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The leture onerns the de�nition and properties of the ontinuous Fourier transform. Theourse itself will be primarily oupied by the disrete Fourier transform, but the two are diretlyanalogous, and many of the properties are more straight-forward to prove in the ontinuousase.
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Continuous FourierTransforms

Fourier's Theorem is not only one of the mostbeautiful results of modern analysis, but it issaid to furnish an indispensable instrument inthe treatment of nearly every reonditequestion in modern physis. Lord Kelvin
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Jean Baptiste Joseph Fourier

Marh 21, 1768 �May 16, 1830

◮ son of a tailor (in Auxerre, Frane)

⊲ 12th of 15 hildren

◮ involved in the Frenh revolution

⊲ at one point was arrested

◮ 1798 Fourier joined Napoleon'sarmy in its invasion of Egypt assienti� adviser

⊲ helped in arhaeologialexplorations.

◮ 1802 made Prefet of Grenoble

⊲ work on heat propagation, andFourier series

◮ survived Napoleon's arrest, andreturn, and exile
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For more of Fourier's life see

http://turnbull.dcs.st-and.ac.uk/history/Mathematicians/Fourier.html
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Fourier seriesCan write a periodi funtion as an (in�nite) disretesum of trigonometri terms, e.g. for period 2π

f (x) =
1
2

a0 +
∞

∑
n=1

ancos(nx)+
∞

∑
n=1

bnsin(nx)

a0 =
1
π

Z π

−π
f (x)dx

an =
1
π

Z π

−π
f (x) cos(nx)dx

bn =
1
π

Z π

−π
f (x) sin(nx)dx

Transform Methods & Signal Processing (APP MTH 4043): lecture 02 – p.4/54

Note that Fourier series are NOT the Fourier transform (though they are related as we shallsee below).
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Fourier series as a representation

Fourier series is representing the set of funtions withperiod 2π in terms of the basis funtions cosand sin,exploiting orthogonality of these funtions

Z π

−π
cos(nx)dx = 0

Z π

−π
sin(nx)dx = 0

Z π

−π
cos(nx) cos(mx)dx = πδmn

Z π

−π
sin(nx) sin(mx)dx = πδmn

Z π

−π
sin(nx) cos(mx)dx = 0

δmn is the Kroneker delta, δmn =

{

1, if m= n
0, otherwise.
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Example: note the trigonometri formulae

cosθcosφ = [cos(θ−φ)+cos(θ+φ)]/2So for n,m∈ N, n 6= m

Z π

−π
cos(nx) cos(mx)dx =

1
2

Z π

−π
cos((n−m)x)+cos((n+m)x)dx

=
1
2

[

− sin((n−m)x)
(n−m)

− sin((n+m)x)
(n+m)

]π

−π

= 0For n,m∈ N, n = m

Z π

−π
cos2(nx)dx =

1
2

Z π

−π
1+cos(2nx)dx

=
1
2

[

x− sin(2nx)
2n

]π

−π

= π
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Complex Fourier series

Can write Fourier series in omplex form
f (x) =

∞

∑
n=−∞

Ane
inx

An =
1
2π

Z π

−π
f (x)e−inxdx

NB: einx = cos(nx)+ i sin(nx)
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Fourier series for other periods

For a funtion with period L, we need to sale the basisfuntions by 2π/L

f (x) =
∞

∑
n=−∞

Ane
i2πnx/L

An =
1
L

Z L/2

−L/2
f (x)e−i2πnx/L dx
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It is expeted that students of this ourse will already know how to use Fourier series.For more information on Fourier series see

http://mathworld.wolfram.com/FourierSeries.htmlFor an instrutive java applet see

http://www.jhu.edu/~signals/fourier2/index.html
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Example Fourier Series

Fourier series for the saw-tooth f (x) = x for x = [−L,L]Saw-tooth
−6 −4 −2 0 2 4 6

−2

−1

0

1

2
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For a funtion with period L

f (x) =
∞

∑
i=−∞

Anei2πnx/Lwhere for n 6= 0

An =
(−1)nL
−2iπn

A0 is a speial ase and A0 = 0. If we take the two omponents

Anei2πnx/L +A−ne−i2πnx/L =
L(−1)(n+1)

πn
ei2πnx/L −e−i2πnx/L

2i
=

L(−1)(n+1) sin(2πnx/L)

πnwe get

f (x) =
∞

∑
n=1

L(−1)(n+1) sin(2πnx/L)

πn
,whih is the standard Fourier series representation of the saw-tooth wave form f (x).
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Integral transforms

◮ An integral transform is a transform de�ned interms of an integral

f (t) →
Z

f (t)g(t,s)dt

◮ Map a funtion (say of time) to a funtion of s

◮ g(·) is alled the kernel of the transform

◮ notation (several alternatives)

⊲ T{ f (t);s} =
R

f (t)g(t,s)dt

⊲ F(s) =
R

f (t)g(t,s)dt, H(s) =
R

h(t)g(t,s)dt

⊲ F (s) =
R

f (t)g(t,s)dt, H (s) =
R

h(t)g(t,s)dt

⊲ f̃ (s) =
R

f (t)g(t,s)dt
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We will use several of these variants of notation in this ourse, and you will see other forms,usually as some kind of abbreviation. Part of the goal here is to get you used to some of thedifferent forms of notation you may ome aross in pratise.
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Fourier Transform

Fourier transform F(s) =

Z ∞

−∞
f (t)e−i2πstdtInverse transform f (t) =

Z ∞

−∞
F(s)ei2πstds

We are writing funtion f (t) as a ontinuous integral oftrigonometri funtions, weighted by F(s).
◮ think of as a representation of a funtion

◮ sines and osines are forming a basis

◮ integral transform with kernel funtion g(s, t) = e−i2πst
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Example: FT of a delta funtion

From the de�nition of FT

F {δ(t − t0)} =

Z ∞

−∞
δ(t − t0)e−i2πstdt

from the de�nition of a delta

Z ∞

−∞
f (t)δ(t − t0)dt = f (t0)

= e−i2πst0

Transform Methods & Signal Processing (APP MTH 4043): lecture 02 – p.11/54

Transform Methods & Signal Processing (APP MTH 4043): lecture 02 – p.11/54

Gaussian

f (x;µ,σ) =
1

σ
√

2π
e−(t−µ)2/2σ2
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Transform Methods & Signal Processing (APP MTH 4043): lecture 02 – p.12/54

The Gaussian (or normal) probability density is normalized so that its integral is one, i.e.

Z ∞

−∞
f (x;µ,σ)dx= 1.But in general a Gaussian is a funtion of the form

f (t;µ,a,b) = be−a(t−µ)2and we often use this slightly simpler form for signal proessing, or even simpler

f (t) = e−πt2
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Example: FT of a Gaussian

From the de�nition of FT

F
{

e−πt2
}

=

Z ∞

−∞
e−πt2

e−i2πst dt

=

Z ∞

−∞
e−π(t2+i2st)dt

= e−πs2
Z ∞

−∞
e−π(t+is)2

dt

= e−πs2
Z ∞

−∞
e−πu2

du

= e−πs2
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See

http://cnyack.homestead.com/files/afourtr/ftgauss.htmAtually the derivation above is a little �uffy. We really need to reognize that the integral isover a ontour in the omplex plane, and apply Cauhy's integral theorem: loosely stated,for a ontour integral of an analyti funtion f (z) with ontinuous partial derivatives around alosed path γ, then

I

γ
f (z)dz= 0The integral, after the substitution should really look like

lim
T→∞

Z T+is

−T+is
e−πu2

duHowever, if we form a losed urve around the obvious retangle then Cauhy gives us
Z T+is

−T+is
e−πu2

du=
Z T

−T
e−πu2

du−
Z T

T+is
e−πu2

du−
Z −T+is

−T
e−πu2

duWe an see that two parts of this go to zero, and the other part gives us the result we need.
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FT of some simple funtions

Funtion Transform

δ(t) 1

δ(t − t0) e−i2πt0s

r(t) sinc(s)

e−|t| 2
4π2s2+1

e−πt2
e−πs2

Funtion Transform
1 δ(t)

ei2πs0t δ(s−s0)

sinc(t) r(s)

2
4π2t2+1 e−|s|

e−πt2
e−πs2
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Deriving a Fourier TransformWe an derive a Fourier transform from srath, butthat an sometimes be hard work. It an be easier touse transforms we already know (and their properties).e.g. exploiting linearity (see later)

F {cos(2πs0t)} =
Z ∞

−∞
cos(2πs0t)e−i2πstdt

= F

{

1
2

[

e−i2πs0x +ei2πs0x
]

}

=
1
2

F
{

e−i2πs0x
}

+
1
2

F
{

ei2πs0x
}

=
1
2

δ(s+s0)+
1
2

δ(s−s0)

F {sin(2πs0t)} =
i
2

δ(s+s0)−
i
2

δ(s−s0)
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Remember that

◮ eix = cos(x)+ i sin(x)

◮ cos(x) = 1
2

(

eix +e−ix
)

◮ sin(x) = 1
2i

(

eix −e−ix
)

Note that Linearity means:

F {a f1(t)+b f2(t)} = aF { f1(t)}+bF { f2(t)}and from previous slides

F
{

ei2πs0t} = δ(s−s0)
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FTs of sin and os

Imag

Frequency, s

cos(t)

Real

F

Fsin(t)
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The Fourier Transform: de�nitionsMultiple possible de�nitionsFourier transform Inverse

F(s) =

Z ∞

−∞
f (t)e−i2πstdt f (t) =

Z ∞

−∞
F(s)ei2πstds

F(ω) =

Z ∞

−∞
f (t)e−iωt dt f (t) =

1
2π

Z ∞

−∞
F(ω)eiωt dω

F(ω) =
1√
2π

Z ∞

−∞
f (t)e−iωt dt f (t) =

1√
2π

Z ∞

−∞
F(ω)eiωt dω
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We will tend to use the �rst de�nition. The seond is typially used if we use frequeny units of

ω = 2πs in radians per seond, and we will use this de�nition in some parts of the the ourse.The third de�nition is sometimes prefered beause it is symmetri, but we won't use it here.
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Wave terminology

De�nition: Amplitude is the extent of a wavesosillation, e.g. a signal f (t) = Asin(t) has amplitude f (t).De�nition: Magnitude is the absolute value of amplitude,e.g. for f (t) = Asin(t) the amplitude is | f (t)|.De�nition: Power is the square of magnitude, e.g. for

f (t) = Asin(t) the power is p(t) = | f (t)|2.De�nition: RMS Power is the root mean squared power,given by

m=

√

lim
T→∞

1
2T

Z T

−T
| f (t)|2dt

For f (t) = Asin(t), the RMS power is A/
√

2, e.g. the RMSpower of a sin wave is 0.707times the peak value.
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RMS power of a sin wave

π

π2

Asin(t)

A

RMS power

2

π
2π

sin (t) = 1−cos(2t)
2
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RMS power of a sin wave

The sin wave is periodi so we may onsider
1
2π

Z π

−π
|Asin(t)|2dt = A2 1

4π

Z π

−π
1−cos(2t)dt

= A2 1
2π

[

Z π

0
1dt−

Z π

0
cos(2t)dt

]

= A2 1
2π

[π−0]

=
A2

2To get the RMS power, take the square root, resulting in

A/
√

2.
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Measuring power

◮ power is a square, so an take wide ranging values.

◮ use a log sale to measure

◮ ear itself 'hears' logarithmially and humans judgethe relative loudness of two sounds by the ratio oftheir intensities, a logarithmi behavior.

◮ the typial sale used is Deibels (dei- from ten,and Bel from Alexander Graham Bell).

◮ de�ned WRT a referene power level prefpower = 10 log10
p

pref
dB

◮ p = m2, so we may write power = 20 log10
m

mref
dB

◮ 3 dB orresponds to a fator of 2 in power
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The eye also pereives subjetive brightness as a logarithmi funtion of light intensity (�DigitalImage Proessing�, Gonzalez and Woods, p.39), but it is less ommon to use units of dB forlight intensity.
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Deibels and sounds Sound Pressure Sound IntensityExample Level (dB) (watts/m2)Snare drums, played hard at 6 inhes 150 100030m from jet airraft 140 100Threshold of pain 130 10Jak hammer 120 1Fender guitar ampli�er, full volume at 10 inhes 110 0.1Subway 100 0.0190 0.001Typial home stereo listening level 80 0.0001Kerbside of busy road 70 0.00001Conversational speeh at 1 foot away 60 10−6Average of�e noise 50 10−7Quiet onversation 40 10−8Quiet of�e 30 10−9Quiet living room 20 10−10Quiet reording studio 10 10−11Threshold of hearing for healthy youths 0 10−12
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For more information on sound pressure levels see

http://www.safetyline.wa.gov.au/institute/level2/course18/lecture54/
l54_03.asp
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Power Spetra

De�nition: The Power Spetrum of a signal f (t) is |F(s)|2,where F(s) is the Fourier transform,

F(s) =

Z ∞

−∞
f (t)e−i2πst dt

◮ The power spetrum de�nes the amount of power ateah frequeny.

◮ e.g. |F(0)|2 is referred to as the DC term.

◮ for real-valued signals the power spetrum is even

|F(−s)|2 = |F(s)|2(beause the Fourier transform of a real input willbe a Hermitian signal).
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Phase

2π

sin(t)

cos(t)

π

◮ the sin and osinefuntions have thesame frequeny
◮ cos(t) = sin(t +π/2)

◮ there is a phasehange of π/2

Imag

Frequency, s

cos(t)

Real

F

Fsin(t)
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Properties of the Fourier transform

Linearity: a f1(t)+b f2(t) → aF1(s)+bF2(s)Time shift: f (t − t0) → F(s)e−i2πst0Time saling: f (at) → 1
|a|F

(

s
a

)

Duality: F(t) → f (−s)Frequeny shift: f (t)e−i2πs0t → F(s+s0)Convolution: f1(t)∗ f2(t) → F1(s)F2(s)Differentiation I: dn

dtn f (t) → (i2πs)nF(s)Differentiation II: (−i2πt)n f (t) → dn

dsn F(s)Integration: R t
−∞ f (s)ds → 1

i2πsF(s)+πF(0)δ(s)
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Properties: Linearity

F {a f1(t)+b f2(t)} = aF1(s)+bF2(s)

Z ∞

−∞
[a f1(t)+b f2(t)]e

−i2πst dt

= a
Z ∞

−∞
f1(t)e

−i2πstdt+b
Z ∞

−∞
f2(t)e

−i2πstdt

= aF1(s)+bF2(s)

◮ very useful property
◮ we an use this to derive Fourier transform,e.g. for cosabove
◮ see more on linearity when we disuss �lters(leture 5-6)
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Properties: time shift

F { f (t − t0)} = F(s)e−i2πst0

Z ∞

−∞
f (t − t0)e

−i2πstdt =

Z ∞

−∞
f (t)e−i2πs(t+t0) dt

= e−i2πst0
Z ∞

−∞
f (t)e−i2πst dt

= e−i2πst0F(s)Note |F(s)e−i2πst0| = |F(s)|× |e−i2πst0| = |F(s)|So the magnitude of the FT is unhanged.This represents a phase hange. The higher thefrequeny, the larger the phase hange.
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Properties: Time saling

F { f (at)} = 1
|a|F

(

s
a

)

Z ∞

−∞
f (at)e−i2πstdt =

1
|a|

Z ∞

−∞
f (x)e−i2π(s/a)xdx

x = at
dt = 1

a dx

=
1
|a|F

( s
a

)
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This is one of the properties that lead to us equating the results of the Fourier transform withfrequeny.
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Properties: Duality

F {F(t)} = f (−s)Consider the Fourier transform of F(t):

Z ∞

−∞
F(t)e−i2πstdt =

Z ∞

−∞
F(t)ei2π(−s)t dt, the inverse trans.

= f (−s)

◮ the table of Fourier transforms above shows pairsof duals, e.g.

F {r(t)} = sinc(s) and F {sinc(t)} = r(t)
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Properties: Frequeny shift
F

{

f (t)e−i2πs0t
}

= F(s+s0)

Z ∞

−∞
f (t)e−i2πs0te−i2πst dt =

Z ∞

−∞
f (t)e−i2π(s+s0)t dt

= F(s+s0)

◮ used for signal modulation, e.g. FM radio

◮ simpler using a os funtion (see below)
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Properties: Modulation

F { f (t)cos(2πs0t)} = 1
2F(s−s0)+ 1

2F(s+s0)For proof, see freq. shift above noting cosx= 1
2

(

e−ix +eix
)
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Can use this to generate higher frequeny signals, or todemodulate signals.
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Alternative proof, use the property that cos(x)cos(y) = 1
2 [cos(x+y)+cos(x−y)]

y(t) = cos(2π fcarriert)cos(2π f t)

=
1
2

[cos(2π[ f + fcarrier]t)+cos(2π[ f − fcarrier]t)]When modulating a signal, we might then �lter out one of these, so that only the singleomponent remains.
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ConvolutionsWhat is a onvolution?

f (t)∗g(t) = [ f ∗g](t) =
Z ∞

−∞
f (u)g(t −u)du
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Convolution is ritial to understanding this ourse. You must make sure you understand whata onvolution is, and how the Fourier transform operates on it.Java applet that shows the ideas:

http://www.jhu.edu/~signals/convolve/index.html
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Properties: Convolution

F { f1(t)∗ f2(t)}→ F1(s)F2(s)

F { f (t)∗g(t)} = F

{

Z ∞

−∞
f (u)g(t −u)du

}

=

Z ∞

−∞

[

Z ∞

−∞
f (u)g(t −u)du

]

e−i2πst dt

=

Z ∞

−∞
f (u)

Z ∞

−∞
g(t −u)e−i2πstdt du

=

Z ∞

−∞
f (u)G(s)e−i2πsudu

= G(s)
Z ∞

−∞
f (u)e−i2πsudu

= F(s)G(s)
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Convolution example

Convolution of two retangular pulses r(t) where
r(t) = u(t +1/2)−u(t −1/2), and u(t) =

{

0, t < 0
1, t ≥ 0

r(t)∗ r(t) =

Z ∞

−∞
r(s) r(t −s)ds

=



































0, if t < −1
Z 1/2+t

−1/2
r(s) r(t −s)ds, if −1≤ t ≤ 0

Z 1/2

t−1/2
r(s) r(t −s)ds, if 0≤ t ≤ 1

0, if t > −1
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Convolution example

For −1≤ t ≤ 0, the onvolution r(t)∗ r(t) is

r(t)∗ r(t) =

Z 1/2+t

−1/2
r(s) r(t −s)ds,

=
Z 1/2+t

−1/2
1ds,

= [t]1/2+t
−1/2

= 1/2+ t −−1/2
= 1+ t,

−1/2 1/2

r(t) 1

t

Similarly for 0≤ t ≤ 1, we get r(t)∗ r(t) = 1− t
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Convolution example

Result is a Triangular pulse

r(t)∗ r(t) =



















0, if t < −1
1+ t, if −1≤ t ≤ 0
1− t, if 0≤ t ≤ 1
0, if t > −1

F {r(t)} = sinc(s) hene from the onvolution theorem

F {r(t)∗ r(t)} = sinc2(s)
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Limiting onvolutions

F {r(t)} = sinc(s) ⇒ F {r(t)∗ r(t)∗ · · ·∗ r(t)} = sincn(s)

◮ n onvolutions of a retangular pulse produes afuntion with FT given by sincn(x), whih tends to aGaussian as n→ ∞.

◮ The inverse FT of a Gaussian is also a Gaussian sothe limit of r(t)∗ r(t)∗ · · ·∗ r(t) is a Gaussian pulse.5 onvolutions
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Convolution example: interpolation
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Convolution example: interpolation

Fourier transformation of a pieewise linear funtion

f (t) =

[

n

∑
i=1

fiδ(t − ti)

]

∗ r(t)∗ r(t)

is

F(s) =

[

n

∑
i=1

fie
−i2πsti

]

sinc2(s)
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Properties: Diff. dn

dtn f (t) → (i2πs)nF(s)

F
{

dn

dtn f (t)
}

= (i2πs)nF(s)

F

{

d
dt

f (t)

}

=

Z ∞

−∞

df
dt

e−i2πstdt

=

Z ∞

−∞
lim

∆t→0

f (t +∆t)− f (t)
∆t

e−i2πst dt

= lim
∆t→0

1
∆t

[

Z ∞

−∞
f (t +∆t)e−i2πstdt−

Z ∞

−∞
f (t)e−i2πstdt

]

= lim
∆t→0

F(s)ei2πs∆t −F(s)
∆t

= F(s) lim
∆t→0

ei2πs∆t −ei2πs0

∆t

= F(s)
d
dt

ei2πst

∣

∣

∣

∣

t=0

= i2πsF(s)and repeat (indution) for higher powers.
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Properties: Differentiation II

F {(−i2πt)n f (t)} = dn

dsn F(s)

Similar to previous result,but with respet to inverse Fourier transform.
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Example: FT of a Gaussian

Another proof of the FT G(s) of a Gaussian g(t) = e−πt2.Note that

g′(t) = −2πtg(t)From the differentiation property
F {g′(t)} = i2πsG(s)From the dual differentiation property

F {−i2πtg(t)} = G′(s)

iF {g′(t)} = G′(s)

−2πsG(s) = G′(s)Standard DE solutions give G(s) = Ae−πs2, and theonstant A = 1 an be derived from the s= 0 term.
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The s= 0 term is just the integral of the Gaussian g(t), and this an be proved to be 1, e.g.see
http://en.wikipedia.org/wiki/Gaussian_integral
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Some useful rules for FTs

F(−s) =

Z ∞

−∞
f (t)e−i2π(−s)t dt

=

Z ∞

−∞
f (−t)e−i2πstdt

Evenness/Oddness of F(s) is related to the propertiesof f (t).

◮ even funtion ⇔ even transform

◮ odd funtion ⇔ odd transform
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Some useful rules for FTs

F∗(s) =

Z ∞

−∞
f ∗(t)ei2πstdt

=

Z ∞

−∞
f ∗(t)e−i2π(−s)t dt

=

Z ∞

−∞
f ∗(−t)e−i2πstdt

◮ real even funtion ⇔ real even transform
◮ real odd funtion ⇔ imaginary odd transform
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Some useful rules for FTsreal even funtion ⇔ real even transformMagnitude of Fourier transform of a osine funtion.
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Properties: Existene

Suf�ient onditions

◮

R ∞
−∞ | f (t)|dt exists

◮ There are a �nite number of disontinuities in f (·)
◮ f (·) has bounded variationThe Fourier transform exists for physial signals:Some onditions above may be tehnially violated, e.g.

◮ DC urrent.

◮ in�nite sin wave

◮ δ(x)For �rst two, an multiply by term like e−ax2, with small

a > 0 to make integrals exist.
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Properties: Invertible

If the onditions for existene are satis�ed.
f (t) = F −1{F { f (t)}}

f (t) =

Z ∞

−∞

[

Z ∞

−∞
f (t)e−i2πst dt

]

ei2πstds

Where f (t) is disontinuous, the equation should bereplaed by

1
2
[ f (t+)+ f (t−)] = F −1{F { f (t)}}
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Trigonometri basis

◮ similar to Fourier series: trigonometri funtionsused as a basis.

◮ here, an't assume �xed periodiity

◮ hene must inlude all sins and osines

◮ think of f (t) as ontaining a mix of periodifuntions with different periods

◮ result is a ontinuous frequeny spetrum

Transform Methods & Signal Processing (APP MTH 4043): lecture 02 – p.48/54

Transform Methods & Signal Processing (APP MTH 4043): lecture 02 – p.48/54

Measurement of spetra

The (ontinuous) Fourier transform allows us to examinemathematially the spetra of ontinuous funtions, butis rarely useful in analyzing real signals. However, insome ases we an observe the spetra of real signalsdiretly.
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Measurement of Spetra

◮ how an we use the Fourier transform in pratie?

◮ real signals are effetively ontinuous

⊲ sound waves are made of atoms

⊲ EM waves are made of photons

◮ how an we analyze frequenies?

⊲ we don't have an analyti funtion

⊲ we an't do the math diretly
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Measurement of Spetra

We an measure spetra diretly in some ases
◮ radio frequenies, use a spetrum analyzer
◮ old ones are analogue

◮ think of as a bank of �lters for eah frequeny
⊲ make opies of the signal
⊲ �lter eah opy for a partiular frequenyomponent
⊲ one �lter per omponent you want to see
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Measurement of Spetra

We an measure spetra diretly in some ases

◮ light (an use massivelyparallel analogue devies)

⊲ prism

⊲ diffration grating (a CD)

⊲ Fabry-Perotinterferometer
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Measurement of Spetra

We an measure spetra diretly in some ases
◮ tides, �The Harmoni Analyzer� Kelvin,analogues omputation of oef�ients of

A+Bsint +Ccost +Dsin2t +Ecos2tThe tidal gauge, tidal harmoni analyzer, and tide preditor, in Kelvin,Mathematial and Physial Papers (Volume VI), Cambridge 1911, pp 272-305.

http://www.math.sunysb.edu/~tony/tides/analysis.html
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Measurement of Spetra

◮ The tidal gauge illustrates a point

◮ analogue devies

⊲ are hard to build

⊲ have limited resolution

⊲ are in�exible

◮ digital devies are often better

⊲ heaper

⊲ more �exible

◮ we need to onsider transforms of digital data

⊲ that's exatly what we'll do in the next leture
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