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Disrete signals

In theory there is no differene betweentheory and pratie. In pratie there is.Yogi Berra
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Disrete signals

Real signals (these days) are disreteMoore's law (speed of digital hardware inreases bya fator of two every 18 months, or the number oftransistors on a hip doubles, or the ost halves).�Cramming more omponents into integrated iruits�, GordonE. Moore, Eletronis, Vol. 38, No. 8, April, 1965.Easier/heaper to use standard DSP solution.e.g. CD players � we an get nominally betterresults from a LP reord, and a really goodplayer, but CD's ost orders of magnitudeless for almost indistinguishable results.If it isn't heap enough today, it will be in a year.
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Moore's LawMoore's law: the speed of digital hardware inreases bya fator of two every 18 months, or the number oftransistors on a hip doubles, or the ost halves.
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Atually looks more like a fator of 2 every 2 years.
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Gates's lawGates's Law: The speed of software halves every 18months.Gates's law does not apply to DSPs (they use smallembedded OSes).

Parkinson's Law of Data: Data expands to �ll the spaeavailable for storageParkinson's law of data does typially apply. As hips getfaster, we sample at higher resolution, and fastersampling rates...
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Real signals
In theory there is no differene betweentheory and pratie. In pratie there is.Yogi BerraReal data is�nite (integrals onvergene muh easier)disrete timedisrete valued
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Disrete timeReal signals are disrete-timeWe an sample a ontinuous funtion to get adisrete approximation
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Quantization: disrete-value

Real signals are disrete-valuedAnalogue to Digital onversion: sample in time, andquantise
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Approximation

Faster sampling => better approximationMore details later
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Approximation

Finer quantization => better approximationMore details later
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Approximation

Longer data sets => better approximationMore details later
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Approximation

Longer data sets => better approximationMore details later
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Sampling
Sampling produes a new time series, with disreteindex, e.g.

x(n) = f (nts)where ts is the sampling interval

The sampling frequeny is fs = 1/ts.e.g. sampling frequeny for CDs is 44.1 kHz
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Aliasing
A ritial issue for sampling is aliasing

Samples might be aused by different underlyingsignals.
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Aliasing
A ritial issue for sampling is aliasing

More than one ambiguity.
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Aliasing
A ritial issue for sampling is aliasing

An ∞ number of possibilities...
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Another example of aliasing
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Aliasing: time domain view

Signal with frequeny f0, given by f (t) = sin(2π f0t)Sampling interval ts, and sampling frequeny fs = 1/ts.Sampled signal is x(n) = f (nts) = sin(2π f0nts)We an always add 2πm (where m is an integer) to asin funtion without impat, e.g.
x(n) = sin(2π f0nts)

= sin(2π f0nts +2πm)

= sin

(

2π
[

f0 +
m
nts

]

nts

)

= sin(2π [ f0 + fsk]nts) where m = kn.So there is an ambiguity in x(n) about frequenies

f0 + fsk for integer k.
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Aliasing: frequeny domain view

Consider a delta train or Dira omb de�ned by
d(t) =

∞

∑
n=−∞

δ(t −n)

We an onsider sampling of a funtion f (t) to beequivalent to taking the produt with a delta train, e.g.

x(t) = d(t/ts) f (t)From the onvolution, and the duality theorems, we ansee that the FT of x(t) will be the onvolution of the FTsof d(t) and f (t).The FT of the delta train is F {d(t/ts)} = |ts|d(tss)
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Delta trainA train of delta funtions d(t/ts) = ∑∞
n=−∞ δ(t/ts −n) hasFourier transform whih is also a delta train, e.g.

F {d(t/ts)} = |ts|d(tss)
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Aliasing: frequeny representation
x(t) = d(t/ts) f (t) ⇒ X(s) = d(tss)∗F(s)Convolution of a delta train with a funtion looks like:
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Aliasing: frequeny representation
x(t) = d(t/ts) f (t) ⇒ X(s) = d(tss)∗F(s)Convolution of a delta train with a funtion looks like:
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Nyquist sampling theorem

Assume the spetrum of the signal is zero above aritial frequeny fc. We all this the bandwidth of thesignal.For sampling frequenies fs > 2 fc, the spetra abovewon't overlap. If fs < 2 fc aliasing beomes a problem.the ritial sampling rate referred to by, e.g. theNyquist rate, or Shannon (1949) or Whittaker(1935) sampling theorem.the sampling frequeny must be greater than twiethe highest frequeny present in the signalneed to bandlimit the input signal before samplingbandwidth does not need to be entered on zero Hz.
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Example
Analogue signal with entral frequeny 20 MHz, and 5MHz bandwidth.

fc

5 10 2015−20 −15 −10 −5−25 25

B=5MHz

frequency (MHz)
po

w
er

analogue signal spectrum

To inlude entire spetrum, we need to sample at

2×22.5 = 45MHz.
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Example: Sample at 17.5 MHz
fc

fs sf =17.5MHz

5 10 2015−20 −15 −10 −5−25 25

B=5MHz

frequency (MHz)

sampled signal spectrum

po
w
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analogue signal spectrum

5 10 2015−20 −15 −10 −5−25 25
f  /2s
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Example: Sample at 15 MHz
fc

fs sf =15MHz
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frequency (MHz)
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Example: Sample at 11.25 MHz

fc

sf =11.25MHzfsfs
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f  /2s
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Example: Sample at 7.5 MHz
fc

sf =7.5MHzfs fs fs fs

5 10 2015−20 −15 −10 −5−25 25

B=5MHz

frequency (MHz)

sampled signal spectrum
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analogue signal spectrum

5 10 2015−20 −15 −10 −5−25 25
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Bandlimiting

When sampling from real signals, one must bandlimit theinput!

Analogue

Filter

Analogue to
f(t) x(n)Bandpass Digitial (A/D)

ConvertorShouldn't push the boundaries with sampling, and �ltersanalogue �lter might not be idealsample lok generation instabilitiesimperfetions in A/D quantization.Hene, inlude guard bands around bandwidth ofinterest.
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Some more sampling theory

Shannon Sampling Theorem:

“If a function f (t) contains no frequencies higher thanW cycles
per second, it is completely determined by giving its ordinates at
a series of points spaced(1/2W ) seconds apart.”so we an reonstrut f (t) from its samplesif the signal is bandlimitedsamples spaed (1/2W )Hene Nyquist result
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Shannon theoremProof sketh: Assume funtion is bandlimited so
F(s) = 0 for |s| > W , then the IFT is

f (t) =

Z ∞

−∞
F(s)ei2πst ds =

Z W

−W
F(s)ei2πst ds

If instead, we make, F periodi, with period 2W then wean �nd a Fourier series for it, e.g.
F(s) =

∞

∑
n=−∞

Aneiπns/W

where,

An =
1

2W

Z W

−W
F(s)e−iπns/W ds =

1
2W

f
( n

2W

)
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Shannon theoremProof sketh:We an represent F(s) perfetly with the Fourier seriesoef�ients An, but these are just proportional to thefuntion sampled at uniform intervals, e.g. An ∝ f
(

n
2W

).Hene, the samples ompletely de�ne the FT F , andhene the funtion f . 2
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Shannon interpolation

Reonstrution of original signal from IFT
f (t) =

Z W

−W
F(s)e−i2πst ds

=

Z W

−W

∞

∑
n=−∞

Aneiπns/W ei2πst ds

=
∞

∑
n=−∞

An

Z ∞

−∞
r(s/2W )ei2πs(−t+n/2W) ds

=
∞

∑
n=−∞

2WAn

Z ∞

−∞
r(−s)ei2πs(2Wt−n) ds

=
∞

∑
n=−∞

f
( n

2W

)

sinc(2Wt −n)
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs = 2W , or
ts = 1/2W , then the sample points would be

f
( n

2W

)

The summation

f (t) =
∞

∑
n=−∞

f
( n

2W

)

sinc(2Wt −n)

The above formula represents a �onvolution� of thesampled signal with a sincfuntion. We will learn aboutonvolutions later, but note that this onvolution ats to(perfetly) �lter out high frequenies.
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Digital to Analogue onverter

Interpretationonvolution with sinequivalent to ideal analogue low-pass �lter
reconstructed functionsamples

ideal

lowpass
analogue

this is essentially what a Digital to Analogueonverter tries to dohave to build analogue �lter � hard to make it ideal
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Quantization: disrete-value

Quantise real number values so they an be representedon a omputer (or DSP) in a binary format. This is theessene of �digital� tehnology.
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Dynami range

Dynami range expresses the range of values we anrepresent in our digital format, e.g.assume �xed point representation with b bits.largest value representable is (2b −1)δsmallest value representable is δdynami range = 20log10
(2b−1)δ

δ ≃ b20log102 = 6.02b dB6 dB per bitCD's use 16 bit �xed point, so the dynami range of a CDreorded sound is approximately 16×6 = 96dB.Compare to somewhere between 50-70 dB for LPs,depending on the quality of the pressing.
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Dynami range: examples

When the signal just �lls the range of possible values,the maximum amplitude of the signal will be (2b −1)δ.
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The smallest signal (other than zero) that we anrepresent has maximum amplitude δ.
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Dynami range of the human sensesHuman senses aren't really digital, but for purposes ofomparison we will onsider them here. They are prettyamazing.We have already seen that the human ear has about130 dB dynami range.The human eye has about 100 dB dynami range.Although the dynami range is very large, its importantto note that our senses an't ahieve this rangesimultaneously.Loud sounds an mask quieter soundsOur eye needs time to adjust to the level ofbrightness � the range of ontrasts is ansimultaneously pereive is muh smaller.
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Death of Dynami Range

In reent year there is a trend in Pop musi to aim for�louder� musi at the expense of dynami range.
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Introdued noiseThe noise introdued by quantization is of the order of δthe smallest value representable value. We want toompute the SNR (Signal to Noise Ratio).assume �xed point representation with b bits.noise is of the order of δ.SNR depends on loading fator.lightly loaded, then δ is relatively large, and soSNR is small.fully loaded, then SNR is similar to dynamirange (6 dB per bit).overloaded, lipping ours, and SNR drops.More aurate alulations in �Understanding DigitalSignal Proessing�, Lyons.
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Quantization noise notes

When the signal fully loads range of possible values, themaximum amplitude of the signal will be (2b −1)δ
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As long as lipping doesn't our, then the errors will beof order δ, but this is relatively larger for small signals
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Clipping
If the signal is too large we get lipping, whih results inlarge amounts of quantization noise, e.g.
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Sometimes lipping is used deliberately to alter sounds,for example in a guitar amp, lipping is used to produedistortion (e.g. for heavy-metal musi). However,lipping is usually very bad.
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Example
Compat Diss (CDs) are reordedusing 16 bits44.1 kHzso that they reord sound frequenies up to 22.05kHz with a theoretial dynami range ≃ 96dB.Human hearing goes up to about 15 kHzLPs have at most 70 dB dynami range, so CDsshould be effetively perfet.audiophiles argue about thissome say you lose upper harmonis (not audiblebut effet tone), or perhaps you loose transient?but I an't tell the differene
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Example: extreme audio

Some audio formats propose 96 kHz sampling, at 24bits. Ignoring audiophile fantasies, why would I wantbetter digital reordings?Even if you an't hear it, what about in the studio.In mixing, noise from multiple inputs ould add toinrease noise �oor.When an audio signal is dithered to removestruture from the quantization noise, this adds alittle noise, so its helpful to have a lower noise �oorto start with when reording audio.Stereo imaging: requires very �nely adjustedtime-of-arrival of wavefronts whih might bedistorted by sampling???
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Disrete FourierTransform

Mathematis ompares the most diversephenomena and disovers the seret analogiesthat unite them. Jean Baptiste Joseph Fourier
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Disrete transformationDisrete-time transformationDisrete Fourier transformDisrete Cosine (and sin) transformsDisrete Wavelet transformZ-transformDisrete-value transformationProbability generating funtion
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Disrete Fourier Transformation

Continuous Fourier transform F(s) =

Z ∞

−∞
f (t)e−i2πst dtBut note that for a �nite length, disrete-time signal, itan be written as

x(t) =
N−1

∑
n=0

f (nts)δ(t −nts)

The Fourier transform an then be written

X(s) =
N−1

∑
n=0

f (nts)e
−i2πsnts

The result is simpler to ompute, but its still redundant.
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Disrete Fourier TransformationIf we have N data points, we would like a (frequenydomain) representation that only needs N data points aswell. Hene no redundany.Use s = k
Nts

for k = 0,1, . . . ,N −1 and we get
X(k) =

N−1

∑
n=0

x(n)e−i2πkn/N,

where x(n) are the N disrete samples from theontinuous time proess.This is the Disrete Fourier Transform (DFT)
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Inverse DFTDFT

X(k) =
N−1

∑
n=0

x(n)e−i2πkn/N,

Inverse DFT (IDFT)

x(n) =
1
N

N−1

∑
k=0

X(k)ei2πkn/N,
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Examples (i)

Take x(n) = (1,0,0,0)

X(k) = ∑N−1
n=0 x(n)e−i2πkn/N

X(0) = e−i2π0/4 = 1
X(1) = e−i2π0/4 = 1
X(2) = e−i2π0/4 = 1
X(3) = e−i2π0/4 = 1So X(k) = (1,1,1,1)
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Examples (i) IDFT

Take X(k) = (1,1,1,1)

x(n) = 1
N ∑N−1

n=0 X(k)ei2πkn/N

x(0) = 1
4

(

e−i2π0/4 + e−i2π0/4+ e−i2π0/4+ e−i2π0/4
)

= 1
4 (1+1+1+1) = 1

x(1) = 1
4

(

e−i2π0/4 + e−i2π1/4+ e−i2π2/4+ e−i2π3/4
)

= 1
4 (1+ i−1− i) = 0

x(2) = 1
4

(

e−i2π0/4 + e−i2π2/4+ e−i2π4/4+ e−i2π6/4
)

= 1
4 (1−1+1−1) = 0

x(3) = 1
4

(

e−i2π0/4 + e−i2π3/4+ e−i2π6/4+ e−i2π9/4
)

= 1
4 (1− i−1+ i) = 0So x(n) = (1,0,0,0)
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Examples (ii)

Take x(n) = (0,1,0,0)

X(k) = ∑N−1
n=0 x(n)e−i2πkn/N

X(0) = e−i2π0/4 = 1
X(1) = e−i2π1/4 = e−iπ/2 = −i
X(2) = e−i2π2/4 = e−iπ = −1
X(3) = e−i2π3/4 = e−iπ3/2 = iSo X(k) = (1,−i,−1, i)
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Examples (iii)

Take x(n) = (1,1,0,0)

X(k) = ∑N−1
n=0 x(n)e−i2πkn/N

X(0) = e−i2π0/4 + e−i2π0/4 = 1+1 = 2
X(1) = e−i2π0/4 + e−i2π1/4 = e0 + e−iπ/2 = 1− i
X(2) = e−i2π0/4 + e−i2π2/4 = e0 + e−iπ = 0
X(3) = e−i2π0/4 + e−i2π3/4 = e0 + e−iπ3/2 = 1+ iSo X(k) = (2,1− i,0,1+ i)
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DFT basisOne again we are simply hanging basis, when weperform the transform (or its inverse).The basis funtions are a disrete set of sin and osinefuntions.Note, now we are operating in a �nite dimensional spae

R
N, so we an write the transform as

X = Ax analysis

The inverse transform is just
x = A−1X synthesisWhere both x and X are just vetors in R

N .
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DFT transform matrix

X = Ax

A =





















1 1 1 · · · 1
1 e−i2π1/N e−i2π2/N · · · e−i2π(N−1)/N

1 e−i2π2/N e−i2π4/N · · · e−i2π2(N−1)/N

1 e−i2π3/N e−i2π6/N · · · e−i2π3(N−1)/N... ... ... ...
1 e−i2π(N−1)/N e−i2π2(N−1)/N · · · e−i2π(N−1)(N−1)/N
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Examples (i)

Take x(n) = (1,0,0,0)

X =











1 1 1 1
1 e−i2π1/4 e−i2π2/4 e−i2π3/4

1 e−i2π2/4 e−i2π4/4 e−i2π6/4

1 e−i2π3/4 e−i2π6/4 e−i2π9/4





















1
0
0
0











=











1
1
1
1
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Frequeny resolution

Frequenies of basis funtions are k = 0,1,2, . . . ,(N −1)yles over the data set. If the data set has N samplesat sampling frequeny fs, then its duration is T = N/ fs.To onvert from data units to absolute units, we take
k/T = k fs

NFrequeny resolution is fs

Nhigher sampling frequenies redue frequenyresolutionlonger data, improves frequeny resolution
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Getting units right

Note that absolute frequeny depends on samplefrequeny fs, so we need to onvert.The omponent X(m) will orrespond to frequeny
X(m) ≡ F

(

m fs

N

)

Output magnitude of DFT will be amplitude of sin wavesignal A times N/2. Alternative de�nitions of DFT exist

X(k) =
1
N

N−1

∑
n=0

x(n)e−i2πkn/N, x(n) =
N−1

∑
n=0

X(k)ei2πkn/N

X(k) =
1√
N

N−1

∑
n=0

x(n)e−i2πkn/N, x(n) =
1√
N

N−1

∑
n=0

X(k)ei2πkn/N
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MatlabNote, indexes in Matlab run from 1 to N (not 0 to N −1).
fft(x(n)) = X(k) =

N

∑
n=1

x(n)e−i2π(k−1)(n−1)/N, k = 1, . . . ,N.

ifft (X(k)) = x(n) =
1
N

N

∑
k=1

X(k)ei2π(k−1)(n−1)/N, n = 1, . . . ,N.

X(1) is the DC term, X(n) is the fs term. To plotsymmetri power spetrum use, e.g.
f_s = 1000;
f_0 = 100;
x = 1:1/f_s:10;
y = sin(2 * pi * f_0 * x);
semilogy(-f_s/2+f_s/N:f_s/N:f_s/2, abs( fftshift (fft(y))).ˆ2);
set(gca, ’ylim’, 10.ˆ[-2 9]);
xlabel(’frequency (Hz)’);
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Matlab example

matlab_ex_1.m

−500 −300 −100 100 300 500
10

−2

10
0

10
2

10
4

10
6

10
8

frequency (Hz)
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Symmetry

Disrete power spetrum is even and periodi so we andisplay in a number of ways.
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Matlab example 2

matlab_ex_2.m

0 200 400 600 800 1000
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Properties of the DFT

Mostly the same as Continuous FTinvertibleno redundany so it is ef�ientLinearity: ax1(n)+bx2(n) → aX1(k)+bX2(k)Time shift: x(n−n0) → X(k)e−i2πkn0Time saling: a bit more ompliated!Duality: a bit more ompliated!Frequeny shift: x(n)e−i2πk0n → X(k− k0)Convolution: x1(n)∗ x2(n) → X1(k)X2(k)Now n and k are integers, with the result that we aremissing properties related to derivatives.

Transform Methods & Signal Processing (APP MTH 4043): lecture 03 – p.61/80



Duality and the DFT

The duality property is a little hanged from before:given a signal x(n) for n = 0, . . . ,N −1, with DFT X(k) for
k = 0, . . . ,N −1, then the DFT of X(n) is

DFT (X ;k) =

{

Nx(0), for k = 0
Nx(N − k), for k 6= 0

= Nx(N − k modN)The result is similar to previous duality results if wethink of the points ylially, i.e.
x(−k modN) = x(N − k modN)That works well with the periodi representation offrequeny spetrum that we get for a sampled signal.
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Properties of the DFT

There are some new properties unique to DFTsLeakage that �ts exatly our disrete frequeniesPadding (paking)Similarity (disrete version of time saling)See below for details.
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Leakage example
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Leakage example
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Properties of the DFT: Leakage

DFT is different from the ontinuous time FT is thatthe DFT suffers from Leakage.Unlike Continuous transform, DFT uses a �nitenumber of frequenies.Not all signals �t this mold exatly: what happensto sinusoids with non-integral frequenies?Their power is spread over a few frequenies.Note we are representing the signal by a series ofnumbers X(k) whih represent the orrelation ofthe signal to a partiular sinusoid with freq. k/N,Note that, as the data gets longer, the frequenyresolution improves
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DFT properties: padding

We an pad (or pak) a sequene with zeros to extendits length

y(n) =

{

x(n), if 0≤ n ≤ N −1
0, if N ≤ n < KN

The resulting DFT is
F {y} = Y (k) = X

(

k
K

)
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Padding (paking) example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,−i,−1, i)Pad to get y(n) = (0,1,0,0,0,0,0,0) then the DFT
Y (k) = ∑N−1

n=0 y(n)e−i2πkn/N

Y (0) = e−i2π0/8 = 1
Y (1) = e−i2π1/8 = e−iπ/4 = (1− i)/

√
2

Y (2) = e−i2π2/8 = e−iπ/2 = −i
Y (3) = e−i2π3/8 = e−iπ3/4 = (−1− i)/

√
2

Y (4) = e−i2π4/8 = e−iπ = −1
Y (5) = e−i2π5/8 = e−iπ5/4 = (−1+ i)/

√
2

Y (6) = e−i2π6/8 = e−iπ3/2 = i
Y (7) = e−i2π7/8 = e−iπ7/4 = (1+ i)/

√
2
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Padding (paking) example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,−i,−1, i)Pad to get y(n) = (0,1,0,0,0,0,0,0) then the DFT
Y (0) = X(0)

Y (2) = X(1)

Y (4) = X(2)

Y (6) = X(3)So the relationship Y (k) = X(k/2) holds, with K = 2, foreven values of k.Note we annot derive Y (k) for odd values of k, or if K isnot an integer, but the relationship still tells us how tosale the frequeny units, when we pad.
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Padding (paking) example

Original data length N = 32 (frequeny = 3.333)
si

gn
al

−15 −10 −5 0 5 10 15

po
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Padding (paking) example
K = 3, new sequene length KN = 96. (frequeny = 10/K)

si
gn

al

−40 −30 −20 −10 0 10 20 30 40
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w
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DFT properties: similarity

We an interleave a sequene with zeros, e.g.
y(n) =

{

x(n/K), if n = 0,K,2K, . . . ,(N −1)K
0, otherwise

The resulting DFT is
F {y} = Y (k) =



















X(k) k = 0, . . . ,N −1
X(k−N) k = N, . . . ,2N −1...
X(k− (K −1)N) k = (K −1)N, . . . ,KN −1
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Similarity example (ii)

Data x(n) = (0,1,0,0) with transform X(k) = (1,−i,−1, i)Interleave zeros to get y(n) = (0,0,1,0,0,0,0,0) then
Y (k) = ∑N−1

n=0 y(n)e−i2πkn/N

Y (0) = e−i2π0/8 = 1
Y (1) = e−i2π2/8 = e−iπ/2 = −i
Y (2) = e−i2π4/8 = e−iπ = −1
Y (3) = e−i2π6/8 = e−iπ3/2 = i
Y (4) = e−i2π8/8 = e−i2π = 1
Y (5) = e−i2π10/8 = e−iπ5/2 = −i
Y (6) = e−i2π12/8 = e−iπ3 = −1
Y (7) = e−i2π14/8 = e−iπ7/2 = iSo Y (k) = (1,−i,−1, i,1,−i,−1, i) (or X(k) repeated twie)
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Sampling, Quantization,

Dithering and

Half-toning

The properties we have just seen leed to some diretappliations. In partiular, we don't always get a signal inthe form we want it, so we may have to hange itssampling rate, or quantization, and we an exploit ournew mathematially derived intuition to start work outhow to do this (we'll see more later).
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Similarity appliation

Pratial use: upsampling (interpolation)We have a sequene sampled every ts seonds,e.g. at a rate fs = 1/ts, but we need a sequenesampled at rate K fs.Approah: produe a new sequene with K −1 zerosinterleaved between eah original data point.
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Similarity appliation: upsampling

Given K −1 zeros interleaved between eah original sample.max frequeny in original data is fs/2, withfrequeny resolution fs/N, and N/2 points infrequeny domain.upsampled data has max frequeny K fs/2, withfrequeny resolution fs/N, and KN/2 points infrequeny domain.the frequeny resolution doesn't hange, but now wehave K repeats of the original spetrum at intervals

fs/N.to get a signal with the same original band-limitedpower-spetrum, we apply a low-pass �lter,smoothing the data.
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Upsampling example

32 samples (frequeny 3.4 yles)
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Upsampling example

3 ×'s upsampled (96 samples)
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Upsampling example

low pass �lter, then IDFT
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Upsampling triks

Trik of the day: low-pass before upsampling.notionally, the �ltering ours after upsamplingIf �ltering in the time domain however, K −1/Kproportion of multiplies in the �lter are by zero.an ignore these, but this is the same as low-passbefore upsampling.Let's revisit this later (after disussing �ltering in moredetail).
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Upsampling appliations: audio

Oversampling CD or DVD playersdigital omponents are heapanalogue omponents are more expensiveDigital to Analogue Conversion (DAC) is required inCD playerwant to make this as heap as possible (for a givenquality)The trikupsample in the digital domain (where it is heap)when we onvert to analogue, we an use a simpler,heaper analogue �lter, to get the same results
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