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Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.1/71

This leture is onerned with �lters, in partiular LTI (Linear, Time-Invariant) �lters, whihwe an write as a onvolution. We also introdue the z-transforms and the analogy between�lters and systems.
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FiltersFiltering is a basi signal proessing operation. We wantto ��lter out� some part of the signal so that we an seeother more learly. For instane, we want to �lter outthe �noise�. Common tehniques for �ltering either usetransforms diretly, or in their analysis and design andthis is one of the most important appliations oftransform methods, but also, we will later see how wean implement some transforms using �lter.
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FiltersA �lter takes some input x(n), and produes an output

y(n), whih has been �ltered to extrat ertain features(e.g. trend, seasonality, ...)

x(n) Filter y(m)

Referenes:

◮ Brokwell and Davis, 1996

◮ Box and Jenkins, 1976

◮ Anderson and Moore, 1979
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Possible �lter properties

◮ invertibility: The mapping x(t) → y(t) must be 1:1, sothat eah input signal has a unique output signal(don't need to invert all possible outputs).
◮ memory: y(t0) depends on x(t) for t 6= t0.
◮ ausality: y(t0) only depends on x(t) for t ≤ t0.
◮ stability: Bounded Input Bounded Output (BIBO).If |x(t)| ≤ M for all t and some M, then |y(t)| ≤ R forall t and some R.
◮ time invariane: time shift doesn't matter, i.e.

x(t) → y(t) implies x(t − t0) → y(t − t0).

◮ linearity: priniple of superposition: xi → yi, i = 1,2implies that for all a1,a2 ∈ R, a1x1 +a2x2 → a1y1 +a2y2.
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Linear FiltersResponse is linear in the input, e.g. given the �lter,

L{x1} → y1

L{x2} → y2Then

L{ax1 +bx2}→ ay1 +by2The output of linear �lters an be written as a linearombination of the inputs.

y(m) =
∞

∑
i=−∞

w(m, i)x(m− i)
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Linear Time Invariant Filters
◮ time invariant �lters don't hange over time, so

w(m, i) = w(i)The output of linear �lters an be written as a linearombination of the inputs.
y(m) =

∞

∑
i=−∞

w(i)x(m− i)

Note that this is a disrete onvolution!
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Obviously we an also have ontinuous time �lters, whih we then write as integrals. Suh�lters do exist (they are analogue �lters), and muh of the analysis we will ondut hereapplies in some form, but with integrals instead of sums. For instane, a ontinuous lineartime invariant �lter looks like a ontinuous onvolution.
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ConvolutionDe�nition: Disrete onvolution

[x1∗ x2] (n) =
∞

∑
i=−∞

x1(i)x2(n− i) =
∞

∑
i=−∞

x1(n− i)x2(i)

Now remember the impat of onvolutions in DFTs, e.g.

F {x1∗ x2} = X1(k)X2(k)where F {x1(n)} = X1(k) and F {x2(n)} = X2(k).
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Cirular onvolutionConvolution of �nite, disrete-time sequenes
◮ standard onvolution assumes in�nite series of data

(x∗ y)[n] =
∞

∑
i=−∞

x(i)y(n− i)

◮ note what happens at the edges of a standardonvolution, when the series are �nite
⊲ either zero pad (pretend series are in�nite, butvalues are zero)
⊲ trunate onvolution (only ompute where edgeeffets are nil)
⊲ take irular onvolution
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Cirular onvolution

Cirular onvolution (x∗ y)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)(x*y)[0℄
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Example
Take y(n) = [x∗ x](n) = (1,1,0,0)∗ (1,1,0,0) = (1,2,1,0)

(x∗ x)[n] =
N−1

∑
i=0

x(i)y(n− i mod N)

y(0) = x(0)x(0)+ x(1)x(3)+ x(2)x(2)+ x(3)x(1)

= 1+0+0+0 = 1
y(1) = x(0)x(1)+ x(1)x(0)+ x(2)x(3)+ x(3)x(2)

= 1+1+0+0 = 2
y(2) = x(0)x(2)+ x(1)x(1)+ x(2)x(0)+ x(3)x(3)

= 0+1+0+0 = 1
y(3) = x(0)x(3)+ x(1)x(2)+ x(2)x(1)+ x(3)x(0)

= 0+0+0+0 = 0
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Example DFT of irular onvolution

Convolution theorem still holds

x(n) = (1,1,0,0)

X(k) = (2,1− i,0,1+ i)

y(n) = [x∗ x](n) = (1,2,1,0)

Y (k) = X(k)X(k) = (4,−2i,0,2i)

Diret alulation of Y (k) = ∑N−1
n=0 y(n)e−i2πkn/N

Y (0) = e−i2π0/4 +2e−i2π0/4+ e−i2π0/4 = 1+2+1 = 4
Y (1) = e−i2π0/4 +2e−i2π1/4+ e−i2π2/4 = 1−2i−1 = −2i
Y (2) = e−i2π0/4 +2e−i2π2/4+ e−i2π4/4 = 1−2+1 = 0
Y (3) = e−i2π0/4 +2e−i2π3/4+ e−i2π6/4 = 1+2i−1 = 2i
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Linear Time Invariant Causal Filters
◮ time invariant �lters don't hange over time, so

w(m, i) = w(i)

◮ ausal �lters only depend on the past, so w(−i) = 0,for i > 0.The output of linear �lters an be written as a linearombination of the inputs.
y(m) =

∞

∑
i=0

w(i)x(m− i)

Note that this is also a disrete onvolution!
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Impulse response

Given a �lter:

x(n) Filter y(m)

The impulse response is the output of the �lter given animpulse as the input.

Filter
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Impulse response

For a linear, time-invariant �lter F, the impulse responseis

IF(m) =
∞

∑
i=−∞

w(i)δmi = w(m)

where δnk is the Kroneker delta, de�ned by
δnk =

{

1 if n = k
0 otherwise

So a linear time-invariant �lter an be ompletelyharaterized by its impulse response.
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Impulse response

Note that any signal x(n) an be written as a linearombination of impulses, e.g.

x(n) =
∞

∑
k=−∞

δnkx(k)

Given linearity of the �lter, the output an be written asthe same linear ombination of the impulse responses,e.g.

y(m) =
∞

∑
i=−∞

w(i)

[

∞

∑
k=−∞

δm−i,kx(k)

]

=
∞

∑
i=−∞

w(i)x(m− i)

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.15/71

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.15/71

Memory
Filters an have �nite, or in�nite memory

◮ FIR: Finite Impulse Response �lters have animpulse response whih have a �nite number ofterms, i.e. ∃N suh that
w(n) = 0, ∀|n| > N

◮ IIR: In�nite Impulse Response �lters have animpulse response with an in�nite number of terms.though for BIBO we require a �nite sum, e.g.

∞

∑
i=−∞

|w(i)| < ∞
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FIR example: Moving Average

(�nite) Moving Average (MA)

y(n) =
N

∑
i=−N

b(i)x(n− i)

typial example, symmetri retangular windowed MA

y(n) =
1

2N +1

N

∑
i=−N

x(n− i)

NB: this is a non-ausal �lter
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FIR example: differene

A differene operator (or �lter) looks like
y(n) = x(n)− x(n−1)Note this is a speial ase of the MA aboveb(0) = 1, b(1) = -1but this terminology is used differently in different�elds

◮ signal proessing and stats: MA as de�ned above

◮ �nanial time series: MA ⇒ low pass

NB: this is a ausal �lter
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Example of IIR �lter: EWMA

Exponentially Weighted Moving Average (EWMA)

y(n) = ay(n−1)+(1−a)x(n)alternative IIR representation

y(n) = (1−a)
∞

∑
i=0

aix(n− i)

gives exponentially dereasing weight to historial dataMore general ase Autoregressive (AR) �lters

y(n) =
p

∑
i=1

a(i)y(n− i)+b(0)x(n)
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Transfer funtion

◮ we an represent LTI �lter as onvolution
◮ in Fourier domain, onvolution beomes a simpleprodut

◮ LTI �lter is ompletely haraterized by FT of itsimpulse response

◮ we all the FT of the impulse response the Transferfuntion, e.g.

W (k) = DFT (w(n))

◮ The transfer funtion tells us the impat of the�lter on different omponents of the spetrum of asignal
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Types of �lters

◮ low pass: pass low frequenies, stop highfrequenies.these �lters at as smoothers of the data.e.g. EWMA, MA

◮ high pass: pass high frequenies, stop lowfrequenies.e.g. differener � highlights edges

◮ band pass: pass a band of frequenies

◮ noth: exlude a band (sometimes alled bandstop)e.g. remove signal at a partiular frequeny toprevent feedbak (�ringing out�)
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Audio feedbak is the (often) unpleasant squealing sound when a mirophone (or guitarpikup) gets too lose to a speaker. The sound from the speaker is fed bak into themirophone, and gets ampli�ed, and in turn feeds bak through the system. Typially thishappens on a narrow range of frequenies, and by removing these with a noth �lter, onean remove the feedbak (without hanging the sound quality too muh as this is typially ahigher frequeny being removed.Note that the feedbak effet itself is a type of analogue �lter. It is a signal (the initial input thethe mirophone) being reursively feedbak through the system with some delay. Notie thatthis is not a stable �lter � hene the loud volume of the output, despite limited input volume.We will talk a little more about suh �lter systems in the setion on systems.
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Example: MA y(n) = 1
2N+1 ∑N

i=−N x(n− i)

fs = 1000, N = 10,000, input white noise, N = 5
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Example: MA y(n) = 1
2N+1 ∑N

i=−N x(n− i)

fs = 1000, N = 10,000, input 10 sines evenly spaed freq.
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Example: differene y(n) = x(n)− x(n−1)

fs = 1000, N = 10,000, input white noise
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Example: differene y(n) = x(n)− x(n−1)

fs = 1000, N = 10,000, input 10 sines evenly spaed freq.
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Example: EWMA y(n) = ay(n−1)+(1−a)x(n)

fs = 1000, N = 10,000, input white noise, a = 0.9
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Example: EWMA y(n) = ay(n−1)+(1−a)x(n)

fs = 1000, N = 10,000, input 10 sines evenly spaed freq.
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What do they sound like?

◮ white noise (stati)

◮ MA (low-pass, length 11)

◮ MA (low-pass, length 11)
◮ differene (high-pass)
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Why does He make your voie funny?

◮ inhaling Helium (He) makes your voie sound funny

⊲ Ordinary speeh

⊲ Helium speeh

◮ onventional explanation: He is muh lighter thanair, and the speed of sound is around 3 times asfast, hene vibrations are faster, and so the pithof your voie is higher.

⊲ But this is wrong!

⊲ vibrations in our voie are generated by voalords, whih whose vibrational frequeny isindependent of gas.
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Audio lips from, and more detailed explanation at

http://www.phys.unsw.edu.au/PHYSICS_!/SPEECH_HELIUM /speech.html
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Why does He make your voie funny?
◮ atually voie is generated by two proesses

⊲ voal hords generate vibrations
⊲ voal trat (mouth, tongue, et.) �lters thesounds

◮ He in voal trat hanges the transfer funtion sothat the �lter beomes �higher� pass than before.

⊲ pith is not hanged
⊲ only timbre (harmonis) are hanged

◮ Example

⊲ Pith in Air
⊲ Pith in He
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Audio lips from, and more detailed explanation at

http://www.phys.unsw.edu.au/PHYSICS_!/SPEECH_HELIUM /speech.html
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Why does He make your voie funny?
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Finanial data example
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Data from au.finance.yahoo.com
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au.finance.yahoo.com


Finanial data example
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Data from au.finance.yahoo.com
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Better �ltersThese don't look like very good �lters?
◮ they don't have a very distint pass band
◮ the transition region between pass band and stopbands is large

◮ the stop-band attenuation is poorIt would be nie to have �lters with better properties,so we an more preisely speify �lter out partiularbands.
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Terminology
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The blue urve shows a transfer funtion (or at least the magnitude thereof).
Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.35/71

Example �lter omparison

Stop-band attenuation ≃ -13 dB
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Filtering in the frequeny domain

We ould �lter thus:

◮ fft

◮ filter

◮ ifft ,but this requires O(N logN) operations, whih growsnon-linearly in N. For many appliations, we an't affordto have �ltering operations grow faster than O(N), e.g.real-time appliations,

◮ The number of data points will be fsT

◮ the time available for omputation is T

◮ time available per data point is 1/ts, whih isonstant with respet to N.
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Perfet �lters and Gibb's phenomena

Filtering in frequeny domain might not give you whatyou want. For example, retangular low-pass �lter tosmooth the data.

signal

0 20 40 60 80 100
frequency

power spectrum

Creates Gibb's phenomena in time (worse in images).
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% file: gibbs.m, (c) Matthew Roughan, Sun Aug 22 2004
%
N = 100; x = (1:N)/N;
y = x < 0.5;
z = fft(y);
K = 20;
z(K:end-K) = 0;
yd = real(ifft(z));

figure(1)
subplot(2,1,1);
hold off
plot(x, y, ’b-’, ’linewidth’, 3);
hold on
plot(x, yd, ’r-’, ’linewidth’, 3);
title(’signal’, ’fontsize’, 18);
set(gca, ’linewidth’, 3, ’fontsize’, 18, ’ylim’, [-0.2 1.2 ], ’xlim’, [0 max(x)], ’xtick’, [], ’ytick’,

subplot(2,1,2);
hold off
plot(0:N-1, abs(z).ˆ2, ’b-’, ’linewidth’, 3);
hold on
set(gca, ’linewidth’, 3, ’fontsize’, 18, ’xlim’, [0 N], ’yt ick’, []);
xlabel(’frequency’);
title(’power spectrum’);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 24 11])
print(’-depsc’, ’Plots/gibbs.eps’);
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Filtering in the time domain

We see that there are two possible representations forlinear, time-invariant �lters

◮ frequeny domain

◮ time domainWe an onvert between them, but what we want is a�lter that has good properties in both domains.

◮ good stop-band attenuation, and short transitionregion, with not too muh ripple

◮ short number of taps, and not too muh ripple.
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Z-transformsThis is a onvenient point to introdue a new (thoughlosely related) transform alled the Z-transform,whih is ideal for analyzing LTI �lters.
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Z-transformsThe Z-transform is de�ned by

W (z) =
∞

∑
n=−∞

w(n)z−n

Similar to Probability Generating Funtions (PGF)

P(z) =
∞

∑
n=−∞

pnzn

The Z-transform extends the Fourier transform ontothe omplex plane

◮ note that W (ei2πk) = F(k), where F(k) is the FT of w
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Z-transformsA Fourier transform

signal

0 5 10 15 20 25 30
frequency

power spectrum
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%
% file: complex_view_1.m, (c) Matthew Roughan, Sun Aug 22 20 04
%
N = 32;
x = (0:N)/N;
f1 = 3.4;
y1 = sin(2 * pi * f1 * x);
z1 = abs(fft(y1)).ˆ2;

figure(1)
subplot(2,1,1);
hold off
plot([x; x], [zeros(size(y1)); y1],’b’, ’linewidth’, 3);
hold on
plot(x, y1, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
set(gca, ’ylim’, [-1.2 1.2], ’xlim’, [0 max(x)], ’xtick’, [ ], ’ytick’, []);
title(’signal’);

subplot(2,1,2);
hold off
plot([0:N-1; 0:N-1], [zeros(1, N); z1(1:N)], ’b’, ’linewi dth’, 4);
hold on
plot(0:N-1, z1(1:N), ’bo’, ’linewidth’, 3);
set(gca, ’linewidth’, 3, ’fontsize’, 18, ’xlim’, [0 N], ’yt ick’, []);
xlabel(’frequency’);
title(’power spectrum’);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperOrientatio n’, ’portrait’);
print(’-depsc’, ’Plots/complex_view.eps’);
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Z-transformsA Fourier transform viewed as speial points of theZ-transform
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%
% file: complex_view_2.m, (c) Matthew Roughan, Sun Aug 22 20 04
% view of FT in complex plane
%
N = 32;
x = (0:N)/N;
f1 = 3.4;
y1 = sin(2 * pi * f1 * x);
z1 = abs(fft(y1)).ˆ2;

theta = 0:2 * pi/N:2 * pi;
circ_x = cos(theta); circ_y = sin(theta);

figure(2)
hold off
plot3(circ_x, circ_y, z1, ’o’, ’linewidth’, 5);
hold on
plot3([circ_x; circ_x], [circ_y; circ_y], [zeros(size(z 1)); z1], ’b-’, ’linewidth’, 3);
plot3(circ_x, circ_y, zeros(size(z1)), ’k:’, ’linewidth ’, 3);
grid on
set(gca,’xlim’,[-1.5 1.5],’ylim’,[-1.5 1.5]);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’real’);
ylabel(’imaginary’);
az = -60;
el = 30;
view(az,el);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 18 10])
print(’-depsc’, ’Plots/complex_view_circ.eps’);
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Z-transform and onvolutionsGiven a disrete onvolution

w(n) = [x∗ y] (n) =
∞

∑
i=−∞

x(i)y(n− i) =
∞

∑
i=−∞

x(n− i)y(i)

then the Z-transform of w is
W (z) = X(z)Y (z)where X(z) and Y (z) are the Z-transforms of x and y.
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Inverse Z-transformCan see by analogy to the DFT that we ould invert byintegrating the Z-transform around the unit irle inthe omplex plane.In fat we an use any ounter-lokwise ontourintegral whih goes around all of the poles of the

Z-transform.

w(n) =
1

2πi

I

Γ
W (z)zn−1dzwhere Γ is suh a ontour in the omplex plane.
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More general IIR �lters

ARMA (Auto-regressive Moving Average)
y(n) = −

p

∑
i=1

a(i)y(n− i)+
q

∑
i=0

b(i)x(n− i)

Alternatively write this as two onvolutions
p

∑
i=0

a(i)y(n− i) =
q

∑
i=0

b(i)x(n− i)

Take Z-transform
A(z)Y (z) = B(z)X(z)
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ARMA �lters

Y (z) =
B(z)
A(z)

X(z)

◮ A(z) and B(z) are polynomials of degree p and q in z

◮ given a partiular desired transfer funtion (writtenin Z-transform terms as W (z)), �lter design problemis to approximate this using a rational polynomial

A(z)/B(z) of as low order as possible.

◮ A(z) has p zeros in omplex plane, alled poles

◮ B(z) has q zeros in omplex plane, alled zeros

◮ for ausal, linear, time-invariant �lter to be stable(BIBO), the poles have to be inside the unit irle.
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Example: EWMA

y(n) = ay(n−1)+(1−a)x(n)So

A(z) = 1−az−1

B(z) = 1−a

Y (z) =
1−a

1−az−1
=

(1−a)z
z−a

◮ single zero at 0

◮ single pole is at z = aFor the �lter to be stable |a| < 1.
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Example: EWMA

Y (z) =
1−a

1−az−1
, a = 0.9

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.49/71

View the omplex plane like a rubber sheet. Poles push up, and zeros push down.

%
% file: complex_view_3.m, (c) Matthew Roughan, Sun Aug 22 20 04
%
x = -1.5:0.01:1.5;
y = -1.5:0.01:1.5;
[X,Y] = meshgrid(x,y);
Z = X + sqrt(-1) * Y;
a = 0.9;
H = abs((1-a)./(1 - a * Z.ˆ(-1)));
circ_z = circ_x + sqrt(-1) * circ_y;
circ_h = abs((1-a)./(1 - a * circ_z.ˆ(-1)));

figure(3)
hold off
surf(X,Y,log10(H));
shading interp
hold on
plot3(circ_x, circ_y, log10(circ_h)+0.01, ’r’, ’linewid th’, 3);

set(gca,’xlim’,[-1.5 1.5],’ylim’,[-1.5 1.5]);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’real’);
ylabel(’imaginary’);
zlabel(’log_{10} Y(z)’);
az = -10; el = 30;
view(az,el);

set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 18 10])
print(’-depsc’, ’Plots/complex_view_2.eps’);
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Example: EWMA impulse response

The EWMA

y(n) = ay(n−1)+(1−a)x(n)has Z-transform (where stable, i.e |a| < 1)
Y (z) =

1−a
1−az−1

= (1−a)
∞

∑
n=0

anz−n

whih we an invert by inspetion to see that

y(n) = (1−a)
∞

∑
i=0

anx(n)

Hene the Exponential (or geometri) derease in theimpulse response of EWMA �lter.

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.50/71

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.50/71



Filter invertibility

The transfer funtion of the inverse of a �lter (withtransfer funtion H(z)) should be

H−1(z) = 1/H(z)beause the produt of these two transfer funtionsshould anel.

◮ for a �lter to be stable, the poles of H(z) must lieinside the unit irle in the omplex plane.

◮ when we invert, poles beome zeros, and visa versa

◮ for the inverse to be stable, the zeros of H(z) mustlie inside the unit irle in the omplex plane.
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Some simple �lters

◮ All zero �lter = MA

◮ All pole �lter = AR

◮ Laplae, Sobel, Prewitt (2D, next leture)
◮ I have only really looked at magnitude, but phase isalso important for �lters.Note that we only onsider disrete �lters here, thereis an interesting set of problems in designing analogue�lters.

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.52/71

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.52/71



Appliations

Appliations of �lters inlude noise redution
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Appliation: Dolby noise redution

Goal: redue the tape hiss on a assette tape.
◮ Note, this is an analogue problem, not digital!

⊲ hiss results from imperfetions in the analoguemagneti media on the tape
◮ Dolby A solution

⊲ note that tape hiss is a bigger problem at highfrequenies, where there is less musial ontentto mask the hiss
⊲ two stage: used at both enoding and deoding

⊲ amplify higher frequeny musi ontent onreording
⊲ reverse effet on playbak
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Appliation: Dolby noise redutionFrom http://www.dolby.com/
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An appliations: denoising

Goal: remove noise from a signal

◮ types of noise

⊲ white Gaussian noise, salt & pepper noise(beause of appearane in images), orunorrelated noise

⊲ orrelated Gaussian noise
⊲ tiks and pops: small but high power bursts ofnoise

◮ single ended
⊲ don't get to enode data on reording as withDolby
⊲ just get a signal inluding the noise
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http://www.dolby.com/


An appliations: denoising

Goal: remove noise from a signal

◮ Approah: use a low-pass �lter

◮ works beause often high-frequeny ontent isn't asimportant, but white noise is spread over the wholefrequeny spetrum.

⊲ works well for unorrelated noise

⊲ not as good for orrelated noise (spetrum isnot uniform)

⊲ not muh use for tiks and pops

◮ if high-frequeny ontent is important, introduesartifats

⊲ e.g. blurred edges in images
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Example
Sinusoid + noise, �ltered using retangular MA N = 5
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Example 2

◮ Musi

◮ Musi plus white noise

◮ Musi plus white noise, �ltered using retangularMA N = 11
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An appliations: detet level hanges

Goal, detet level hanges in the signal
◮ Approah: use a high-pass �lter
◮ edge detetion in images

◮ often use something as simple as a differener
◮ threshold on the �lter output to detet hanges
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Example
Sinusoid + noise, with an edge, �ltered using differener

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.61/71

Transform Methods & Signal Processing (APP MTH 4043): lecture 05 – p.61/71

Linear systems

This is not a systems ourse, but the analogy between�lters and systems is so lose it would be a shame tomiss the opportunity to ompare the two.
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Systems
A system is represented by a transformation of an inputsignal x(t) into an output signal y(t).

systemx(t) y(t)

This might represent, e.g.

◮ a pendulum, or a vibrating string, where x(t) is aforing term, and y(t) is the pendulum's position

◮ and eletroni iruit where x(t) is the input voltageand y(t) is the output.

◮ A sensor where the input is the quantity to besensed (e.g. temperature) and the output is what wesee, e.g. the resistane of a thermistor.
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System properties

◮◮ invertibility: The mapping x(t) → y(t) must be 1:1, sothat eah input signal has a unique output signal(don't need to invert all possible outputs).
◮ memory: y(t0) depends on x(t) for t 6= t0.
◮ ausality: y(t0) only depends on x(t) for t ≤ t0.
◮ stability: Bounded Input Bounded Output (BIBO).If |x(t)| ≤ M for all t and some M, then |y(t)| ≤ R forall t and some R.
◮ time invariane: time shift doesn't matter, i.e.

x(t) → y(t) implies x(t − t0) → y(t − t0).

◮ linearity: priniple of superposition: xi → yi, i = 1,2implies that for all a1,a2 ∈ R, a1x1 +a2x2 → a1y1 +a2y2.
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Linear systems

Systems are just �lters! The differene is

◮ we design �lters for ertain goals (e.g. low pass)

◮ systems our in natureProblems are different

◮ optimal design of �lters

◮ estimation or ontrol of system
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Linear time-invariant systems
◮ Simple, tratable

◮ As with �lters haraterized by impulse response,or frequeny response (transfer funtion)
◮ Frequeny response is Fourier transform of impulseresponse.

◮ we don't (neessarily) design system, so we an'tensure linearity; its OK sometimes, but ...
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Non-linear systems

An example

y(t) = x(t)2Given input signal x(t) = sin(2π f0t)+sin(2π f1t)The output will be

y(t) = sin2(2π f0t)+sin2(2π f1t)+2sin(2π f0t)sin(2π f1t)

= sin2(2π f0t)+sin2(2π f1t)+

cos(2π( f0− f1)t)−cos(2π( f0 + f1)t)We get frequenies that didn't exist in original signal!

◮ linear systems an be haraterized by transferfuntion, so they an only hange the amount of apartiular frequeny omponent (and its phase), notintrodue new frequenies
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ResonaneThink of resonant system as

◮ narrow band pass �lter

◮ input signal is enhaned at ertain frequenies, andattenuated at all others
◮ examples

⊲ fored pendulum
⊲ pluked string

◮ may be unstable, e.g. Taoma narrows
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Taoma narrows bridge
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At around 11am, Nov 7, 1940 the Taoma Narrows bridge ollapsed due to resonane.

http://www.civeng.carleton.ca/Exhibits/Tacoma_Narro ws/
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Taoma narrows bridge
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Taoma narrows bridge
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