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This leture extends our work on the DFT into 2D. We see that the DFT naturally generalizesto higher dimensions, and this an be very useful in image proessing.
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Transforms in 2DUntil now we have only onsidered 1D funtions aspossible inputs, but there are many appliations wherewe want to onsider funtions with 2 (or more)independent variables, e.g., surfaes, and the Fouriertransform naturally generalizes to this ase.
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Transforms in 2DWe want a separable basis.

◮ basis �vetors� are the produt of basis vetorsfrom two omponent subspaes. e.g. if the funtionan be written as f (x,y) = g(x)h(y), we should be ableto write its FT as F(s, t) = G(s)H(t).
◮ makes omputation easier
◮ makes most of the math easier (same methods usedfor proofs)Fourier transform in 2D

F(s, t) =
Z ∞

−∞

Z ∞

−∞
f (x,y)e−i2π(sx+ty) dxdy
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2D signals = images

◮ 2D signal proessing is used for images
◮ images are sampled signals in 2D

x

y

f(x,y)

digital
camera

2D function f(x,y) 2D sampled function x(n,k)

◮ same issues for sampling/quantization as we havefor 1D signals
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Displaying 2D signals

◮ 2D signal proessing is used for images
◮ images are sampled signals in 2D

2D sampled function x(n,k)
display device

image pixel

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.5/69



I will show large values using pale, or white pixels, and dark pixels will indiate small (or verynegative) values.
Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.5/69



The DFT in 2DDFT

X(k1,k2) =
N1−1

∑
n1=0

N2−1

∑
n2=0

x(n1,n2)e
−i2πk1n1/N1e−i2πk2n2/N2,

◮ To ompute it ef�iently:1. ompute 1D FFT along the rows2. then do a 1D FFT along the olumns
◮ Called row-olumn algorithm

⊲ note that the order ould hange.

◮ naturally generalizes to higher dimensions
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Computations in the row-olumn algorithm, assume image is N1 × N2 = N pixels in size.Computations will be

N
N1

O(N1 logN1)+
N
N2

O(N2 logN2) = O(N logN1 +N logN2) = O(N log[N1×N2]) = O(N logN)

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.6/69



Examples (i)

x(n,k) = sin(2π3k/N)
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In the images displayed, light olors indiate large values, and dark olors indiate smallvalues.Note that the image has a frequeny of 3 along the x-axis (as k varies), and it is onstantalong the y-axis (as n varies). Note the hange in sense, Matlab uses matrix notation, wherethe �rst index is the row, and the seond the olumn.In the frequeny domain the power-spetrum has two peaks, both at 0 frequeny in the ydiretion, and one at frequeny 3 in the x diretion. The seond peak is the symmetri peak(see previous 1D examples) at frequeny 32−3 = 29. We ould use fftshift here as well tomake these symmetri about the enter of the graph.Take the signal (in the left hand graph) to be x, and the right hand graph plots thepower-spetrum log(|X |2).Finally note that in the image, we have indies that run from 0, . . . ,31, whereas in Matlab,indies would run from 1, . . . ,32. Either is aeptable nomenlature (we use 0, . . . ,31 herebeause it is easier to interpret frequenies with these indies).
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Examples (i): fftshift

x(n,k) = sin(2π3k/N)
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When fftshift is applied the (0,0) frequeny is shifted to the enter of the image. Now thepeaks are more obviously the result of a simple sinusoidal funtion (ompare to the 1D power-spetrum of sin).
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Examples (ii)

x(n,k) = sin(2π3n/N)
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Here the periodiity is in the y-axis, and we see a �ip of the previous graph, so that thefrequeny peaks our at zero frequeny for x-diretion.
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Examples (iii): superposition
x(n,k) = sin(2π5n/N)+sin(2π3k/N)
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Remember the Fourier transform is linear, so when we superpose two simple sinusoids (byadding them), we simply add the orresponding Fourier transforms, so this piture showspeaks orresponding to the two sinusoids one in eah diretion.
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Examples (iv)

x(n,k) = sin(2π3(n+ k)/N)

signal

0 5 10 15 20 25 30

0

5

10

15

20

25

30

log(|DFT|2)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.11/69



Here we have a single sine funtion, and so we see only two peaks in the frequeny domain,but they are in more omplex positions. We will see how to understand this by understandinghow symmetries work in 2D.
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DFT and symmetry

The symmetry of the 2D FT depends on the symmetryof the funtion.

F(−s,−v) =

Z ∞

−∞

Z ∞

−∞
f (x,y)ei2π(sx+ty) dxdy

=

Z ∞

−∞

Z ∞

−∞
f (−x,−y)e−i2π(sx+ty) dxdy

= F { f (−x,−y)}As before (in 1D), but now we re�et through the origin.

◮ similar result to before relating omplex onjugateset.
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DFT and symmetry

Power-spetrum of 2D DFT will be symmetri about theenter (zero frequeny).

◮ Equivalent to real time series produes evenpower-spetrum.

◮ In matlab, use fftshift to see the plots this way.
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Examples (iv-b)

as before using fftshift
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2D DFT of a sinusoid

f (x,y) = cos[2πs0(cos(θ)x+sin(θ)y)]Multiply by gτ(u)gτ(v) = Gaussians with standard dev. τ,where u an v are given in the oord. transform below.
F(s, t)=

Z ∞

−∞

Z ∞

−∞
gτ(u)gτ(v) f (x,y)e−i2π(sx+ty) dxdy

=
Z ∞

−∞

Z ∞

−∞
gτ(u)gτ(v)cos[2πs0(cos(θ)x+sin(θ)y)]e−i2π(sx+ty) dxdy

Change o-ordinates, so that u = cos(θ)x+sin(θ)y and

v = −sin(θ)x+cos(θ)y, and the transformation is just arotation so the Jaobian is J =

∣

∣

∣

∣

∣

cos(θ) sin(θ)

−sin(θ) cos(θ)

∣

∣

∣

∣

∣

= 1.
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2D DFT of a sinusoidNote g(r) remains unhanged by a rotation in theo-ordinates.

F(s, t)=

Z ∞

−∞

Z ∞

−∞
gτ(u)gτ(v)cos[2πs0u]e−i2πu(cos(θ)s+sin(θ)t)e−i2πv(−sin(θ)s+cos(θ)t) dudv

=
Z ∞

−∞
gτ(v)e

−i2πv(−sin(θ)s+cos(θ)t) dv
Z ∞

−∞
gτ(u)cos[2πs0u]e−i2πu(cos(θ)s+sin(θ)t) du

The seond integral is just the Fourier transform of aosine (with a Gaussian), so as the Gaussian widthinreases τ → ∞, it beomes the FT of a osine.

1
2

[δ(cos(θ)s+sin(θ)t − s0)+δ(cos(θ)s+sin(θ)t + s0)]

A pair of parallel �ridges� in the (s, t) plane.
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2D DFT of a sinusoidResult

F(s, t) =
Z ∞

−∞
e−i2πv(−sin(θ)s+cos(θ)t) dv

Z ∞

−∞
cos[2πs0u]e−i2πu(cos(θ)s+sin(θ)t) du

=
1
2

δ(−sin(θ)s+cos(θ)t) [δ(cos(θ)s+sin(θ)t − s0)+δ(cos(θ)s+sin(θ)t + s0)]A pair of parallel ridges, at right angles to anotherridge, interseting at two points.
  sin θ   cos   θ−s          + t         =   0

cos θ sinθs          + t         =  s

cos θ sinθs          + t         =  −s

θ

s

t

f

Intersection points

0

0
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2D DFT of a sinusoid

f (x,y) = cos[2πs0(cos(θ)x+sin(θ)y)] represents a sinusoidrotated by θ around the enter of the plane.

We have seen that the result is that the FT is alsorotated by θ, about the enter.

This holds more generally � a spatial rotation auses arotation in the frequeny domain.

However, its not quite that simple for disretetransforms, where there is no suh thing as an exatrotation (exept by kπ/2).
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Examples (v)

x(n,k) = sin(2π8n/N) with fftshift
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NB: the above plot is no longer on a log-sale so we an keep trak of the peaks a bit morelearly.
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Examples (v-b)

x(n,k) = sin(2π8(cos(θ)n+sin(θ)k)/N) with fftshift
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We an see that the FT looks like the FT of Example (v) rotated by the same amount as thesignal.
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Examples (vi)

x(n,k) = I {sin(2π(n+2k)/N) > 0.2} with fftshift
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Until now, all of the signals have been a simple sine funtion. Now, we look at the equivalentof a square wave in 2D. We an easily work out the FT in 2D. Just onsider the 1D FT of asquare wave, and then rotate it (see �gure below).
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Note that I(·) is an indiator funtion (it is one, when the argument is true, and 0 otherwise).
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Examples (vii)

x(n,k) = I {sin(2π(2n+ k)/N) > 0.2} with fftshift
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%
% file: two_d_examples_vii.m, (c) Matthew Roughan, Mon Aug 9 2004
%
colormap(gray)

N = 32;
x = (1:N)/N;
[X, Y] = meshgrid(x,x);

f_0 = 3;
A = sin(2 * pi * f_0 * (X+2 * Y)) > 0.2;
A = A - mean(mean(A));
B = fftshift(fft2(A));

figure(7)
subplot(1,2,1)
image(A, ’CDataMapping’, ’scaled’);
set(gca, ’xtick’, [0:5:32], ’fontsize’, 18);
title(’signal’);

figure(7)
subplot(1,2,2)
image(abs(B), ’CDataMapping’, ’scaled’);
colormap(gray);
set(gca, ’xtick’, [0:5:32], ’fontsize’, 18);
title(’abs(DFT)’);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 23 10])
print(’-depsc’, sprintf(’Plots/2d_7.eps’, i));
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Examples (viii)

x(n,k) = sin
(

2π
√

(n/N −1/2)2 +(k/N −1/2)2
) with

fftshift
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This new signal has radial (or rotational) symmetry, i.e., it is invariant when we rotate it. Notethat the FT is approximately rotationally invariant as well. The approximation ours beausethe disrete image an't be perfetly rotationally symmetri.
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Examples (viiib)

x(n,k) = I
{

√

(n/N −1/2)2 +(k/N −1/2)2 < 0.2
} with

fftshift
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Rotationally invariant equivalent of a retangular pulse, and the FT is the rotationally symmetriequivalent of a syn funtion.
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Radial symmetry

Radially symmetri signal produes radially symmetriDFT

◮ we know that a rotation in spae domain, ausesequivalent rotation in frequeny domain.
◮ rotation doesn't hange f (x,y), so F(s, t) must also beinvariant.

◮ Remember disretization effets limit radialsymmetry.Given radial symmetry an get Hankel transform:

◮ useful where the system has radial symmetry

◮ e.g. optial systems, suh as lenses.
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Examples (Lena)

Lena image and power-spetra plotted using fftshift
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Lena image, see for instane http://ndevilla.free.fr/lena/ .Other standard images available at http://sipi.usc.edu/database/ .
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Aliasing in Images

Just as in 1D signals, when we quantize we introduenoise, and when we sample, we an introdue aliasing.However, aliasing in images (and other higherdimensional signals) an take many forms, and you haveprobably seen the effet before.
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Aliasing in images

Aliasing in images is similar to that in time signals.
◮ an image is a sampled spatial �eld
◮ ameras average over a small angle for eah pixel,so effetively low-pass the image �eld beforesampling.

◮ CGI generation by sampling of underlyingmathematial model.
◮ produes jagged edges in images �jaggies�

◮ Moire patternsSolution is low-pass pre�ltering of data (as before).
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Other examples of aliasing in higher dimensions

◮ marhing ants in movies

◮ reverse diretion of wheels in movies
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Jaggies
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�Jaggies� are the jagged edges you see where a diagonal line in a low resolution image hasa jagged edge. It is usually alled aliasing in image proessing, and it related to frequenyaliasing beause it is a problem with an insuf�ient sampling rate.
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Jaggies (redued by enhaned resolution)
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The objet being viewed is the same as in the previous slide (a disk) but the enhanedresolution in the image (from 32×32 to 512×512) results in a better piture, and a redution injaggies. When we look at the DFT (restriting our attention to the same entral region of theDFT as before, even though given the higher spatial resolution, we ould see a wider rangeof frequenies now, if we wanted to) we see that the DFT looks pretty similar, but it is nowslightly more irularly symmetrial, resulting from the more irular image.
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Jaggies (redued by pre-�ltering)
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The objet being viewed is the same as in the previous slide (a disk) but now when we sample,we don't just take a value (1 if the point is on the disk, and zero otherwise), we take a setof samples at high resolution (see previous image), and average these to get the new value(averaging is a rude low-pass �lter).
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Moire patterns
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Moire patterns our when we put many lines together. For instane, in the piture above,only irles are plotted, but we observe other apparent patterns appearing in the image.

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.32/69



Moire patterns
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In this example Moire pattern irles are plotted on top of vertial lines. The other patternsare sampling artifats.
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Anti-aliased fontsAliased Anti-aliased
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As before, we avoid aliasing (e.g. jaggies) by low-pass �lters. An example ours in anti-aliased fonts, where we an see the anti-aliased font is blurred. When printed, this produessmoother looking edges on the fonts (all the fonts used in this doument are anti-aliased).
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Anti-aliased CGIComputer-Generated Images (CGI)

◮ one way to generate is raytraing
◮ generate a ray for eah image pixel, and trae itspath, inluding re�etions, and refration.
◮ omputationally expensive (there are faster butless exat methods), so don't want to generate morethan one ray per pixel
◮ but jagged edges move (somewhat randomly),generating marhing ants.
◮ to get good results need to oversample, and average(e.g. a low-pass operation)
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Some referenes:

http://www.siggraph.org/education/materials/HyperGr aph/aliasing/alias2a.htm
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Aliasing: rawling ants
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Resampling appliations: video

There are many variations of display for imagesDisplay width × height Depth rateVGA monitor 640 × 480 4 bit 60 HzPAL TV 720 × 576 (625) - 50 HzHDTV 1080i 1920 × 1080 8 bit 50 HzPlasma TV (typial) 1024 × 768 14 bit variableFilm ∼ 3000 ×∼ 2000 ∼ 12 bit 24 HzWorkstation 1920 × 1200 24 bit 60 HzB&W laser printer 6600 × 5500 1 bit -We need to be able to onvert between these (e.g. ifyour standard DVD player is hooked up to a high-defplasma sreen).
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A typial big plasma sreen TV

◮ 106 m (42 inh) diagonal sreen

◮ 16:9 aspet ratio

◮ 1,024 x 768 resolution

◮ 3000:1 Contrast Ratio

⊲ really talking about dynami range

⊲ Q: what quantization would you need to exploit this range?remember RGB

◮ 14 bit proessingSo how do you take a DVD reording a PAL signal, or a HDTV signal and play onto a plasmasreen? Obviously we need to resample.
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Resampling appliations: printing

Problem of resampling has been around for a long while
◮ Printers put ink on a page

⊲ think of this as 1 bit quantization (ink, or no ink)
⊲ so how an you do a piture, with only 1 bit?
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Obviously you lose a lot of detail when you simply quantise an image to one bit, and print.
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Newsprint

Newspapers ame up with solutions many years ago

from the Australian, De 11th, 2005
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When you look losely at the image you see that it is really made up of many small dots. Thesize of the dots an vary, as an the density of the dots. This is alled �half-toning�.To see why it works, think of our eye as a DAC. Our eye onverts a digital piture, e.g., thenewsprint (or a TV piture) from digital (on the page or sreen) into an analogue signal inour nervous system. Our eye is ating as the low-pass �interpolation� �lter that smooths thesamples out to reate a nie smooth funtion (the image we pereive).There is a simple tradeoff between quantization noise, and the sampling rate. Given a highersampling rate, we an afford to have more quantization noise, beause the �smoothing� effetwill smooth over more noise, and thereby redue it.
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Resampling appliations: printing
◮ many printers have only 1 bit quantization

⊲ e.g. B&W laser printers

◮ ink jets (typially) have 3 or 4 olor inks
⊲ but you an't mix them, so need to put togethersomehow?

◮ printers typially have better spatial resolutionthan a monitor

⊲ e.g. 1200 dpi (dots per inh)
⊲ ompare to a monitor with perhaps 72 dpi

◮ so we tradeoff sampling vs quantization

⊲ it works beause our eyes (or other sensors)effetively do a low pass before sampling

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.40/69



The tradeoff between sampling, and quantization is interesting. Better resolution in one anompensate for a lak in the other.

http://www.mwrf.com/Articles/Print.cfm?Ad=1&Article ID=10586The point at whih we operate is usually determined by the partiular tehnology osts of themedium we are working in.However, there are some interesting issues to onsider � for instane, we have so far ignoredthe struture of quantization noise. In fat, quantization noise isn't �white�. It an havefrequeny related effets, and these an be more or less pereptible, so some of the balaningat above is determined by the harateristis of our senses.
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Half-toning

◮ problem is that we have limited quantization
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◮ exhange spatial resolution for quantization

◮ proessing is alled half-toning (for printing)
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Halftoning

Proessing is alled half-toning (for printing)
◮ use dots of varying size

50 100 150 200 250

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

◮ use patterns of dots
level 1 2 3 4 5
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Both tehniques exhange spatial resolution for quantization auray. e.g. in the pattern ofdots, we need twie the spatial resolution to represent 5 levels (instead of 2 levels).For more information/examples see

http://www.cs.princeton.edu/courses/archive/fall99/ cs426/lectures/
dither/sld005.htm
http://www.webopedia.com/TERM/D/dithering.html
http://www.geocities.com/ResearchTriangle/Thinktank /5996/techpaps/
introip/manual04.html
http://www.cs.indiana.edu/~dmiguse/Halftone/
http://www.webstyleguide.com/graphics/dither.html
http://www.visgraf.impa.br/Courses/ip00/proj/Dither ing1/floyd_
steinberg_dithering.htmlMatlab ode:

http://www.ece.utexas.edu/~bevans/projects/halftoni ng/toolbox/
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Dithering

Problem with simple approahes above:
◮ introdue some patterns into the image
◮ these might be pereptable
◮ want to add some randomization
◮ example:

P(x,y) = round [I(x,y)+rand(x,y)]

◮ Example applet
http://www.markschulze.net/halftone/
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Its a strange idea. The introdution of random noise an atually improve the pereption ofan image. The issue is that its easy to ompensate for some types of noise, but not others.Its used in audio reording as well as in images to make sure that the underlying quantizationnoise (�oor) is �white�, i.e., doesn't have patterns.The approah above is rather simplisti � there are many muh more sophistiated ways tointrodue randomization.
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Examples of Dithering
50 100 150 200 250 300 350 400 450 500 550

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500 550

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500 550

100

200

300

400

500

600

1. original image2. dithered by adding a random value3. Floyd-Steinberg error diffusion dithering
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Obviously, these images aren't as good as possible, beause I have to be able to display iton a sreen (e.g. monitor) so that you an see the dots. When printing, the dots are muhsmaller, and the image quality is muh better. Compare your printed notes to what is displayedon the sreen. In a real appliation the dots would be smaller than an easily be seen by thenaked eye. Our eye ats as a sort of low-pass �lter blurring the individual points together toform shading.
Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.44/69



Extreme example: asii art
◮ Sample the image down to graysale with less than8-bit preision, and then assign a harater foreah value.

◮ Ideally harater is related to graysale
◮ also shape an be used to help de�ne lines.

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.45/69



Comments on asii art

http://xenia.media.mit.edu/~nelson/courses/mas814/Code to make asii art images

http://aa-project.sourceforge.net/index.htmlOn-line onverter

http://www.text-image.com/convert/Examples

http://www.chris.com/ascii/
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Extreme example: asii art
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Appliations of

Transforms in 2DThere are many examples of appliations for 2Dtransforms. We examine brie�y JPEG imageompression and digital watermarks.
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Appliation: JPEG ompression
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Some referenes:

http://www.faqs.org/faqs/jpeg-faq/
http://www.photo.net/learn/jpeg/
http://www.cs.cf.ac.uk/Dave/Multimedia/node234.html
http://netghost.narod.ru/gff/graphics/book/ch09_06. htm
http://cobweb.ecn.purdue.edu/~ace/jpeg-tut/jpegtut1 .html
http://www.imaging.org/resources/jpegtutorial/index .cfm
http://delivery.acm.org/10.1145/330000/327649/a2-ha nkerson.
html?key1=327649&key2=3302073511&coll=portal&dl=ACM &CFID=
25660063&CFTOKEN=26680067
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Appliation: JPEG ompression

Example statsompression size (kb)no ompression 2304 = 1024×768×24/(8×1024)JPEG quality=0.75 62JPEG quality=0.50 37JPEG quality=0.25 24JPEG quality=0.10 13JPEG quality=0.05 9
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JPEG algorithm

Steps:

◮ olor transform RGB to YIQ, and downsample I, Q
◮ divide image into bloks of 8x8
◮ For eah 8x8 blok

⊲ DCT

⊲ quantize

⊲ enode quantized bits
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Color in images

◮ Primary olors = Red, Green, Blue (RGB)
◮ ombinations of these give olors Color Hexadeimalaqua #00ffffgray #808080green #008000lime #00ff00maroon #800000navy #000080olive #808000purple #800080red #ff0000silver #c0c0c0teal #008080white #ffffffyellow #ffff00blak #000000blue #0000fffuhsia #ff00ff
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Figure shows just a few examples of mixing olors to get new olors. For other examples see,e.g.

http://en.wikipedia.org/wiki/Web_colors
http://web.njit.edu/~kevin/rgb.txt.html
http://www.is.kiruna.se/~cjo/d2i/COLOR.RGB.html
http://www.kenjikojima.com/java/RGBHexConverter2.ht mlOften eah olor is quantized with 8 bits, and so takes values from 0−255, and eah an berepresented by 2 hexadeimal digits, so one might write a olor like #A62A2A, e.g. HTMLolors shown in the table above.
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JPEG ompression (olor transform)

G
R

B Y I

Q

downsample I and Q by 2:1
convert RGB to YIQ and

We an downsample I and Q beause our eyes are lesssensitive to these omponents.
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Some olor spae transformations:

R,G,B ∈ [0,1]

Y ∈ [0,1], I ∈ [−0.595716,0.595716] and V ∈ [−0.522591,0.522591]







Y

I

Q






=







0.299 0.587 0.114

0.595716 −0.274453 −0.321263

0.211456 −0.522591 0.311135













R

G

B







Other forms of olor transform, YUV, YCbCr (used in JPEG2000), and so on
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JPEG ompression (bloks)
Y

8

8

break image into 8x8 blocks
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The Disrete Cosine Transform (DCT)

For an N1×N2 image A, the DCT is de�ned as
B(k1,k2)= 4

N1−1

∑
i=0

N2−1

∑
j=0

A(i, j)cos

[

π
k1

N1

(

i+
1
2

)]

cos

[

π
k2

N2

(

j +
1
2

)]

Real-even DFT of half-shifted inputAs before there are other possible de�nitions (e.g. see

http://en.wikipedia.org/wiki/Discrete_cosine_transf orm).
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The input image A(i,j) is N2 pixels wide by N1 pixels high. For JPEG, the input is an 8 by 8array of integers. This array ontains eah pixel's gray sale level with levels typially from 0to 255.B(k1,k2) is the DCT oef�ient in row k1 and olumn k2. The output ontains integers, whihan range from -1024 to 1023.All DCT multipliations are real. This lowers the number of required multipliations, asompared to the disrete Fourier transform. Fast DCTs exist (or it an be performed usingFFTs, but this negates the above advantage, though sometimes it might be worth it to takeadvantage of highly optimized ode.).
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JPEG ompression � quantization
◮ quantization refers to setting the values todisrete values.

◮ if a small number of values are used they an beenoded in a small number of bits (e.g. 4 values, in 2bits).

◮ tradeoff between quality and ompression.
◮ uniform ompression applies the same quantizationaross all DCT oef�ients.
◮ high-frequenies in images aren't as visible to nakedeye

◮ hene quantize higher frequenies more, withminimal loss in quality
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Quantization

We start with some ontinuous distribution
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Assume the pixels of the image take a range of values, and the plot above gives us a histogramof those values.
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Quantization

Then quantize the distribution into a number of levels
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Remember, quantization introdues noise (redued by roughly 6dB per bit). Atually, wequantize something that has already been quantized one. Typial image values are 8 bits (0-255). Imagine quantizing to 4 bits. This would introdue approximately 24dB of quantizationnoise, but we do this in the frequeny domain. Quantizing frequeny f introdues orrelatednoise into the image, whih is not very visible for high-frequenies.
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Quantization matrix

◮ the quantization matrix is an 8×8 matrix of stepsizes for quantization of the orresponding elementof the DCT.

◮ quantize eah element by ⌊F[k1,k2]/q(k1,k2)⌋ where
q(k1,k2) is the quantization matrix.

◮ top left are lower frequenies, so smaller q values,inreasing towards bottom right.
◮ typially, many values turn out to be zero: this isgood for the next stage.
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JPEG ompression � Enoding

The levels in the quantizedblok are enoded sequen-tially using standard odingtehniques, suh as Huff-man, or Arithmeti enod-ing, and Run Length Enod-ing (RLE). The order is im-portant, beause the quan-tization will leave many ze-ros, mostly in the lowerright quadrant. RLE aneffetively enode thesegroups of zeros.
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We won't over enoding tehniques in this ourse: see �Coding and Cryptology� for moredetails.
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JPEG ompression properties
◮ JPEG ompression is lossy (looses information)
◮ one an't get bak to the original just from theompressed information

◮ loss vs quality is tunable by hanging thequantization tables.

◮ somewhat adaptive (through small bloks), but notvery.

◮ low quality introdues observable artifats
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Appliation: JPEG ompression

Quality = 0.05
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Steganography

Steganography: (overed writing) The art and sieneof hiding information by embedding messages withinother, seemingly harmless messages.
◮ has often been used to ode information in text(see following example)
◮ more reently, used to enode info. in other formsof data

⊲ images

⊲ audio
◮ oding an be done using least signi�ant bits, so itappears as noise
◮ we an be even leverer!
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Referenes:

http://www.jjtc.com/stegdoc/steg1995.html
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Steganography

The German Embassy in Washington, DC, sent thesemessages in telegrams to their headquarters in Berlinduring World War I (Kahn, 1996).
PRESIDENT’ S EMBARGO RULING SHOULD HAVE

IMMEDIATE NOTICE . GRAVE SITUATION AFFECTING

INTERNATIONAL LAW . STATEMENT FORESHADOWS

RUIN OF MANY NEUTRALS. YELLOW JOURNALS

UNIFYING NATIONAL EXCITEMENT IMMENSELY .

APPARENTLY NEUTRAL’ S PROTEST IS THOROUGHLY

DISCOUNTED AND IGNORED. ISMAN HARD HIT.
BLOCKADE ISSUE AFFECTS PRETEXT FOR EMBARGO

ON BYPRODUCTS, EJECTING SUETS AND

VEGETABLE OILS.

Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.63/69



Transform Methods & Signal Processing (APP MTH 4043): lecture 04 – p.63/69



Steganography

Reading the �rst harater of every word in the �rstmessage or the seond harater of every word in theseond message.

PRESIDENT’ S EMBARGO RULING SHOULD HAVE

IMMEDIATE NOTICE. GRAVE SITUATION AFFECTING

INTERNATIONAL LAW. STATEMENT FORESHADOWS

RUIN OF MANY NEUTRALS. YELLOW JOURNALS

UNIFYING NATIONAL EXCITEMENT IMMENSELY.

APPARENTLY NEUTRAL’ S PROTEST IS THOROUGHLY

DISCOUNTED AND IGNORED. ISMAN H ARD HIT.
BLOCKADE ISSUE AFFECTS PRETEXT FOR EMBARGO

ON BYPRODUCTS, EJECTING SUETS AND

VEGETABLE OILS.
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Steganography

Reading the �rst harater of every word in the �rstmessage or the seond harater of every word in theseond message will yield the following hidden text:PERSHING SAILS FROM N.Y. JUNE 1
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Appliations: digital watermarks

Watermarks are a partiular ase: we want to add to animage user data that is

◮ reoverable (given the key)
◮ hard to detet (without the key)
◮ hard to get rid ofallows one to �nd opyright violations. e.g.

◮ �nding (and proving) that an image on a web pagewas illegally opied from its owner.
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WatermarksVERY non-trivial to get right (seurity is always hard).It must resist natural transformations of the image, e.g.
◮ image ropping

◮ reompression

◮ hanging �le types

◮ rotationPlus be hard for an opponent to
◮ remove deliberately.
◮ detet and identify
◮ forge a watermark

Least signi�ant bitswould be lost in some-thing as simple asompression!
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Watermarks in the frequeny domain
◮ In JPEG ompression, we found that some valuesould be quantized with minimal visual impat.
◮ similarly, we ould deliberately hange the values alittle with minimal impat on the image quality
◮ hange low frequeny omponents, as they are lessquantized during ompression, and less likely to belost.

◮ apply to whole image so that ropping doesn't ausea problem

◮ use rypto tehniques on the information to make ithard to aess/detet
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Some referenes:

◮ Berghel, H. (1998). �Digital watermarking makes it mark�, netWorker: The raft ofnetwork omputing, 2(4), 30-39.

◮ Cox, I., Miller, M., and Bloom, J. (2000, Marh 27 -29). �Watermarking appliationsand their properties�, Proeedings of the international onferene on informationtehnology: Coding and omputing, Las Vegas, Nevada.
◮ Dittmann, J., Mukherjee, A., and Steinebah, M. (2000, Marh 27 - 29).�Media-independent watermarking lassi�ation and the need for ombining digitalvideo and audio watermarking for media authentiation�, Proeedings of theinternational onferene on information tehnology: Coding and omputing, LasVegas, Nevada.

◮ Dittmann, J., Stabenau, M., and Steinmetz, R. (1998, September 13 - 16). �RobustMPEG video watermarking tehnologies�, Proeedings of the 6th ACM internationalonferene on multimedia, Bristol, United Kingdom.
◮ Memon, N., and Wong, P. W. (1998). �Proteting digital media ontent�,Communiations of the ACM, 41(7), 35-43.
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Appliations: digital watermarks

A somewhat easier problem is tamper-proof watermark
◮ put some mark onto the image suh thattransformation of the image in any way will damagethe mark.

◮ then if the image has been altered, we an �nd out

◮ e.g. for use in hain of evidene, to prove that adigital image was not altered.
◮ again we an hide this information in the DCToef�ients.
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