivation above is a little fluffy. We really need to recognize that the integral is
over a contour in the complex plane, and apply Cauchy’s integral theorem: loosely stated,
for a contour integral of an analytic function f(z) with continuous partial derivatives around a

closed path y, then
f f(2)dz=0
v

The integral, after the substitution should really look like

) T+is 5
lim e ™ du
T—oo ) T4is

However, if we form a closed curve around the obvious rectangle then Cauchy gives us

T+is 5 T 2 T Py —T+is 5
/ e ™ du:/ e ™ duf/ e ™ duf/ e ™ du
—T+is T T+is -T

We can see that two parts of this go to zero, and the other part gives us the result we need.
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http://cnyack.homestead.com/files/afourtr/ftgauss.htm

Deriving a Fourier Transform

We can derive a Fourier transform from scratch, but
that can sometimes be hard work. It can be easier to
use transforms we already know (and their properties).

e.g. exploiting linearity (see later)

F{cog2mst)} = /oo cog2msot) € Pt it

_ T{% |:e—i2TlSoX+ei2TlSoX}}
1 —i 275X 1 J 2TtSX
= Ef{e 2T }—f—égj{ézmo }
1 1
— é6(5+%)+é5(8—%)
F{sin(2rspt)} = 126(S+So)—|§5(3—30)
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FTs of sin and cos

A

Real

Fcos(t)

Frequency, s’
Fsin(t)

Imag
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Remember that
» & =cogx)+isin(x)
> cosx) =1 (X +e )
> sinx) = 4 (¥ —-e )

Note that Linearity means:

Fah(t) +bh(t)} =aF {fi(t)} +bF {f2(t)}

and from previous slides
Fl{dZT0) = 5(s—50)
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The Fourier Transform: definitions

Multiple possible definitions
Fourier transform Inverse

F(s):/:f(t)e—izﬂstdt f(t):/w ()62 ds

F(oa):/oo f(t)e " dt = o / W) dw
F(w)z\/%T/m f(t)e @dt | f ﬁ/ F(w)e“ dw
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Wave terminology

Definition: Amplitude is the extent of a waves
oscillation, e.g. a signal f(t) = Asin(t) has amplitude f(t).

Definition: Magnitude is the absolute value of amplitude,
e.g. for f(t) = Asin(t) the amplitude is |f(t)|.

Definition: Power is the square of magnitude, e.g. for
f(t) = Asin(t) the power is p(t) = |f(t)|%

Definition: RMS Power is the root mean squared power,

given by
m )2
\/“—»ooZI / Ol

For f(t) = Asin(t), the RMS power is A/\/2, e.g. the RMS
power of a sin wave is 0.707 times the peak value.
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We will tend to use the first definition. The second is typically used if we use frequency units of
w= 21 in radians per second, and we will use this definition in some parts of the the course.
The third definition is sometimes prefered because it is symmetric, but we won’t use it here.
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RMS power of a sin wave

Asin(t)

sinqt) = l—CgS 2t
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RMS power of a sin wave

The sin wave is periodic so we may consider
i/" Asin(t)[2dt = Azi/nl—cos(z)dt
211 T - 41t T

= AZ%[ [/Onldt—/oncos(Zt)dt]

1
— A2 _
= A 2]_[[11 0]

A2

2

To get the RMS power, take the square root, resulting in
AIV2
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Measuring power

» power is a square, so can take wide ranging values.
use a log scale to measure
» ear itself 'hears’ logarithmically and humans judge

the relative loudness of two sounds by the ratio of
their intensities, a logarithmic behavior.

» the typical scale used is Decibels (deci- from ten,
and Bel from Alexander Graham Bell).

» defined WRT a reference power level pres

v

power = 10 log,, Ld B
Pref

> p=nY, sowe may write power = 20 log,, -dB
» 3 dB corresponds to a factor of 2 in power

Transform Methods & Signal Processing (APP MTH 4043): lez@2 — p.21/54

Decibels and sounds

Sound Pressure

Sound Intensity

Example | Level (dB) (watts/m?)
Snare drums, played hard at 6 inches | 150 1000
30m from jet aircraft | 140 100
Threshold of pain | 130 10
Jack hammer | 120 1
Fender guitar amplifier, full volume at 10 inches | 110 0.1
Subway | 100 0.01
90 0.001
Typical home stereo listening level | 80 0.0001
Kerbside of busy road | 70 0.00001
Conversational speech at 1 foot away | 60 106
Average office noise | 50 107
Quiet conversation | 40 108
Quiet office | 30 109
Quiet living room | 20 10710
Quiet recording studio | 10 10-1¢
Threshold of hearing for healthy youths | O 10712
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The eye also perceives subjective brightness as a logarithmic function of light intensity (“Digital
Image Processing”, Gonzalez and Woods, p.39), but it is less common to use units of dB for
light intensity.
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For more information on sound pressure levels see

http://ww. saf etyline.wa.gov.au/institute/level 2/ coursel8/| ecture54/

| 54_03. asp
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Power Spectra

Definition: The Power Spectrum of a signal f(t) is [F(s)|?,

where F(s) is the Fourier fransform,

Fio)= [ fje ™a

» The power spectrum defines the amount of power at
each frequency.

» eg. |[F(0)|? is referred to as the DC term.

» for real-valued signals the power spectrum is even
F(=s)I*=IF(s)|”

(because the Fourier transform of a real input will
be a Hermitian signal).
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Phase

» the sin and cosine
functions have the
same frequency

sin(t)

21

™ » cogt) =sin(t+T11/2)
» there is a phase

cos(t)

change of /2
A

Real

Fcos(t)
Imag

Fsin(t)

S

Frequency,
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Properties of the Fourier transform

Linearity: afi(t)+bfa(t) — aFk(s)+bFR(s)
Time shift: F(t—to) . F(s)e 1z

Time scaling: f(at) - @F ()

Duality: F(t) —  f(-9

Frequency shift: f(t)e 12t — F(s+%)
Convolution: f1(t) * fo(t) —  Fi(s)F(9)
Differentiation I: | &5 (t) —  (i21m)"F (8)
Differentiation IT: | (—i2rt)"f(t) — F(s)
Integration: I, f(s)ds —  LF(s)+T1F(0)3(s)
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Properties: Linearity

F{afi(t) +bf(t)} = ak(s) + bR(s)

/_ " lafu(t) + bh(t) e 2=t

_ a / f1(t)e 2™ dt+ b / fo(t)e 2™t

= ak (s)+bR(s)

» very useful property

» we can use this to derive Fourier transform,
e.g. for cosabove

» see more on linearity when we discuss filters
(lecture 5-6)
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Properties: time shift

F{f(t—to)} = F(s)e2®o

/ f(t—to)e ' Z™tdt = / f(t)e 12+ gt

= g 1ZMoE(g)

Note [F (/e 2| = | (s)| x e 2] = |F ()
So the magnitude of the FT is unchanged.

This represents a phase change. The higher the
frequency, the larger the phase change.
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Properties: Time scaling

Fit(a}=3F ()

® : 1 /® - X at
f —i2rst _ _/ f —i2m(s/a)x
/oo (at)e dt al. (x)e dx &t %dx

- &)

signal

600)

400

200)
2 a 6 8 10 12 0 2 4

600)

400

200) |
2 4 6 8 10 12 0 2 4

.
LS

1,

o
o &
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This is one of the properties that lead to us equating the results of the Fourier transform with
frequency.
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Properties: Duality

F{FM)} = (-9

Consider the Fourier transform of F(t):

/ F(t)e 2™tdt — / F(t)e2"-Stdt, the inverse trans.
- ()

» the table of Fourier transforms above shows pairs
of duals, e.qg.

F{r(t)} =sinds) and F{sindt)} =r(t)
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Properties: Frequency shift

F{f(t)e 7™} = F(s+5)

= F(s+%)

» used for signal modulation, e.g. FM radio
» simpler using a cos function (see below)
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Properties: Modulation

F{1(t)cog2mspt) } = 3F (s— o) + 3F (s+ %)

For proof, see freq. shift above noting cosx =1 (e ™ +€*)

signal f(x) segment of |DFT| of f(x)

. 600]
0 400
-0.5 200
- 2 4 6 8 10 12 0 2 4 6 8 10
(

modulated signal f(x) * cos(x t) segment of [DFT] of f(x) * cos(x t)

o
o

Can use this to generate higher frequency signals, or o
demodulate signals.
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Convolutions

What is a convolution?

f()+9) = [F+gl0) = [ fugt—u)dy

w
©

oy

B2

g \\

c

il

5

°

>

c

o

8 4/\‘\

-50 -25 0 25 50 ! !
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Alternative proof, use the property that cogx) coqy) = % [cogx+Yy) +cogx—Y)]
y(t) = cos(2mfcaniet)cos(2mft)

1
= 3 [cos(2mf + fearriedt) + cOS(2M f — fearriedt)]

When modulating a signal, we might then filter out one of these, so that only the single
component remains.
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Convolution is critical to understanding this course. You must make sure you understand what
a convolution is, and how the Fourier transform operates on it.

Java applet that shows the ideas:

http://ww.j hu. edu/ ~si gnal s/ convol ve/ i ndex. ht m
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http://www.jhu.edu/~signals/convolve/index.html

Properties: Convolution

F{h(t) + fa(t) } — Fi(S)Ra(S)

FLHO <g(t)} = T{/_o;f(u)g(t—u)du}

= /: [/‘: f(u)g(t—u)du] e 12t gt
_ /_°° f(u)/m gt — u)e 2™dt du

= f(u)G(s)e '?™'du

— G() /_ f(u)e ™Udy
= F(9G(s)
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Convolution example

Convolution of two rectangular pulses r(t) where

r(t) =u(t+1/2)—u(t-1/2),and U(t):{ 2’ :ig
r)r(t) = /mr(s)r(t—sms
r 07 |ft<—1
1/2+4t
/ re)rit—s)ds if —1<t<0
= ¢ Tz
/ r(s)r(t—S)dS if0§t§1
t—1/2
0. ift>-1
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Convolution example

For —1 <t <0, the convolution r(t)«r(t) is

1/2+t r® :
r(t)«r(t) = /1/2 r(s)r(t—s)ds

1/2+t -1/2 1/2 t
= / 1ds
-1/2

1/2+t
(722

= 1/24+t—-1/2
1+t

Similarly for 0<t<1,we getr(t)*r(t)=1—t
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Convolution example

Result is a Triangular pulse

r(t)=r(t)

1+t,
1-t,

ift<-—1

if —1<t<0
if0<t<1
ift>-—1

F{r(t)} =sings) hence from the convolution theorem
F{r(t)*r(t)} =sinc(s)

2

15

1

0.5

signal aps(rourier transtorm)
100
80
60
N
20

/

\

0

-1 0 1 2 0 20 40
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Limiting convolutions

F{r(t)} =sings) = F{r(t)«r(t)*---xr(t)} =sinc'(s)

» n convolutions of a rectangular pulse produces a
function with FT given by sinc'(x), which tends to a
Gaussian as N — oo,

» The inverse FT of a Gaussian is also a Gaussian so
the limit of r(t)*r(t)*---xr(t) is a Gaussian pulse.

. S|gnal abs(l—ourler Iransrorm)
5 convolutions 2 100
1.5 80
60
1
40
0.5 LN 20

0 0
Transforr‘r_12l\lleth_c}ds & gignallProcezssing (AlgP MTH 1%843): IEE(AD% - p.37/54

Convolution example: interpolation

2

Ll

0.5
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Convolution example: interpolation

Fourier tfransformation of a piecewise linear function

f(t) = [; fi6(t—ti)] 1 () *1(t)

F(s) = [i fie‘izm“] siné(s)
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Properties: Diff. &:f(t) — (i2ms)"F(s)

d ©df .
—f — 2 qi2mst
T{dt (t)} Lat® @
/oo lim f(t +At) - f(t) efiZTIStdt
oo At—0 At

_ oo L [T _iomst _/°° _iomst
_Alm)m[/_wf(wm)e d- [ fHe ™ a

. F(s)d?™ _F(s) .
- AI:TO At o F(S)Allmo At

ei2TlSAt _ ei2TlSD

= F(s) %ézﬂst = i2msF(s)
t=0

and repeat (induction) for higher powers.
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Properties: Differentiation IT Example: FT of a Gaussian

F{(—i2rt)"f(t)} = £F(s) Another proof of the FT G(s) of a Gaussian g(t) =e ™.
Note that

g'(t) = —2mtg(t)
From the differentiation property
F{IO)} =i2nsG(s)
From the dual differentiation property
F{-i2mg(t)} = G(s)

iF{gt)} = G
-2msG(s) = G/(9)

Similar to previous result,
but with respect to inverse Fourier transform.

Standard DE solutions give G(s) = Ae ™, and the
constant A =1 can be derived from the s=0 term.

Transform Methods & Signal Processing (APP MTH 4043): lez@Q2 — p.41/54 Transform Methods & Signal Processing (APP MTH 4043): lezi2 — p.42/54

The s= 0 term is just the integral of the Gaussian g(t), and this can be proved to be 1, e.g.
see
http://en.w ki pedi a. or g/ wi ki / Gaussi an_i nt egr al
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http://en.wikipedia.org/wiki/Gaussian_integral

Some useful rules for FTs Some useful rules for FTs

real even function < real even transform

_ _ ” —i2m(—s)t
F=s) = /_m fte dt Magnitude of Fourier transform of a cosine function.

_ /w f(_t)e—iZTIStdt 10%°
1010
Evenness/Oddness of F(s) is related to the properties
of f(t). 10°
» even function < even fransform 107

» odd function < odd transform

-500 0 500
. . D ————— frequen_cy (kHZ) )
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Some useful rules for FTs

Fe) = [ fuera
— /o0 f*(t)efiZH(fs)tdt
— /0Q f*(_t)e—iZTlstdt

» real even function < real even transform
» real odd function < imaginary odd transform
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Properties: Existence

Sufficient conditions
» [ |f(t)|dt exists
» There are a finite number of discontinuities in f(-)
» f(-) has bounded variation
The Fourier transform exists for physical signals:
Some conditions above may be technically violated, e.g.
» DC current.
» infinite sin wave
> 3(X)

For first two, can multiply by term like e ®°, with small
a> 0 to make integrals exist.
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Properties: Invertible

If the conditions for existence are satisfied.
ft) = FH{F{f)}}
ft) = /m VW f(t)e‘izmtdt] g2t s

—00

Where f(t) is discontinuous, the equation should be
replaced by

%[f(ﬁ) +ft)] = FHF{IO}}
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Trigonometric basis

» similar to Fourier series: trigonometric functions
used as a basis.

» here, can't assume fixed periodicity
» hence must include all sins and cosines

» think of f(t) as containing a mix of periodic
functions with different periods

» result is a continuous frequency spectrum
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Measurement of spectra

The (continuous) Fourier transform allows us to examine
mathematically the spectra of continuous functions, but
is rarely useful in analyzing real signals. However, in
some cases we can observe the spectra of real signals

directly.
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Measurement of Spectra

» how can we use the Fourier fransform in practice?

» real signals are effectively continuous
> sound waves are made of atoms
> EM waves are made of photons

» how can we analyze frequencies?
> we don't have an analytic function
> we can't do the math directly
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Measurement of Spectra

We can measure spectra directly in some cases

» radio frequencies, use a spectrum analyzer
» old ones are analogue

» think of as a bank of filters for each frequency
> make copies of the signal

> filter each copy for a particular frequency
component

> one filter per component you want fo see
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Measurement of Spectra

We can measure spectra directly in some cases

» light (can use massively
parallel analogue devices)
> prism
> diffraction grating (a CD)
> Fabry-Perot
interferometer

Partially silvered
qlass plates

When focused by alens,
the interference fringes
form concentric circles

Fabry-
Perot

|...... higher arders toward center
etalon

m+1
.

WRAEAR
A

W

Condition for maximum

3 [ Multiple reflected
Incident lesl rays are out o_f phasze
Tlight d by a constant increment,

increasing the sharpness of the interference maximum.

2dcosc = mi
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Measurement of Spectra

We can measure spectra directly in some cases

» tides, "The Harmonic Analyzer" Kelvin,
analogues computation of coefficients of

A+Bsint +Ccost +Dsin2 +Ecos2

The tidal gauge, tidal harmonic analyzer, and tide predictor, in Kelvin,
Mathematical and Physical Papers (Volume VI), Cambridge 1911, pp 272-305.

http://ww. mat h. sunysb. edu/ ~t ony/ ti des/ anal ysi s. ht m
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http://www.math.sunysb.edu/~tony/tides/analysis.html

Measurement of Spectra

» The tidal gauge illustrates a point

» analogue devices
> are hard to build
> have limited resolution
> are inflexible
» digital devices are often better
> cheaper
> more flexible
» we need to consider transforms of digital data
> that's exactly what we'll do in the next lecture
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