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This leture onsiders real signals (whih are almost all disrete) and the Disrete FourierTransform (DFT), and its properties.

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.1/80

Disrete signals

In theory there is no differene betweentheory and pratie. In pratie there is.Yogi Berra
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Disrete signals

Real signals (these days) are disrete

◮ Moore's law (speed of digital hardware inreases bya fator of two every 18 months, or the number oftransistors on a hip doubles, or the ost halves).�Cramming more omponents into integrated iruits�, GordonE. Moore, Eletronis, Vol. 38, No. 8, April, 1965.

◮ Easier/heaper to use standard DSP solution.e.g. CD players � we an get nominally betterresults from a LP reord, and a really goodplayer, but CD's ost orders of magnitudeless for almost indistinguishable results.

◮ If it isn't heap enough today, it will be in a year.
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Moore's LawMoore's law: the speed of digital hardware inreases bya fator of two every 18 months, or the number oftransistors on a hip doubles, or the ost halves.
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Atually looks more like a fator of 2 every 2 years.
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Intel's pages on Moore's law:

http://www.intel.com/technology/mooreslaw/index.htm
ftp://download.intel.com/research/silicon/moorespap er.pdfOther links to Moore's law:

http://en.wikipedia.org/wiki/Moore’s_law
http://www.thocp.net/biographies/papers/moores_law. htm
http://www.firstmonday.org/issues/issue7_11/tuomi/
http://www.hyperdictionary.com/computing/moore’s+la w
http://www.physics.udel.edu/wwwusers/watson/scen103 /intel.html
http://www.ziplink.net/~lroberts/Forecast69.htm
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Gates's lawGates's Law: The speed of software halves every 18months.Gates's law does not apply to DSPs (they use smallembedded OSes).

Parkinson's Law of Data: Data expands to �ll the spaeavailable for storageParkinson's law of data does typially apply. As hips getfaster, we sample at higher resolution, and fastersampling rates...
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Gate's law isn't entirely a joke, e.g. see

http://hubpages.com/hub/_86_Mac_Plus_Vs_07_AMD_Dual Core_You_Wont_
Believe_Who_Wins
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Real signals
In theory there is no differene betweentheory and pratie. In pratie there is.Yogi BerraReal data is

◮ �nite (integrals onvergene muh easier)
◮ disrete time

◮ disrete valued
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Disrete time

◮ Real signals are disrete-time

◮ We an sample a ontinuous funtion to get adisrete approximation
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The x-axis is disretised, but the y values are still exat. We have sampled the funtion at aset of sample points.
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Quantization: disrete-value
◮ Real signals are disrete-valued

◮ Analogue to Digital onversion: sample in time, andquantise
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Now the y-axis is also disretised, so now we only have an approximation of the funtion,reorded only at ertain time-points alled sample points.
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Approximation

◮ Faster sampling => better approximation

◮ More details later
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Given a set of sample points, we an try to reonstrut the original ontinuous signal in anumber of ways (this is alled interpolation). The illustration is a simple (but rude) methodwhere we assume the signal takes the value of the sample until we get to the next sample.This is sometimes alled nearest neighbor, or pieewise onstant interpolation.
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Approximation

◮ Finer quantization => better approximation
◮ More details later
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Approximation

◮ Longer data sets => better approximation

◮ More details later
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The plot in the example shows a segment of a osine funtion. However, over the rangedisplayed the funtion looks onstant, or maybe there is a small linear derease.
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Sampling
Sampling produes a new time series, with disreteindex, e.g.

x(n) = f (nts)where ts is the sampling interval

The sampling frequeny is fs = 1/ts.e.g. sampling frequeny for CDs is 44.1 kHz

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.12/80

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.12/80



Aliasing
A ritial issue for sampling is aliasing

Samples might be aused by different underlying signals.
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The plot shows three different sinusoids, but eah produes exatly the same sample valuesat the points shown. This type of ambiguity is alled aliasing (think of Superman's alias �Clark Kent � they are really the same person).
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Another example of aliasing

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.14/80

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.14/80



Aliasing: time domain view

◮ Signal with frequeny f0, given by f (t) = sin(2π f0t)

◮ Sampling interval ts, and sampling frequeny fs = 1/ts.

◮ Sampled signal is x(n) = f (nts) = sin(2π f0nts)

◮ We an always add 2πm (where m is an integer) to asin funtion without impat, e.g.

x(n) = sin(2π f0nts)

= sin(2π f0nts +2πm)

= sin

(

2π
[

f0 +
m
nts

]

nts

)

= sin(2π [ f0 + fsk]nts) where m = kn.So there is an ambiguity in x(n) about frequenies

f0 + fsk for integer k.
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Aliasing: frequeny domain view

Consider a delta train or Dira omb de�ned by
d(t) =

∞

∑
n=−∞

δ(t −n)

We an onsider sampling of a funtion f (t) to beequivalent to taking the produt with a delta train, e.g.

x(t) = d(t/ts) f (t)From the onvolution, and the duality theorems, we ansee that the FT of x(t) will be the onvolution of the FTsof d(t) and f (t).The FT of the delta train is F {d(t/ts)} = |ts|d(tss)
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Poisson summation formula sketh of why F {d(t/ts)} = |ts|d(tss)

D(s) = F {d(t)}

=
Z ∞

−∞

∞

∑
n=−∞

δ(t −n)e−i2πst dt

= 1+2
∞

∑
n=1

0.5
[

e−i2πsn + ei2πsn]

= 1+2
∞

∑
n=1

cos(2πsn)

For s an integer, eah term in the sum is 1, and so the sum diverges.For s, not an integer, the sum looks like the integral R π
−π cos(x) dx = 0.
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Delta trainA train of delta funtions d(t/ts) = ∑∞
n=−∞ δ(t/ts −n) hasFourier transform whih is also a delta train, e.g.

F {d(t/ts)} = |ts|d(tss)
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The above signal might variously be alled a delta train, a delta omb, a Dira omb, a Diratrain or some other variant. Comb omes from the shape (like a omb), whereas train omesfrom the fat that we have a train of deltas in sequene.Braewell also uses the Cyrilli letter shah, , beause of its shape.
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Aliasing: frequeny representation
x(t) = d(t/ts) f (t) ⇒ X(s) = d(tss)∗F(s)Convolution of a delta train with a funtion looks like:
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Beause the bloks aren't overlapping, we an use the fat that we know the blue spetrumis �band limited� and restrit out attention in the Fourier domain to just this part.
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Aliasing: frequeny representation

x(t) = d(t/ts) f (t) ⇒ X(s) = d(tss)∗F(s)Convolution of a delta train with a funtion looks like:
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Even though the input signal is band limited, the resulting spetra overlap, beause themaximum frequeny fc > 1 = fs/2. The overlapping is a problem whih we must avoid.
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Nyquist sampling theorem

Assume the spetrum of the signal is zero above aritial frequeny fc. We all this the bandwidth of thesignal.For sampling frequenies fs > 2 fc, the spetra abovewon't overlap. If fs < 2 fc aliasing beomes a problem.

◮ the ritial sampling rate referred to by, e.g. theNyquist rate, or Shannon (1949) or Whittaker(1935) sampling theorem.
◮ the sampling frequeny must be greater than twiethe highest frequeny present in the signal

◮ need to bandlimit the input signal before sampling

◮ bandwidth does not need to be entered on zero Hz.
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Example
Analogue signal with entral frequeny 20 MHz, and 5MHz bandwidth.

fc

5 10 2015−20 −15 −10 −5−25 25

B=5MHz

frequency (MHz)

po
w

er

analogue signal spectrum

To inlude entire spetrum, we need to sample at

2×22.5 = 45MHz.
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Example: Sample at 17.5 MHz
fc

fs sf =17.5MHz

5 10 2015−20 −15 −10 −5−25 25

B=5MHz

frequency (MHz)

sampled signal spectrum
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er

analogue signal spectrum

5 10 2015−20 −15 −10 −5−25 25
f  /2s

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.22/80

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.22/80



Example: Sample at 15 MHz

fc

fs sf =15MHz
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Example: Sample at 11.25 MHz
fc

sf =11.25MHzfsfs
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frequency (MHz)

sampled signal spectrum

po
w

er

analogue signal spectrum

5 10 2015−20 −15 −10 −5−25 25
f  /2s
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Example: Sample at 7.5 MHz

fc

sf =7.5MHzfs fs fs fs
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5 10 2015−20 −15 −10 −5−25 25
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Bandlimiting

When sampling from real signals, one must bandlimit theinput!

Analogue

Filter

Analogue to
f(t) x(n)Bandpass Digitial (A/D)

ConvertorShouldn't push the boundaries with sampling, and �lters

◮ analogue �lter might not be ideal
◮ sample lok generation instabilities

◮ imperfetions in A/D quantization.Hene, inlude guard bands around bandwidth ofinterest.
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Some more sampling theory

Shannon Sampling Theorem:

“If a function f (t) contains no frequencies higher thanW cycles
per second, it is completely determined by giving its ordinates at
a series of points spaced(1/2W ) seconds apart.”

◮ so we an reonstrut f (t) from its samples

⊲ if the signal is bandlimited

⊲ samples spaed (1/2W )

⊲ Hene Nyquist result
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See:Claude Shannon, �Communiations in the presene of noise�, Pro.IRE, 37, pp.10�21, 1949.H.Nyquist, �Certain topis in telegraph transmission theory�, AIEE Trans., 47, pp.617�644,1928.
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Shannon theoremProof sketh: Assume funtion is bandlimited so
F(s) = 0 for |s| > W , then the IFT is

f (t) =

Z ∞

−∞
F(s)ei2πst ds =

Z W

−W
F(s)ei2πst ds

If instead, we make, F periodi, with period 2W then wean �nd a Fourier series for it, e.g.
F(s) =

∞

∑
n=−∞

Aneiπns/W

where,

An =
1

2W

Z W

−W
F(s)e−iπns/W ds =

1
2W

f
( n

2W

)
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Shannon theoremProof sketh:We an represent F(s) perfetly with the Fourier seriesoef�ients An, but these are just proportional to thefuntion sampled at uniform intervals, e.g. An ∝ f
(

n
2W

).Hene, the samples ompletely de�ne the FT F , andhene the funtion f . 2
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Shannon interpolation

Reonstrution of original signal from IFT
f (t) =

Z W

−W
F(s)e−i2πst ds

=

Z W

−W

∞

∑
n=−∞

Aneiπns/W ei2πst ds

=
∞

∑
n=−∞

An

Z ∞

−∞
r(s/2W )ei2πs(−t+n/2W) ds

=
∞

∑
n=−∞

2WAn

Z ∞

−∞
r(−s)ei2πs(2Wt−n) ds

=
∞

∑
n=−∞

f
( n

2W

)

sinc(2Wt −n)
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The last step follows beause

◮ The IFT of r(s) is sinc(t)

◮ When t = m/2W for m an integer, then 2Wt −n is also an integer m−n. Note that

sinc(m−n) = δmn.

◮ Hene at those points we get

f (m/2W ) =
∞

∑
n=−∞

2WAnsinc(2Wt −n) =
∞

∑
n=−∞

2WAnδmn = 2WAm
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs = 2W , or

ts = 1/2W , then the sample points would be

f
( n

2W

)

The summation

f (t) =
∞

∑
n=−∞

f
( n

2W

)

sinc(2Wt −n)

The above formula represents a �onvolution� of thesampled signal with a sincfuntion. We will learn aboutonvolutions later, but note that this onvolution ats to(perfetly) �lter out high frequenies.
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Digital to Analogue onverter

Interpretation

◮ onvolution with sin

◮ equivalent to ideal analogue low-pass �lter
reconstructed functionsamples

ideal

lowpass
analogue

◮ this is essentially what a Digital to Analogueonverter tries to do
◮ have to build analogue �lter � hard to make it ideal
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A Digital-to-Analogue onverter is sometimes abbreviated to a D-to-A onverter, or DAC.The samples are read into the DAC, whih must �rst onvert these into ontinuous voltages.This is typially done using a type of �store and hold� operation. The sample value is helduntil the next sample, so that the output is a piee-wise onstant urve (that looks a bit likea stairase). The mehanism to perform this step is sometimes alled a lath, beause itlathes onto values.The green (dashed) urve shows the original signal, whih has been sampled at the bluedots. The new analogue signal is represented by the blue line segments.Obviously, the stairase urve is only a rude approximation to the original smooth urve. Weget bak the original urve by onvolving �ltering the signal with a (preferably) ideal low-pass�lter, that smooths the urve, and removes the nasty harmonis introdued by the steps.Perfet analogue �lters are unrealizable. Even good analogue �lters are expensive(ompared to digital �lters) so often digital triks (e.g. upsampling) are used before the DAC,to make this step easier.For an intuitive desription of some of the issues see

http://www.audioholics.com/education/audio-formats- technology/
exploring-digital-audio-myths-and-reality-part-1 .
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Quantization: disrete-value

Quantise real number values so they an be representedon a omputer (or DSP) in a binary format. This is theessene of �digital� tehnology.
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Some bakground: all digital data is represented as numbers, e.g. the data on a CD is represented asnumbers. The numbers are usually represented in some binary format, for instane, we might write anumber in terms of binary �bits� where eah bit is either 0 or 1

0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111We would often use an extra bit at the start to indiate sign, e.g.

4 = 0100

−4 = 1100Note that, eah number an also be mapped to a new value, e.g. for the uniform quantization shownabove, the values might be mapped by taking δ×n where n is the number represented by the binary digits.Note the above approah is alled ��xed point�, whih is often used in DSP in preferene to ��oating point�numbers often used more generally. Arithmeti for �xed point is easier, and there are some other goodarguments for using it when you have a limited number of bits.
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Dynami range

Dynami range expresses the range of values we anrepresent in our digital format, e.g.
◮ assume �xed point representation with b bits.
◮ largest value representable is (2b −1)δ

◮ smallest value representable is δ

◮ dynami range = 20log10
(2b−1)δ

δ ≃ b20log102 = 6.02b dB

◮ 6 dB per bitCD's use 16 bit �xed point, so the dynami range of a CDreorded sound is approximately 16×6 = 96dB.Compare to somewhere between 50-70 dB for LPs,depending on the quality of the pressing.
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There is a fair bit more of interest here � wewill talk more about it lose to the end of the leture.For instane, there is some onfusion about the role of the signal representation in theabove alulation, for instane CD's use 16 bit �xed point, with one bit used for sign,and 15 bits for value so maybe the dynami range for CDs should be 90dB, e.g. see

http://www.hydrogenaudio.org/forums/lofiversion/ind ex.php/t45165.htmlThe real answer is that the above alulation is a lumsy approximation, but it is often used asa rule of thumb to get a ball-park �gure. The �gures quoted for CD dynami range vary from98dB (using a slightly better approximation to the above) to muh signi�antly lower valuesusing more aurate modelling of the possible signals you an obtain with real hardware.
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Dynami range: examples

When the signal just �lls the range of possible values,the maximum amplitude of the signal will be (2b −1)δ.
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The smallest signal (other than zero) that we anrepresent has maximum amplitude δ.
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Photographers use terms other than dynami range (e.g. exposure range, luminosity range,f-stops, et.).

http://www.cambridgeincolour.com/tutorials/dynamic- range.htmAlthough the terminology was often developed for analogue photography, its sometimes nowused for digital ameras. Most digital ameras use a 10 to 14-bit A/D onverter (the CCD),but typial image formats use 8 bits for eah olor. The total number of bits is therefore 24,but in terms of �intensity� we have about 8 bits available.TVs and omputer monitors often use terminology like ontrast ratio. For exampleBits Dynami range (approx) Contrast ratio8 48 dB 256:112 72 dB 4096:116 96 dB 65536:1
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Dynami range of the human sensesHuman senses aren't really digital, but for purposes ofomparison we will onsider them here. They are prettyamazing.

◮ We have already seen that the human ear has about130 dB dynami range.

◮ The human eye has about 100 dB dynami range.Although the dynami range is very large, its importantto note that our senses an't ahieve this rangesimultaneously.

◮ Loud sounds an mask quieter sounds

◮ Our eye needs time to adjust to the level ofbrightness � the range of ontrasts is ansimultaneously pereive is muh smaller.

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.36/80

Ear:
http://web.mit.edu/2.972/www/reports/ear/ear.html
http://www.silcom.com/~aludwig/EARS.htm
http://hyperphysics.phy-astr.gsu.edu/Hbase/sound/ea rsens.html
http://en.wikipedia.org/wiki/EarEye:
http://en.wikipedia.org/wiki/EyeDigital Image Proessing, Gonzalez and Woods, pp. 35�44.
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Death of Dynami Range

In reent year there is a trend in Pop musi to aim for�louder� musi at the expense of dynami range.

1950 1960 1970 1980 1990 2000
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See

http://georgegraham.com/compress.html
http://en.wikipedia.org/wiki/Loudness_war
http://www.cdmasteringservices.com/dynamicrange.htm
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Introdued noiseThe noise introdued by quantization is of the order of δthe smallest value representable value. We want toompute the SNR (Signal to Noise Ratio).
◮ assume �xed point representation with b bits.
◮ noise is of the order of δ.
◮ SNR depends on loading fator.

⊲ lightly loaded, then δ is relatively large, and soSNR is small.
⊲ fully loaded, then SNR is similar to dynamirange (6 dB per bit).
⊲ overloaded, lipping ours, and SNR drops.More aurate alulations in �Understanding DigitalSignal Proessing�, Lyons.
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Quantization noise notes

When the signal fully loads range of possible values, themaximum amplitude of the signal will be (2b −1)δ

0 1000 2000 3000 4000 5000 6000
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As long as lipping doesn't our, then the errors will beof order δ, but this is relatively larger for small signals
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Clipping
If the signal is too large we get lipping, whih results inlarge amounts of quantization noise, e.g.

0 1000 2000 3000 4000 5000 6000
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0
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Sometimes lipping is used deliberately to alter sounds,for example in a guitar amp, lipping is used to produedistortion (e.g. for heavy-metal musi). However,lipping is usually very bad.
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BTW, guitar amps are often analogue ampli�ers, and so don't �lip� in quite the way desribedabove.
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Example
Compat Diss (CDs) are reorded

◮ using 16 bits

◮ 44.1 kHz

◮ so that they reord sound frequenies up to 22.05kHz with a theoretial dynami range ≃ 96dB.

◮ Human hearing goes up to about 15 kHz

◮ LPs have at most 70 dB dynami range, so CDsshould be effetively perfet.

⊲ audiophiles argue about this

⊲ some say you lose upper harmonis (not audiblebut effet tone), or perhaps you loose transient?

⊲ but I an't tell the differene
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◮ most onsumer audio gear will have a noise �oor signi�antly worse than 90dB soarguing about the preise value given 16 bits is not all that useful. So dynamirange/quantization noise doesn't need more than 16 bits.

◮ 22.05kHz should have all audible frequeniesSound Pressure Sound IntensityExample Level (dB) (watts/m2)Snare drums, played hard at 6 inhes 150 1000Fender guitar ampli�er, full volume at 10 inhes 110 0.1Typial home stereo listening level 80 0.0001Conversational speeh at 1 foot away 60 10−6Quiet onversation 40 10−8Quiet reording studio 10 10−11Threshold of hearing for healthy youths 0 10−12For some information on audio equipment, and pereption see
http://www.silcom.com/~aludwig/EARS.htm
http://www.cco.caltech.edu/~boyk/spectra/spectra.ht m
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Example: extreme audio

Some audio formats propose 96 kHz sampling, at 24bits. Ignoring audiophile fantasies, why would I wantbetter digital reordings?

◮ Even if you an't hear it, what about in the studio.In mixing, noise from multiple inputs ould add toinrease noise �oor.
◮ When an audio signal is dithered to removestruture from the quantization noise, this adds alittle noise, so its helpful to have a lower noise �oorto start with when reording audio.

◮ Stereo imaging: requires very �nely adjustedtime-of-arrival of wavefronts whih might bedistorted by sampling???
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Sampling at 44.1kHz, the sample interval is 1/44100 = 0.000022676 seonds.At ground level and at 0o C the speed of sound is approximately 331.5 meters per se-ond. So in one sample, a soundswavewill havemoved 0.007517007meters, or about 7.5mm.The wavelength of the note we all A=440Hz. proves to be about 753 mm. So the distortionin one sample at A is about 1% of the wavelength. For a very low note, e.g. A=55Hz, it wouldbe more like 8%.Is this enough to impat stereo imaging � I don't know?
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Disrete FourierTransform

Mathematis ompares the most diversephenomena and disovers the seret analogiesthat unite them. Jean Baptiste Joseph Fourier
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Disrete transformationDisrete-time transformation

◮ Disrete Fourier transform

◮ Disrete Cosine (and sin) transforms
◮ Disrete Wavelet transform
◮ Z-transformDisrete-value transformation
◮ Probability generating funtion
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Disrete Fourier Transformation

Continuous Fourier transform F(s) =

Z ∞

−∞
f (t)e−i2πst dtBut note that for a �nite length, disrete-time signal, itan be written as

x(t) =
N−1

∑
n=0

f (nts)δ(t −nts)

The Fourier transform an then be written

X(s) =
N−1

∑
n=0

f (nts)e
−i2πsnts

The result is simpler to ompute, but its still redundant.
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Disrete Fourier TransformationIf we have N data points, we would like a (frequenydomain) representation that only needs N data points aswell. Hene no redundany.Use s = k
Nts

for k = 0,1, . . . ,N −1 and we get
X(k) =

N−1

∑
n=0

x(n)e−i2πkn/N,

where x(n) are the N disrete samples from theontinuous time proess.This is the Disrete Fourier Transform (DFT)
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Inverse DFTDFT

X(k) =
N−1

∑
n=0

x(n)e−i2πkn/N,

Inverse DFT (IDFT)

x(n) =
1
N

N−1

∑
k=0

X(k)ei2πkn/N,
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Examples (i)

Take x(n) = (1,0,0,0)

X(k) = ∑N−1
n=0 x(n)e−i2πkn/N

X(0) = e−i2π0/4 = 1
X(1) = e−i2π0/4 = 1
X(2) = e−i2π0/4 = 1
X(3) = e−i2π0/4 = 1So X(k) = (1,1,1,1)
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Examples (i) IDFT

Take X(k) = (1,1,1,1)

x(n) = 1
N ∑N−1

n=0 X(k)ei2πkn/N

x(0) = 1
4

(

e−i2π0/4 + e−i2π0/4+ e−i2π0/4+ e−i2π0/4
)

= 1
4 (1+1+1+1) = 1

x(1) = 1
4

(

e−i2π0/4 + e−i2π1/4+ e−i2π2/4+ e−i2π3/4
)

= 1
4 (1+ i−1− i) = 0

x(2) = 1
4

(

e−i2π0/4 + e−i2π2/4+ e−i2π4/4+ e−i2π6/4
)

= 1
4 (1−1+1−1) = 0

x(3) = 1
4

(

e−i2π0/4 + e−i2π3/4+ e−i2π6/4+ e−i2π9/4
)

= 1
4 (1− i−1+ i) = 0So x(n) = (1,0,0,0)
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Examples (ii)

Take x(n) = (0,1,0,0)

X(k) = ∑N−1
n=0 x(n)e−i2πkn/N

X(0) = e−i2π0/4 = 1
X(1) = e−i2π1/4 = e−iπ/2 = −i
X(2) = e−i2π2/4 = e−iπ = −1
X(3) = e−i2π3/4 = e−iπ3/2 = iSo X(k) = (1,−i,−1, i)
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Examples (iii)

Take x(n) = (1,1,0,0)

X(k) = ∑N−1
n=0 x(n)e−i2πkn/N

X(0) = e−i2π0/4 + e−i2π0/4 = 1+1 = 2
X(1) = e−i2π0/4 + e−i2π1/4 = e0 + e−iπ/2 = 1− i
X(2) = e−i2π0/4 + e−i2π2/4 = e0 + e−iπ = 0
X(3) = e−i2π0/4 + e−i2π3/4 = e0 + e−iπ3/2 = 1+ iSo X(k) = (2,1− i,0,1+ i)
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DFT basisOne again we are simply hanging basis, when weperform the transform (or its inverse).The basis funtions are a disrete set of sin and osinefuntions.Note, now we are operating in a �nite dimensional spae

R
N, so we an write the transform as

X = Ax analysis

The inverse transform is just
x = A−1X synthesisWhere both x and X are just vetors in R

N .
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DFT transform matrix

X = Ax

A =





















1 1 1 · · · 1
1 e−i2π1/N e−i2π2/N · · · e−i2π(N−1)/N

1 e−i2π2/N e−i2π4/N · · · e−i2π2(N−1)/N

1 e−i2π3/N e−i2π6/N · · · e−i2π3(N−1)/N... ... ... ...

1 e−i2π(N−1)/N e−i2π2(N−1)/N · · · e−i2π(N−1)(N−1)/N
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Examples (i)

Take x(n) = (1,0,0,0)

X =











1 1 1 1
1 e−i2π1/4 e−i2π2/4 e−i2π3/4

1 e−i2π2/4 e−i2π4/4 e−i2π6/4

1 e−i2π3/4 e−i2π6/4 e−i2π9/4





















1
0
0
0











=











1
1
1
1
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Frequeny resolution

Frequenies of basis funtions are k = 0,1,2, . . . ,(N −1)yles over the data set. If the data set has N samplesat sampling frequeny fs, then its duration is T = N/ fs.To onvert from data units to absolute units, we take

k/T = k fs

NFrequeny resolution is fs

N

◮ higher sampling frequenies redue frequenyresolution

◮ longer data, improves frequeny resolution
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Getting units right

Note that absolute frequeny depends on samplefrequeny fs, so we need to onvert.The omponent X(m) will orrespond to frequeny
X(m) ≡ F

(

m fs

N

)

Output magnitude of DFT will be amplitude of sin wavesignal A times N/2. Alternative de�nitions of DFT exist

X(k) =
1
N

N−1

∑
n=0

x(n)e−i2πkn/N, x(n) =
N−1

∑
n=0

X(k)ei2πkn/N

X(k) =
1√
N

N−1

∑
n=0

x(n)e−i2πkn/N, x(n) =
1√
N

N−1

∑
n=0

X(k)ei2πkn/N
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e.g. Given we sample at 20 kHz (i.e. ts = 0.05ms) for 5 seonds (i.e. N = 100,000), and wemeasure frequeny ontext at X(20), i.e. 20 yles/measurement period, then the frequenyof the original signal will be

20×20,000
100,000

= 4HzNote that we are more about relative magnitudes, not absolute values, so the differentsalings in the DFT don't really matter. Exept on lass exerise solutions :-)
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MatlabNote, indexes in Matlab run from 1 to N (not 0 to N −1).

fft(x(n)) = X(k) =
N

∑
n=1

x(n)e−i2π(k−1)(n−1)/N, k = 1, . . . ,N.

ifft (X(k)) = x(n) =
1
N

N

∑
k=1

X(k)ei2π(k−1)(n−1)/N, n = 1, . . . ,N.

X(1) is the DC term, X(n) is the fs term. To plotsymmetri power spetrum use, e.g.

f_s = 1000;
f_0 = 100;
x = 1:1/f_s:10;
y = sin(2 * pi * f_0 * x);
semilogy(-f_s/2+f_s/N:f_s/N:f_s/2, abs( fftshift (fft(y))).ˆ2);
set(gca, ’ylim’, 10.ˆ[-2 9]);
xlabel(’frequency (Hz)’);
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Note that the atual implementation of the DFT is not performed as its desribed above.In atuality we use an algorithm alled the Fast Fourier Transform (FFT), whih we willdisuss in leture 7. Hene the funtion names inmatlab, e.g., fft and ifft (for inverseFFT).Note the use of fftshift in the above ode. This is used in matlab to display the DFTsymmetrially around the DC term. See what happens without it in the following slide.
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Matlab example

matlab_ex_1.m
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% MATLAB_EX_1 shows a simple example of fft in practice
%
% file: matlab_ex_1.m, (c) Matthew Roughan, Sat Aug 7 2004
% directory: /home/mroughan/Classes/Transformations/2 004/Matlab/
%
%
f_s = 1000; % sampling frequency
f_0 = 100; % frequency of the signal
x = 1:1/f_s:10; % sample points
N = length(x);
y = sin(2 * pi * f_0 * x); % sampled signal
semilogy(-f_s/2+f_s/N:f_s/N:f_s/2, abs(fftshift(fft( y))).ˆ2, ’linewidth’, 3);

%%%% make the axes pretty and add labels
grid on
set(gca, ’ylim’, 10.ˆ[-2 9], ’ytick’, 10.ˆ[-2:2:9], ’xtic k’, [-500:200:500]);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’frequency (Hz)’);

%%%% print out a copy
print(’-depsc’, ’Plots/matlab_ex_1.eps’);
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Symmetry

Disrete power spetrum is even and periodi so we andisplay in a number of ways.
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Matlab example 2

matlab_ex_2.m
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% MATLAB_EX_1 shows a simple example of fft in practice
%
% file: matlab_ex_1.m, (c) Matthew Roughan, Sat Aug 7 2004
% directory: /home/mroughan/Classes/Transformations/2 004/Matlab/
%
%
f_s = 1000; % sampling frequency
x = 1:1/f_s:10; % sample points
N = length(x);

%%%% sampled signal
f_0 = 100; % frequency 0 in the signal
f_1 = 200; % frequency 1 in the signal
y = sin(2 * pi * f_0 * x) + sin(2 * pi * f_1 * x);

%%%% FFT of data
z = fft(y);
freq = (0:N-1) * f_s/N;

%%%% plot the data
semilogy(freq, abs(z).ˆ2, ’linewidth’, 3);

%%%% make the axes pretty and add labels
grid on
set(gca, ’ylim’, 10.ˆ[-2 9], ’ytick’, 10.ˆ[-2:2:9], ’xtic k’, [0:200:1000]);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’frequency (Hz)’);

%%%% print out a copy
print(’-depsc’, ’Plots/matlab_ex_2.eps’);
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Properties of the DFT

Mostly the same as Continuous FT

◮ invertible

◮ no redundany so it is ef�ient

◮ Linearity: ax1(n)+bx2(n) → aX1(k)+bX2(k)

◮ Time shift: x(n−n0) → X(k)e−i2πkn0

◮ Time saling: a bit more ompliated!

◮ Duality: a bit more ompliated!

◮ Frequeny shift: x(n)e−i2πk0n → X(k− k0)

◮ Convolution: x1(n)∗ x2(n) → X1(k)X2(k)Now n and k are integers, with the result that we aremissing properties related to derivatives.
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Convolution is still really important. There is a java applet to play with at

http://www.jhu.edu/~signals/discreteconv2/index.htm l
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Duality and the DFT

The duality property is a little hanged from before:given a signal x(n) for n = 0, . . . ,N −1, with DFT X(k) for
k = 0, . . . ,N −1, then the DFT of X(n) is

DFT (X ;k) =

{

Nx(0), for k = 0
Nx(N − k), for k 6= 0

= Nx(N − k modN)The result is similar to previous duality results if wethink of the points ylially, i.e.
x(−k modN) = x(N − k modN)That works well with the periodi representation offrequeny spetrum that we get for a sampled signal.
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The duality property is different from the ontinuous ase for a ouple of reasons:

◮ our de�nition of the DFT is not symmetri � the inverse transform has a fator of 1/Nthat doesn't appear in the forward transform. Remember that we are using asymmetri de�nition for the ontinuous Fourier transform. We use the asymmetride�nition here for ease, beause it is onsistent with Matlab.

◮ the signal itself is no longer symmetri � we assume it has N points x(n) for

n = 0, . . . ,N −1, so it only makes sense to disuss x(−n) in the ylial sense above.Proof: take the DFT of X(n) (and noting that ei2πNn/N = 1 for n ∈ IN), for k 6= 0

N−1

∑
n=0

X(n)e−i2πkn/N =
N−1

∑
n=0

X(n)ei2πNn/Ne−i2πkn/N

=
N−1

∑
n=0

X(n)ei2π(N−k)n/N

= Nx(N − k)as it has beome N times an IDFT. So the DFT of X(n) is Nx(N − k).
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Properties of the DFT

There are some new properties unique to DFTs

◮ Leakage that �ts exatly our disrete frequenies

◮ Padding (paking)

◮ Similarity (disrete version of time saling)See below for details.
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◮ Leakage � what happens when the signal doesn't have a period that �ts exatly ourdisrete frequenies

◮ Padding (paking) � what happens when we put zeros at the end of a set of data

◮ Similarity � what happens when we interleave zeros in a signal
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Leakage example
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Properties of the DFT: Leakage

DFT is different from the ontinuous time FT is thatthe DFT suffers from Leakage.

◮ Unlike Continuous transform, DFT uses a �nitenumber of frequenies.

◮ Not all signals �t this mold exatly: what happensto sinusoids with non-integral frequenies?

◮ Their power is spread over a few frequenies.

◮ Note we are representing the signal by a series ofnumbers X(k) whih represent the orrelation ofthe signal to a partiular sinusoid with freq. k/N,

◮ Note that, as the data gets longer, the frequenyresolution improves
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Leakage has also been alled "window splatter" for reasons that will beome lear aroundleture 8 when we onsidering windowing.
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DFT properties: padding

We an pad (or pak) a sequene with zeros to extendits length

y(n) =

{

x(n), if 0≤ n ≤ N −1
0, if N ≤ n < KN

The resulting DFT is
F {y} = Y (k) = X

(

k
K

)
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Padding (paking) example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,−i,−1, i)Pad to get y(n) = (0,1,0,0,0,0,0,0) then the DFT

Y (k) = ∑N−1
n=0 y(n)e−i2πkn/N

Y (0) = e−i2π0/8 = 1
Y (1) = e−i2π1/8 = e−iπ/4 = (1− i)/

√
2

Y (2) = e−i2π2/8 = e−iπ/2 = −i
Y (3) = e−i2π3/8 = e−iπ3/4 = (−1− i)/

√
2

Y (4) = e−i2π4/8 = e−iπ = −1
Y (5) = e−i2π5/8 = e−iπ5/4 = (−1+ i)/

√
2

Y (6) = e−i2π6/8 = e−iπ3/2 = i
Y (7) = e−i2π7/8 = e−iπ7/4 = (1+ i)/

√
2
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Padding (paking) example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,−i,−1, i)Pad to get y(n) = (0,1,0,0,0,0,0,0) then the DFT
Y (0) = X(0)

Y (2) = X(1)

Y (4) = X(2)

Y (6) = X(3)So the relationship Y (k) = X(k/2) holds, with K = 2, foreven values of k.Note we annot derive Y (k) for odd values of k, or if K isnot an integer, but the relationship still tells us how tosale the frequeny units, when we pad.
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Padding (paking) example

Original data length N = 32 (frequeny = 3.333)
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Padding (paking) example

K = 3, new sequene length KN = 96. (frequeny = 10/K)
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% file: padding.m, (c) Matthew Roughan, Thu Aug 5 2004
%
N = 32;
x = (1:N)/N;
f1 = 3.3333;
y1 = sin(2 * pi * f1 * x);

figure(1)
subplot(2,1,1);
hold off
plot([x; x], [zeros(size(y1)); y1],’b’, ’linewidth’, 3);
hold on
plot(x, y1, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18, ’ylim’, [-1.2 1.2 ], ’xlim’, [0 max(x)], ’xtick’, [], ’ytick’, []);
ylabel(’signal’);
z1 = fftshift(abs(fft(y1)).ˆ2);
subplot(2,1,2);
hold off
plot([-N/2:N/2-1; -N/2:N/2-1], [zeros(1, N); z1], ’b’, ’l inewidth’, 4);
hold on
plot(-N/2:N/2-1, z1, ’bo’, ’linewidth’, 3);
set(gca, ’linewidth’, 3, ’fontsize’, 18, ’xlim’, [-N/2 N/2 ], ’ytick’, []);
ylabel(’power’);
xlabel(’frequency’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 30 15])
print(’-depsc’, ’Plots/padding.eps’);

%%%%%%% pad the data
K = 3;
pad = zeros(1,length(y1) * K);
pad((1:length(y1))) = y1;
x_u = (1:K * N)/(K * N);
figure(2)
subplot(2,1,1);
hold off
plot([x_u; x_u], [zeros(size(pad)); pad],’b’, ’linewidt h’, 3);
hold on
plot(x_u, pad, ’bo’, ’linewidth’, 4);
ylabel(’signal’);
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DFT properties: similarity

We an interleave a sequene with zeros, e.g.

y(n) =

{

x(n/K), if n = 0,K,2K, . . . ,(N −1)K
0, otherwise

The resulting DFT is

F {y} = Y (k) =



















X(k) k = 0, . . . ,N −1
X(k−N) k = N, . . . ,2N −1...

X(k− (K −1)N) k = (K −1)N, . . . ,KN −1
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Duality applies with similarity, i.e.,

DFT (X ;k) =

{

x(0), for k = 0

Nx(N − k), for k 6= 0so if we repeat a signal in the time domain, we an ompute its Fourier transformby interleavingzeros in the Fourier domain.
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Similarity example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,−i,−1, i)Interleave zeros to get y(n) = (0,0,1,0,0,0,0,0) then
Y (k) = ∑N−1

n=0 y(n)e−i2πkn/N

Y (0) = e−i2π0/8 = 1
Y (1) = e−i2π2/8 = e−iπ/2 = −i
Y (2) = e−i2π4/8 = e−iπ = −1
Y (3) = e−i2π6/8 = e−iπ3/2 = i
Y (4) = e−i2π8/8 = e−i2π = 1
Y (5) = e−i2π10/8 = e−iπ5/2 = −i
Y (6) = e−i2π12/8 = e−iπ3 = −1
Y (7) = e−i2π14/8 = e−iπ7/2 = iSo Y (k) = (1,−i,−1, i,1,−i,−1, i) (or X(k) repeated twie)
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Sampling, Quantization,

Dithering and

Half-toning

The properties we have just seen leed to some diretappliations. In partiular, we don't always get a signal inthe form we want it, so we may have to hange itssampling rate, or quantization, and we an exploit ournew mathematially derived intuition to start work outhow to do this (we'll see more later).

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.73/80

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.73/80

Similarity appliation

Pratial use: upsampling (interpolation)We have a sequene sampled every ts seonds,e.g. at a rate fs = 1/ts, but we need a sequenesampled at rate K fs.Approah: produe a new sequene with K −1 zerosinterleaved between eah original data point.
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Similarity appliation: upsampling

Given K −1 zeros interleaved between eah original sample.

◮ max frequeny in original data is fs/2, withfrequeny resolution fs/N, and N/2 points infrequeny domain.

◮ upsampled data has max frequeny K fs/2, withfrequeny resolution fs/N, and KN/2 points infrequeny domain.

◮ the frequeny resolution doesn't hange, but now wehave K repeats of the original spetrum at intervals

fs/N.

◮ to get a signal with the same original band-limitedpower-spetrum, we apply a low-pass �lter,smoothing the data.
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Upsampling example

32 samples (frequeny 3.4 yles)
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% file: upsampling_1.m, (c) Matthew Roughan, Thu Aug 5 2004
%
N = 32;
x = (1:N)/N;
f1 = 3.4;
y1 = sin(2 * pi * f1 * x);

figure(1)
subplot(2,1,1);
hold off
plot([x; x], [zeros(size(y1)); y1],’b’, ’linewidth’, 3);
hold on
plot(x, y1, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
ylabel(’signal’);
set(gca, ’ylim’, [-1.2 1.2], ’xlim’, [0 max(x)], ’xtick’, [ ], ’ytick’, []);

z1 = fftshift(abs(fft(y1)).ˆ2);
subplot(2,1,2);
hold off
plot([-N/2:N/2-1; -N/2:N/2-1], [zeros(1, N); z1], ’b’, ’l inewidth’, 4);
hold on
plot(-N/2:N/2-1, z1, ’bo’, ’linewidth’, 3);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
set(gca, ’xlim’, [-N/2 N/2], ’ytick’, []);
ylabel(’power’);
xlabel(’frequency’);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 30 15])
print(’-depsc’, ’Plots/upsampling.eps’);
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Upsampling example

3 ×'s upsampled (96 samples)
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% file: upsampling_2.m, (c) Matthew Roughan, Thu Aug 5 2004
%
N = 32;
x = (1:N)/N;
f1 = 3.4;
y1 = sin(2 * pi * f1 * x);
K = 3; % upsample by 3
upsample = zeros(1,length(y1) * K);
upsample(K * (1:length(y1))) = y1;
x_u = (1:K * N)/(K * N);

figure(2)
subplot(2,1,1);
hold off
plot([x_u; x_u], [zeros(size(upsample)); upsample],’b’ , ’linewidth’, 3);
hold on
plot(x_u, upsample, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
ylabel(’signal’);
set(gca, ’ylim’, [-1.2 1.2], ’xlim’, [0 max(x)], ’xtick’, [ ], ’ytick’, []);

z2 = fftshift(abs(fft(upsample)).ˆ2);
subplot(2,1,2);
hold off
plot([-K * N/2:K * N/2-1; -K * N/2:K * N/2-1], [zeros(1, K * N); z2], ’b’, ’linewidth’, 4);
hold on
plot(-K * N/2:K * N/2-1, z2, ’bo’, ’linewidth’, 3);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
set(gca, ’xlim’, [-K * N/2 K * N/2], ’ytick’, []);
ylabel(’power’);
xlabel(’frequency’);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 30 15])
print(’-depsc’, ’Plots/upsampling_1.eps’);
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Upsampling example

low pass �lter, then IDFT
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% file: upsampling_3.m, (c) Matthew Roughan, Thu Aug 5 2004
%
N = 32;
x = (1:N)/N;
f1 = 3.4;
y1 = sin(2 * pi * f1 * x);
K = 3;
upsample = zeros(1,length(y1) * K);
upsample(K * (1:length(y1))) = y1;
x_u = (1:K * N)/(K * N);
z = fft(upsample);
z(N/2+1:end-N/2+1) = 0; %%% filter the data (using perfect l ow-pass in freq. domain).
y3 = real(ifft(z));

figure(3)
subplot(2,1,1);
hold off
plot([x_u; x_u], [zeros(size(y3)); y3],’b’, ’linewidth’ , 3);
hold on
plot(x_u, y3, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
ylabel(’signal’);
set(gca, ’ylim’, [-1.2 1.2]/K, ’xlim’, [0 max(x)], ’xtick’ , [], ’ytick’, []);

subplot(2,1,2);
hold off
plot([-K * N/2:K * N/2-1; -K * N/2:K * N/2-1], [zeros(1, K * N); abs(fftshift(z))], ’b’, ’linewidth’, 4);
hold on
plot(-K * N/2:K * N/2-1, abs(fftshift(z)), ’bo’, ’linewidth’, 3);
YY = get(gca,’ylim’);
plot([-K * N/2 -N/2 -N/2 N/2 N/2 K * N/2], [0 0 max(abs(z)) max(abs(z)) 0 0], ’r’, ’linewidth’, 3 );
set(gca, ’linewidth’, 3, ’fontsize’, 18);
set(gca, ’xlim’, [-K * N/2 K * N/2], ’ytick’, []);
ylabel(’power’);
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Upsampling triks

Trik of the day: low-pass before upsampling.

◮ notionally, the �ltering ours after upsampling

◮ If �ltering in the time domain however, K −1/Kproportion of multiplies in the �lter are by zero.

◮ an ignore these, but this is the same as low-passbefore upsampling.Let's revisit this later (after disussing �ltering in moredetail).
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Downsampling an be aomplished similarly, and ombined we an perform resampling.
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Upsampling appliations: audio

Oversampling CD or DVD players

◮ digital omponents are heap

◮ analogue omponents are more expensive
◮ Digital to Analogue Conversion (DAC) is required inCD player

◮ want to make this as heap as possible (for a givenquality)The trik

◮ upsample in the digital domain (where it is heap)

◮ when we onvert to analogue, we an use a simpler,heaper analogue �lter, to get the same results
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Notes:
http://stereophile.com/asweseeit/344/
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