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Discrete signals

In theory there is no difference between
theory and practice. In practice there is.

Yogi Berra
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Discrete signals

Real signals (these days) are discrete

m Moore's law (speed of digital hardware increases by
a factor of two every 18 months, or the number of
transistors on a chip doubles, or the cost halves).

“Cramming more components into integrated circuits”, Gordon
E. Moore, Electronics, Vol. 38, No. 8, April, 1965.

m Easier/cheaper to use standard DSP solution.

e.g. CD players — we can get nominally better
results from a LP record, and a really good
player, but CD's cost orders of magnitude
less for almost indistinguishable results.

mIf it isn't cheap enough today, it will be in a year.
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Moore's Law

Moore's law: the speed of digital hardware increases by
a factor of two every 18 months, or the number of
transistors on a chip doubles, or the cost halves.
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Actually looks more like a factor of 2 every 2 years.
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Gates's law

Gates's Law: The speed of software halves every 18
months.

Gates's law does not apply to DSPs (they use small
embedded OSes).

Parkinson's Law of Data: Data expands to fill the space
available for storage

Parkinson's law of data does typically apply. As chips get
faster, we sample at higher resolution, and faster
sampling rates...
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Real signals

In theory there is no difference between
theory and practice. In practice there is.

Yogi Berra
Real data is
m finite (integrals convergence much easier)

m discrete time
m discrete valued
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Discrete time

m Real signals are discrete-time

m We can sample a continuous function to get a
discrete approximation
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Quantization: discrete-value

m Real signals are discrete-valued

m Analogue to Digital conversion: sample in time, and
quantise
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Approximation

m Faster sampling => better approximation

m More details later
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Approximation

m Finer quantization => better approximation

m More details later
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Approximation

m Longer data sets => better approximation

m More details later

0.5

-0.5

-1
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Transform Methods & Signal Processing (APP MTH 4043): lexB8 — p.11/80



Approximation

m Longer data sets => better approximation

m More details later
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Sampling

Sampling produces a new time series, with discrete
index, e.g.
X(n) = f(nts)

where ts is The sampling interval

The sampling frequency is fs= 1/t
e.g. sampling frequency for CDs is 44.1 kHz
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Aliasing

A critical issue for sampling is aliasing

Samples might be caused by different underlying
signals.
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Aliasing

A critical issue for sampling is aliasing

More than one ambiguity.
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Aliasing

A critical issue for sampling is aliasing

V ITTNULH

An c number of possibilities...
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Another example of aliasing

Y
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Aliasing: time domain view

m Sigha
m Samp
m Samp

with frequency fo, given by f(t) = sin(2mfgt)
ing interval ts, and sampling frequency fs=1/t..
ed signal is x(n) = f(nts) = sin(2rtfonts)

m We can always add 2rm (where mis an integer) to a
sin function without impact, e.g.

X(n) = sin(2rmtfonts)

= sin(2mfgonts+ 2rm)

. m
= Sin <2n [fo+ n_tJ nts>

= sin(2n[fy+ fk]nts) where m=kn.

So there is an ambiguity in x(n) about frequencies
fo+ fsk for integer k.
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Aliasing: frequency domain view

Consider a delta train or Dirac comb defined by

d(t) = i 5(t—n)

N=—00

We can consider sampling of a function f(t) fo be
equivalent to taking the product with a delta train, e.qg.

X(t) = d(t/ts) (1)

From the convolution, and the duality theorems, we can
see that the FT of x(t) will be the convolution of the FTs
of d(t) and f(t).

The FT of the delta train is F{d(t/ts)} = |ts|d(tsS)
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Delta train

A train of delta functions d(t/ts) = S 0(t/ts—n) has
Fourier transform which is also a delta train, e.g.

Fd(t/ts)} = [ts]d(tss)

L
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Aliasing: frequency representation

X(t) =d(t/ts) f(t) = X(s) = d(tss) x F ()
Convolution of a delta train with a function looks like:
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Aliasing: frequency representation

X(t) =d(t/ts) f(t) = X(s) = d(tss) x F ()
Convolution of a delta train with a function looks like:
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Nyquist sampling theorem

Assume the spectrum of the signal is zero above a
critical frequency f.. We call this the bandwidth of the
signal.

For sampling frequencies fs > 2f;, the spectra above
won't overlap. If fs < 2f. aliasing becomes a problem.

m the critical sampling rate referred to by, e.g. the
Nyquist rate, or Shannon (1949) or Whittaker
(1935) sampling theorem.

m the sampling frequency must be greater than twice
the highest frequency present in the signal

m need to bandlimit the input signal before sampling
m bandwidth does not need to be centered on zero Hz.
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Example

Analogue signal with central frequency 20 MHz, and 5
MHz bandwidth.

analogue signal spectrum
A B=5MHz

power

—25 -20 -15 -10 -5 5 10 15 20 25
frequency (MHz)
le

To include entire spectrum, we need to sample at
2x225=45 MHz.
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Example: Sample at 17.5 MHz

analogue signal spectrum
A B=5MHz
>

power

—25 -20 -15 -10 -5 5 10 15 20
frequency (MHz)
le

sampled signal spectrum

fo/2 |
5 10 15 20

—25 -20 =15 -10 -

fS f8=1 7.5MHz
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Example: Sample at 15 MHz

analogue signal spectrum
A B=5MHz

power

—25 -20 -15 -10 -5 5 10 15
frequency (MHz)
sampled signal spectrum

A

fs/2
-25 -20 -15 -10 -5 5 10 15 20 25

< > < >
f'; f;=1 SMHz
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Example: Sample at 11.25 MHz

analogue signal spectrum
A B=5MHz

power

—25 -20 -15 -10 -5 5 10 15
frequency (MHz)
sampled signal spectrum

—25 -20 -15 -10 -5 5 10 15 20 25
€ > <€  — >
£ k f=11.25MH
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Example: Sample at 7.5 MHz

analogue signal spectrum
A B=5MHz

power

—25 -20 -15 -10 -5 5 10 15
frequency (MHz)
sampled signal spectrum

25 -20:-15 -10 -5 5 10 : 15 20 25
> > > > >
R k& f=7.5MHz
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Bandlimiting

When sampling from real signals, one must bandlimit the
input!

Analogue Analogue to
Bandpass Digitial (A/D) X(Nn)
Filter Convertor

f(t)

Shouldn't push the boundaries with sampling, and filters
m analogue filter might not be ideal
m sample clock generation instabilities
m imperfections in A/D quantization.

Hence, include guard bands around bandwidth of
Interest.
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Some more sampling theory

Shannon Sampling Theorem:

“If a function f(t) contains no frequencies higher thadhcycles
per second, it is completely determined by giving its orthsaat
a series of points spaceil/2W) seconds apart.”

m so we can reconstruct f(t) from its samples
m if the signal is bandlimited
m samples spaced (1/2W)
m Hence Nyquist result
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Shannon theorem

Proof sketch: Assume function is bandlimited so
F(s) =0 for |s| >W, then the IFT is

f(t) = /_: F ()7 ds — /VVVVF(s)eJZ"St ds

If instead, we make, F periodic, with period 2W then we
can find a Fourier series for it, e.g.

F(s) = i AW

N=—oo

where,

_ 1 W —iTns/W o __ 1 N
An = m/_WF@e ds= 55 (5
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Shannon theorem

Proof sketch:
We can represent F(s) perfectly with the Fourier series
coefficients A,, but these are just proportional to the

function sampled at uniform intervals, e.g. A O f (55).

Hence, the samples completely define the FT F, and
hence the function f. O]
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Shannon interpolation

Reconstruction of original signal from IFT

f(t) — / F(s)e 2™ ds

_ /W Z Anelnns/WelZT[stdS

_ Z An/ S/Z\N e|2ns t+n/2W)d

N=— oo

_ Z Z\NAn/ e|2T[S.2\Nt n)dS

N= — oo

= Z f( )schWt—n)

N=— o0
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs=2W, or
ts=1/2W, then the sample points would be

(aw)
The summation

f(t) = Z f( )sch\Nt—n)

N=—oco0

The above formula represents a "convolution” of the
sampled signal with a sinc function. We will learn about

convolutions later, but note that this convolution acts to
(perfectly) filter out high frequencies.
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Digital to Analogue converter

Interpretation

m convolution with sinc
m equivalent to ideal analogue low-pass filter

samples reconstructed function
, i
, ) ideal
— o— analogue
o— |
’ : ’ lowpass
“— — o—
’ : ‘.;
/._
- -

m this is essentially what a Digital to Analogue
converter tries to do

m have to build analogue filter — hard to make it ideal
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Quantization: discrete-value

Quantise real number values so they can be represented
on a computer (or DSP) in a binary format. This is the
essence of "digital” technology.

1.2
0.9
0.6
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Dynamic range

Dynamic range expresses the range of values we can
represent in our digital format, e.g.

m assume fixed point representation with b bits.

m largest value representable is (2° —1)3

m smallest value representable is &

m dynamic range = 20log,, (zbgl)é ~ h20log,,2 = 6.02b dB

m 6 dB per bit

CD's use 16 bit fixed point, so the dynamic range of a CD
recorded sound is approximately 16 x 6 = 96dB.
Compare to somewhere between 50-70 dB for LPs,

depending on the quality of the pressing.
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Dynamic range: examples

When the signal just fills the range of possible values,
the maximum amplitude of the signal will be (2°—1)J.

1.2F
0.9F
0.6f
0.3f

-0.3F
-0.6f
-0.9F
-1.2F

0 1000 2000 3000 4000 5000 6000

The smallest signal (other than zero) that we can
represent has maximum amplitude 9.

1 e -
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8 e :
01, B L i el @) :

0
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T e :

0 1000 2000 3000 4000 5000 6000
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Dynamic range of the human senses

Human senses aren't really digital, but for purposes of
comparison we will consider them here. They are pretty
amazing.

m We have already seen that the human ear has about
130 dB dynamic range.

m The human eye has about 100 dB dynamic range.
Although the dynamic range is very large, its important
to note that our senses can't achieve this range
simultaneously.

m | oud sounds can mask quieter sounds

m Our eye needs time to adjust to the level of
brightness - the range of contrasts is can
simultaneously perceive is much smaller.
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Death of Dynamic Range

In recent year there is a trend in Pop music to aim for
“louder” music at the expense of dynamic range.
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Introduced noise

The noise introduced by quantization is of the order of &
the smallest value representable value. We want to
compute the SNR (Signal to Noise Ratio).

m assume fixed point representation with b bits.

m noise is of the order of o.

m SNR depends on loading factor.

m lightly loaded, then & is relatively large, and so
SNR is small.

m fully loaded, then SNR is similar to dynamic
range (6 dB per bit).

m overloaded, clipping occurs, and SNR drops.

More accurate calculations in "Understanding Digital
Signal Processing”, Lyons.
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Quantization hoise notes

When the signal fully loads range of possible values, the
maximum amplitude of the signal will be (2°—1)d

0 1000 2000 3000 4000 5000 6000

As long as clipping doesn't occur, then the errors will be
of order 9, but this is relatively larger for small signals

B e :

0 1000 2000 3000 4000 5000 6000
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Clipping

If the signal is too large we get clipping, which results in
large amounts of quantization noise, e.qg.

N 1)

0.3 N fr e .-
0.6 @ s o o X .-
=09 N fr o=

0 1000 2000 3000 4000 5000 6000

Sometimes clipping is used deliberately to alter sounds,
for example in a guitar amp, clipping is used to produce
distortion (e.g. for heavy-metal music). However,
clipping is usually very bad.

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.40/80



Example

Compact Discs (CDs) are recorded
m using 16 bits
m 441 kHz

m so that they record sound frequencies up 1o 22.05
kHz with a theoretical dynamic range ~ 96dB.

m Human hearing goes up to about 15 kHz
m | Ps have at most 70 dB dynamic range, so CDs
should be effectively perfect.
m audiophiles argue about this

m some say You lose upper harmonics (nhot audible
but effect tone), or perhaps you loose transient?

m but I can't tell the difference
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Example: extreme audio

Some audio formats propose 96 kHz sampling, at 24
bits. Ignoring audiophile fantasies, why would T want
better digital recordings?

m Even if you can't hear it, what about in the studio.
In mixing, noise from multiple inputs could add to
increase noise floor.

m When an audio signal is dithered to remove
structure from the quantization noise, this adds a
little noise, so its helpful to have a lower noise floor
to start with when recording audio.

m Stereo imaging: requires very finely adjusted
time-of-arrival of wavefronts which might be
distorted by sampling???
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Discrete Fourier
Transform

Mathematics compares the most diverse
phenomena and discovers the secret analogies
that unite them.

Jean Baptiste Joseph Fourier
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Discrete transformation

Discrete-time transformation
m Discrete Fourier transform
m Discrete Cosine (and sin) transforms
m Discrete Wavelet transform
m Z-transform
Discrete-value transformation
m Probability generating function
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Discrete Fourier Transformation

Continuous Fourier transform F(s / f(t _'Z”Stct

But note that for a finite length, discrete-time signal, it
can be written as
N—-1

X(t) = ZO f (nts)&(t — nts)

N=

The Fourier transform can then be written
N—1

X(s) = ZO f (ntg)g'4™s

The result is simpler to compute, but its still redundant.
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Discrete Fourier Transformation

If we have N data points, we would like a (frequency
domain) representation that only needs N data points as
well. Hence no redundancy.

Use s= - for k=0,1,...,N—1and we get
N—1

X(k) _ ;X(n)e—iZT[kn/N7

where x(n) are the N discrete samples from the
continuous Time process.

This is the Discrete Fourier Transform (DFT)
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Inverse DFT

DFT
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Examples (i)
Take x(n) = (1,0,0,0)

X(k) = SnoX(nyezm/m

X(0) g 12m0/4 1
X(1) = e 20/ =1
X(2) = e'2m/4 =1
X(3) g 12n0/4 1

So X(k) = (1,1,1,1)
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Examples (i) IDFT

Take X(k) = (1,1,1,1)
X(N) = §Zno X(kjeZmon
x(O) — %1(e—iZT[O/4_|_e—i2T[O/4_|_e—i2T[O/4_|_e—i2T[O/4)
= 1(1+1+1+1) _ 1
X(1) = le(e—|2n0/4_|_e—i2T[1/4_|_e—i2n2/4_|_e—i2n3/4)
= %1(1—1—i—1—i) — 0
X(2) = %1(e—iZT[O/4_|_e—i2T[2/4_|_e—i2n4/4_|_e—i2n6/4)
= z(1-1+1-1) - 0
X(3) = %1(e—i2n0/4+e—i2n3/4+e—i2n6/4+e—i2n9/4)
F(1—i—1+1i) _ 0

So x(n) = (1,0,0,0)
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Examples (ii)
Take x(n) = (0,1,0,0)

X(Q = 3Ngx(me o

X(O) e—i2n0/4 — 1

X(l) _ e—i2T[1/4 _ e—iT[/2 R
X(Z) _ e—i2T[2/4 _ e—iT[ - 1
X(3) e—i2n3/4 _ e—in3/2 —

So X(K) = (1, —i,~1,i)
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Examples (iii)

Take x(n) = (1,1,0,0)

X(K) = sNax(njezwon

X(O) e—i2T[O/4_|_e—i2T[O/4 — 14+1 — 2
X(l) _ e—i2T[O/4_|_e—i2TliI./4 _ eO_I_e /2 __ 1—i
X(Z) _ e—i2n0/4_|_e—i2n2/4 — P4+ e it — 0
X(S) e—i2T[O/4_|_e—i2T[3/4 _ eO_|_e—iT[3/2 — 14

So X(K) = (2,1—1,0,1+i)
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DFT basis

Once again we are simply changing basis, when we
perform the transform (or its inverse).

The basis functions are a discrete set of sin and cosine
functions.

Note, now we are operating in a finite dimensional space
RN, so we can write the transform as

X = AX analysis

The inverse transform is just
Xx=A1X synthesis

Where both x and X are just vectors in RN,
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DFT transform matrix

X = AX
(11 1 R \
1 ei2m/N g—i2m2/N ... @i2n(N-1)/N
1 e-i22/N o i2m/N ... @ i2(N-1)/N
A= 1 gizm/N o i2m6/N ... @-iZB(N-1)/N
\1 .e—iZH(N—l)/N .e—i2T[2(N—1)/N .e—i2T[(N—1)(N—1)/N)
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Examples (i)
Take x(n) = (1,0,0,0)

(11 1 1 \ (1)
1 e—i2TliL/4 e—i2T[2/4 e—i2T[3/4 0

X = 1 e i2R/4 o-i2m/4  o-i2m6/4 0
\1 o—i2m8/4  o—i2r6/4 e—i2”9/4) \O)

vl N
e N Y
~ -
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Frequency resolution

Frequencies of basis functions are k=0,1,2,...,(N—1)
cycles over the data set. If the data set has N samples
at sampling frequency fs, then its durationis T = N/fs.
To convert from data units to absolute units, we take
k/T = X

Frequency resolution is

m higher sampling frequencies reduce frequency
resolution

m longer data, improves frequency resolution

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.55/80



Getting units right

Note that absolute frequency depends on sample
frequency fs, so we need to convert.
The component X(m) will correspond to frequency

X(m)=F (%)

Output magnitude of DFT will be amplitude of sin wave
signal A times N/2. Alternative definitions of DFT exist

1 N—1

X(k) = N ;X(n)e—iZT[kn/N7 x(n) _ NZ;LX(k)eiZT[kn/N

1 N—1 1 N—1

X(K) = ﬁ Zox(n)e_iznkn/N’ x(n) = W Zox(k)eiZT[kn/N
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Matlab

Note, indexes in Matlab run from 1 o N (not 0 to N—1).

fft (x(n)) = X(k) = Y x(n)e ZHHDN k=1 N.

N .
ifft (X(K)) = x(n) = % Y XKD n=1_N.
k=1

X(1) is the DC term, X(n) is the fs term. To plot

symmeftric power spectrum use, e.qg.

f s = 1000;

f 0 = 100;

x = 1:1/f s:10;

y = sin(2 *pi *f 0 *Xx);

semilogy(-f_s/2+f s/N:f s/N:f s/2, abs( fitshift (fft(y))).”2);
set(gca, 'ylim’, 10.”[-2 9]);

xlabel('frequency (Hz));
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Matlab example

matlab ex 1.m

_2 - - - -
10 i i i i
-500 -300 -100 100 300 500
frequency (Hz)
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Symmetry

Discrete power spectrum is even and periodic so we can
display in a number of ways.

power spectrum

&&@%M

Frequency (0

A/k \A

M

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.59/80




Matlab example 2

matlab _ex 2.m

.............................................................

200 400 600 800 1000
frequency (Hz)
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Properties of the DFT

Mostly the same as Continuous FT
m invertible
m no redundancy so it is efficient
m Linearity: axg(n) 4 bxz(n) — aXy(k) + bXa(K)
m Time shift: x(n—ng) — X(k)e 2o
m Time scaling: a bit more complicated!
m Duality: a bit more complicated!
m Frequency shift: x(n)e 12" — X (k — ko)
m Convolution: xi(n)*xz(nN) — X1 (k)Xz(K)

Now n and k are integers, with the result that we are
missing properties related to derivatives.
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Duality and the DFT

The duality property is a little changed from before:
given a signal x(n) for n=0,...,N—1, with DFT X (k) for
k=0,...,N—1, then the DFT of X(n) is

L Nx(0), for k=0
DFT(XK) = {Nx(N—k), for k0
= Nx(N—kmodN)

The result is similar to previous duality results if we
think of the points cyclically, i.e.

X(—k modN) = x(N —k modN)

That works well with the periodic representation of

frequency spectrum that we get for a sampled signal.
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Properties of the DFT

There are some new properties unique to DFTs
m L eakage that fits exactly our discrete frequencies
m Padding (packing)
m Similarity (discrete version of time scaling)

See below for details.
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Leakage example
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Leakage example
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Properties of the DFT: Leakage

DFT is different from the continuous time FT is that
the DFT suffers from Leakage.

m Unlike Continuous transform, DFT uses a finite
number of frequencies.

m Not all signals fit this mold exactly: what happens
to sinusoids with non-integral frequencies?

m Their power is spread over a few frequencies.

m Note we are representing the signal by a series of
numbers X (k) which represent the correlation of
the signal to a particular sinusoid with freq. k/N,

m Note that, as the data gets longer, the frequency
resolution improves
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DFT properties: padding

We can pad (or pack) a sequence with zeros to extend
its length

X, ifosn<N-—1
MWV=Y 0, ifN<n<KN

The resulting DFT is

7= Y00 = ()
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Padding (packing) example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1, —i,—1,i)
Pad to get y(n) =(0,1,0,0,0,0,0,0) then the DFT

Y(k) = Sigy(nje 'z

Y(O) _ e—i2n0/8 — 1

Y(l) _ e—i2T[l/8 _ e—in/4 _ (1_ I)/\/é
Y(Z) _ e—i2n2/8 _ e—in/2 —

Y(3) _ e—i2n3/8 _ e—iT[3/4 _ (_1_ I)/\/é
Y(4) _ e—i2n4/8 _ e—in - 1

Y(5) _ e—i2n5/8 _ e—in5/4 _ (—1—|—i)/\/§
Y(G) _ e—i2n6/8 _ e—in3/2 —

Y(7) _ e—i2n7/8 _ e—in7/4 _ (1—|—i)/\/§

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.67/80



Padding (packing) example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1, —i,—1,i)
Pad to get y(n) =(0,1,0,0,0,0,0,0) then the DFT

Y(0) = X(0)
Y(2) = X(1)
Y(4) = X(2)
Y(6) = X(3)

So the relationship Y (k) = X(k/2) holds, with K =2, for
even values of k.

Note we cannot derive Y (k) for odd values of k, or if K is
not an integer, but the relationship still tells us how to

scale the frequency units, when we pad.
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Padding (packing) example

Original data length N = 32 (frequency = 3.333)

R

THT‘M*

tI‘Irllll‘T[[T,

Ml

Transform Methods & Signal Processin

g (AP

P MTH 4043): lex28 — p.69/80



Padding (packing) example

K = 3, new sequence length KN = 96, (frequency = 10/K)

T T
Ty

signal

power

-40 -30 -20 -10 0 10 20 30 40
frequency

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.70/80



DFT properties: similarity

We can interleave a sequence with zeros, e.g.

x(n/K), ifn=0,K,2K,...,(N=1)K
y(n) = .
0, otherwise

The resulting DFT is

Flyy=Y(k) =1
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Similarity example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,—i,—1,i)
Interleave zeros to get y(n) =(0,0,1,0,0,0,0,0) then

Yk = SNdy(mje iz

Y(0) = ei20/8 -1

Y(l) _ e—i2T[2/8 _ e—iT[/2 R

Y(Z) _ e—i2T[4/8 _ e—iﬂ - 1

Y(3) _ e—i2n6/8 _ e—iT[3/2 —

Y(4) _ e—i2T[8/8 _ e—i21T - 1

Y(S) _ e—i2TlfI.O/8 _ e—iT[5/2 S

Y(6) _ e—i2T112/8 _ e—iT[3 - 1

Y(?) e—i2TEI.4/8 _ e—iﬂ7/2 —
SoY(k)=(1,—-i,—1,i,1,—i,—1i) (or X(k) repeated twice)

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.72/80



Sampling, Quantization,
Dithering and
Half-toning

The properties we have just seen leed to some direct
applications. In particular, we don't always get a signal in
the form we want it, so we may have to change its
sampling rate, or quantization, and we can exploit our
new mathematically derived intuition to start work out
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Similarity application
Practical use: upsampling (interpolation)

We have a sequence sampled every ts seconds,
e.g. at a rate fs=1/ts, but we need a sequence
sampled at rate Kfs.

Approach: produce a hew sequence with K —1 zeros
interleaved between each original data point.
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Similarity application: upsampling

Given K —1 zeros interleaved between each original sample.

m max frequency in original data is fs/2, with
frequency resolution fs/N, and N/2 points in
frequency domain.

m upsampled data has max frequency Kfs/2, with
frequency resolution fs/N, and KN/2 points in
frequency domain.

m the frequency resolution doesn't change, but now we

have K repeats of the original spectrum at intervals
fs/N.

m to get a signal with the same original band-limited
power-spectrum, we apply a low-pass filter,

smooThing the data.
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Upsampling example

32 samples (frequency 3.4 cycles)

R

IHT‘l

PTHI.W.IHM
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Upsampling example

3 x's upsampled (96 samples)

2 '.LLLL‘.l.ﬂ.‘Jj.Ler.’.LLLT.‘TW‘.LLL

ower
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Upsampling example

low pass filter, then IDFT

M T M
ulll - A - A W AM
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o
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-40 -30 -20 -10 0 10 20 30 40
frequency
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Upsampling tricks
Trick of the day: low-pass before upsampling.

m notionally, the filtering occurs after upsampling

m If filtering in the time domain however, K —1/K
proportion of multiplies in the filter are by zero.

m can ignore these, but this is the same as low-pass
before upsampling.

Let's revisit this later (after discussing filtering in more
detail).
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Upsampling applications: audio

Oversampling CD or DVD players
m digital components are cheap
m analogue components are more expensive

m Digital To Analogue Conversion (DAC) is required in
CD player
m want to make this as cheap as possible (for a given
quality)
The trick
m upsample in the digital domain (where it is cheap)

m when we convert to analogue, we can use a simpler,
cheaper analogue filter, o get the same results
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