
Transform Methods &Signal Proessingleture 08Matthew Roughan

<matthew.roughan@adelaide.edu.au>Disipline of Applied MathematisShool of Mathematial SienesUniversity of AdelaideJuly 27, 2009

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.1/79

This leture onsiders window funtions, and the Short-Time Fourier Transform (STFT), whihuses window funtions to loalize frequeny analysis by the FT.
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WindowsNo we don't mean the ommon operating system.Windows are a way of minimizing leakage whenperforming Fourier transforms, but they lead into amore sophistiated time-sensitive versions of theFourier Transform alled the Short-Time FourierTransform.
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Leakage

◮ always have �nite signals

◮ impliit assumption in DFT is periodiity

⊲ we look at orrelation of signal to sin's andosines with periods that math the length ofthe data

◮ What if a signal is not periodi?

◮ What if the period is not the same as the length ofthe data?

◮ We get leakage
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Leakage example
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Note that the power spetrum doesn't have a single distint peak. Rather, energy is �leaked�into neighboring frequenies.
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What auses leakage

◮ The DFT uses a �nite number of frequenies.

◮ Not all signals �t this mold exatly: what happensto sinusoids with non-integral frequenies?

◮ Their power is spread over a few frequenies.

◮ Note we are representing the signal by a series ofnumbers X(k) whih represent the orrelation ofthe signal to a partiular sinusoid with freq. k fs/N,

◮ another way to understand, is to think of eahelement X(k) of the DFT as a narrow bandpass�lter, entered on frequeny k fs/N, but whih haveside lobes.
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All �lters have side-lobes. Why don't these impat the DFT for integral frequenies? Well,the side-lobes of a retangular pulse look like a sin funtion whih has nulls in between thepeaks. As we will see, the default DFT of a �nite signal looks like the signal multiplied bya retangular pulse that trunates a signal (whih is otherwise assumed to be in�nite). Forintegral frequenies, the nulls exatly line up with the other frequenies, and so there is noleakage. For non-integral frequenies, the nulls don't line up, and so we see leakage.
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Alternative view

◮ alternative view: DFT trunated signal impliitlyassumes signal is periodi, but it isn't, so whathappens at the edges?

◮ Edges indue transients

◮ transients introdue extra frequeny omponents

Why do we are?

◮ side lobes redue sensitivity
◮ determine the smallest signal we an detet againsta bakground of another signal
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Periodi signal view
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% file: complex_view_4.m, (c) Matthew Roughan, Sun Aug 22 20 04
N = 64;
x = (0:N-1)/N;
f1 = 3.4;
y1 = sin(2 * pi * f1 * x);
figure(11)
hold off
plot([x; x], [zeros(size(y1)); y1],’b’, ’linewidth’, 3);
hold on
plot(x, y1, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18, ’ylim’, [-1.2 1.2 ], ’xlim’, [0 max(x)], ’xtick’, [], ’ytick’,
title(’signal’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperOrientatio n’, ’portrait’, ’PaperPosition’, [0 0 20 12])
print(’-depsc’, ’Plots/circular_view_of_period_1.eps ’);

%% now do circular view
figure(21)
theta = 0:2 * pi/N:2 * pi-2 * pi/N;
circ_x = cos(theta);
circ_y = sin(theta);
hold off
plot3(circ_x, circ_y, y1, ’o’, ’linewidth’, 5);
hold on
plot3([circ_x; circ_x], [circ_y; circ_y], [zeros(size(y 1)); y1], ’b-’, ’linewidth’, 3);
plot3(circ_x, circ_y, zeros(size(y1)), ’k:’, ’linewidth ’, 3);
grid on
set(gca,’xlim’,[-1.5 1.5],’ylim’,[-1.5 1.5], ’linewidt h’, 3, ’fontsize’, 18);
view(-130,50);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperOrientatio n’, ’portrait’, ’PaperPosition’, [0 0 18 14])
print(’-depsc’, ’Plots/circular_view_of_period_2.eps ’);
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Yet another viewThe signal an be thought of as an in�nite durationsignal, that has been trunated by retangular window.
◮ input signal is the result of the produt of an(in�nite) signal with a retangular window

⊲ onvolution property
⊲ resulting FT is the onvolution of the FT of theretangle (a sin), with the FT of the signal

⊲ FT of a retangle is a sin funtion

◮ what happens if we use a smoother window?
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WindowsWindows redue the transient at the edges, but givingedge points less weight, e.g.

signal signal
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Impat of Windows

Produt of the signal with a window funtionprodut in time domain = onvolution in frequeny domain
◮ just have to look at transfer funtions of windows.

◮ want to redue size of side-lobes
◮ we an hoose our own window funtion!Note that windows may drop the overall power of thesignal so (by Rayleigh-Parseval) the power in the outputsignal drops. However, relative magnitudes are moreimportant here than absolutes!
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WindowsAll de�ned for n = 0,1, . . . ,N −1

◮ Retangular (default) wN(n) = 1

◮ Bartlett (triangular) wN(n) = 1−
∣

∣

∣

n−N/2
N/2

∣

∣

∣

◮ Welh (Riesz) wN(n) = 1−
(

n−N/2
N/2

)2

◮ Hanning wN(n) = 0.5−0.5cos
(

2πn
N−1

)

◮ Hamming wN(n) = 0.54−0.46cos
(

2πn
N−1

)

◮ Blakman wN(n) = 0.42−0.5cos
(

2πn
N

)

+0.08cos
(

4πn
N

)

◮ Blakman-Harris (3 term)

wN(n) = 0.42323−0.49755cos
(

2πn
N

)

+0.07922cos
(

4πn
N

)

◮ Gaussian wN(n) = exp

[

−4.5
(

n−N/2
N/2

)2
]
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See

◮ Lyons, pages 77, 179, and 486

◮ Braewell, pages 164-169, and 171

◮ fred harris, �On the use of Windows for Harmoni Analysis with the Disrete FourierTransform�, Proeedings of the IEEE, Vol.66, No.1, January 1978, pp 51-83.Also see

http://www.cis.rit.edu/resources/software/sig_manua l/windows.html
http://astronomy.swin.edu.au/~pbourke/other/windows /
http://en.wikipedia.org/wiki/Window_functionOther window funtions: Blakman-Nuttall, Bartlett-Hann, Bessel, von Hann, Tukey, Cauhy,Bohman, Dolph-Tshebysheff, Taylor, Extended Cosine Bell Window, Riemann, ...

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.11/79

Basis for Comparison

◮ measure drop to largest side-lobe

⊲ measure of sensitivity

◮ also measure �width� of the windows frequenyresponse by looking at where the power drops offby a fator of a half, i.e. we �nd ∆ω suh that

|F(∆ω/2)|2

|F(0)|2
=

1
2

⊲ minimum resolution bandwidth
⊲ two peaks of same magnitude have to be at leastthis far apart to resolve them as separate

◮ we will also look at some other properties in a minute
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Other metris that aren't onsidered here

◮ equivalent noise bandwidth

◮ salloping loss
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http://en.wikipedia.org/wiki/Window_function


Retangular Window

◮ alulate results forretangular window

◮ F {r(t)} = sinc(s)

◮ �gure shows sinc(s)2

◮ ∆w = 0.89 is thewidth

◮ drop to the max sidelobe is −13 dB
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Note the �nulls�, or plaes where the spetrum drops to zero. These are at ±1,2, . . ., and soexatly line up with other frequenies for integral frequenies � so no leakage.
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Retangular Window
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Retangular Window

The window you have when you don't have a window
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Triangular Window

Redue the size of the disontinuity
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The red urve provides a referene to the frequeny response of the retangular window (foromparison).We an see immediately that the �rst side lobe of the triangular window is muh lower (-27 dBinstead of -13 dB). However, the width is signi�antly larger, 1.27 as opposed to 0.89.
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Welh WindowRedue the size of the disontinuity, but keep power.
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The �rst side lobe is lower than the retangular window, but not as low as for the triangularwindow, but the main lobe is narrower.
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Hanning Window

Make the disontinuity smooth, as well as small.
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The aim here is to redue the disontinuity in the �rst derivative (as well at the step disonti-nuity). The result (as we will see later) is not just a lower side lobe, but also a faster roll off inthe side lobes.
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Hamming Window

Side-lobe redution, from wN(n) = α+(1−α)cos
(

2πn
N

)
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The Hamming window starts from a family of windows wN(n) = α + (1− α)cos
( 2πn

N

) andhooses the value of α = 0.54 that minimizes the side lobe.A notieable feature of the Hamming window is that unlike the Hanning window its side-lobesdon't roll off (but they do start lower). We will study why this is in a minute, but note that thewindow does have a small disontinuity at the edge.
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Blakman WindowSide-lobe redution through an extra term.

0

0.5

1

B
la

ck
m

an
 w

in
do

w

time
−80

−70

−60

−50

−40

−30

−20

−10

0

−58dB

width=1.62

dB

frequency

wN(n) = 0.42−0.5cos

(

2πn
N

)

+0.08cos

(

4πn
N

)

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.20/79

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.20/79



Blakman-Harris Window (3 term)

Optimize Blakman.
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Note that the o-ef�ients of the Blakman-Harris Window are very lose to the Blakmanwindow, but that this still has a large impat. Clearly, if suh small hanges an have animpat, we even have to onsider the impat of �nite preision on side-lobes.
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Gaussian WindowMinimum unertainty (see later)
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The Gaussian windows are atually a family, with a parameter (4.5 in the example) that anbe tuned to tradeoff resolution for the side lobe redution.Generally speaking there are often suh tradeoffs here.
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Windowing

There is a tradeoff between resolution and sensitivity!

◮ better sensitivity (lower side-lobes)

⇒ less resolution

◮ better resolution (of frequenies)

⇒ worse sensitivityAnother tradeoff in the roll-off of side lobes.

◮ smoother funtion

⇒ steeper roll-offbut less drop off in �rst side-lobeSome windows have a parameter that an tune thetradeoffs
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Tunable tradeoffsWindows with tunable tradeoffs

◮ Kaiser-Bessel

wN(n) =

I0

[

B

√

1−
(

n−p
p

)2
]

I0(B)where p = N−1
2 , and I0 is the zero order modi�edBessel funtion of the �rst kind, given by

I0(x) = 1+∑∞
k=0

(x/2)2k

(k!)2Choosing different values of B tunes the tradeoff
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Kaiser Window
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The �gure shows the window and its frequeny response for three different values of B.
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Tunable tradeoffsWindows with tunable tradeoffs

◮ Chebyshev (Dolph-Chebyshev)

wN(n) = the N-point inverse DFT of
cos

[

N cos−1
(

αcos
(πm

N

))]

cosh(N cosh−1(α))where

α = cosh

[

1
N

cosh−1(10γ)

]

not shown here
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Tunable tradeoffsWindows with tunable tradeoffs

◮ Gaussian (tune the standard deviation)

wN(n) = exp

[

−α
(

n−N/2
N/2

)2
]

We �nd size of the disontinuity at the edge of the window by taking

n = 0, e.g. it is exp(−α). The side-lobes from suh an edge willresemble the retangular side-lobes, with their -13dB attenuation,and so the side-lobes of the Gaussian will be approximatelyside-lobe = −13+20log10e−α = −13−20α log10eAtually they vary from this a little, but the relationship is useful, aswe an also predit the width of the Gaussian window preisely as it isjust a saled version of itself.
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The Unertainty

Priniple

We have seen there are basi tradeoffs in windowhoie. The unertaintly priniple shows that thesetradeoffs are fundamental and unavoidable.
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Unertainty priniple

The tradeoff relates to a general priniple: unertainty

◮ We an't squeeze more information out of asequene

◮ we an only hange the way we see the information

◮ here we tradeoff sensitivity for resolutionSaling property of FTs tells us something

f (at) →
1
|a|

F
( s

a

)

◮ if we make the window 'narrower' to exlude moreof the transients (that ause leakage), then wemake the FT 'wider'
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Unertainty priniple

Another way to understand

◮ frequeny resolution depends on the number of datapoints in our dataset

◮ Windowing redues the power from some datapoints

◮ a little like reduing the number of data points

◮ so we need a longer data sequene for a �nerresolution
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Regularity and deay

We an extend the intuition from the above by lookingat relationship between regularity of the funtion f (t)and the deay rate of |F(s)|, e.g.If there exists a onstant K, and ε > 0 suh that

|F(s)| ≤
K

1+ |s|p+1+ε

Then f has at least p ontinuous derivatives.Hene, if F(s) has ompat support then f ∈C∞.
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Regularity and deay

Proof: By de�nition of the IFT

f (t) =

Z ∞

−∞
F(s)ei2πst ds

If F ∈ L1(R) then the above implies f is ontinuous andbounded, beause

| f (t)| ≤
Z ∞

−∞
|F(s)ei2πst |ds =

Z ∞

−∞
|F(s)|ds

Take the kth order derivative, WRT to t, and we get

| f (k)(t)| ≤
Z ∞

−∞
|(i2πs)kF(s)ei2πst |ds ≤ (2π)k

Z ∞

−∞
|s|k |F(s)|ds
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We use the inequality
∣

∣

∣

∣

Z ∞

−∞
g(s)ds

∣

∣

∣

∣

≤

Z ∞

−∞
|g(s)|dsand the fat that |ei2πst | = 1.Then remember the differentiation formula for FTs (from Leture 2)

F

{

dn

dtn f (t)

}

= (i2πs)nF(s)and |i| = 1.

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.32/79



Regularity and deay

Proof: Now, if

|F(s)| ≤
K

1+ |s|p+1+εThen,

Z ∞

−∞
|F(s)|(1+ |s|p)ds ≤

Z ∞

−∞

K(1+ |s|p)
1+ |s|p+1+ε ds < ∞

whih also implies that

Z ∞

−∞
|F(s)| |s|k ds < ∞

for all k ≤ p, so the derivative f (k)(t) exists and isbounded.
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See Mallat, p.29-30.
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Regularity and deayWindowing examples: onsider 5 windowing funtions
◮ Retangular: wN(n) = 1This has a disontinuity.

◮ Triangular: wN(n) = 1−
∣

∣

∣

n−N/2
N/2

∣

∣

∣This has a disontinuity in the �rst derivative.

◮ Welh: wN(n) = 1−
(

n−N/2
N/2

)2

This has a disontinuity in the �rst derivative.

◮ Hanning: wN(n) = 0.5−0.5cos
(

2πn
N−1

)This has a disontinuity in the 2nd derivative.

◮ Hamming: wN(n) = 0.54−0.46cos
(

2πn
N−1

)This has a disontinuity, but of smaller size thanfor the retangular window.
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Retangular Window

Disontinuous
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The blak dashed line is ∝ 1/(1+ |s|), the deay of the side-lobes.
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Triangular Window

Disontinuity in the �rst derivative
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Welh WindowDisontinuity in the �rst derivative

0

0.2

0.4

0.6

0.8

1

W
el

ch
 w

in
do

w

−100

−80

−60

−40

−20

0

dB

Deay F(s) ∼
K

1+ |s|2

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.37/79

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.37/79

Hanning Window

Disontinuity in the 2nd derivative
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Hamming Window

Disontinuous (wN(0) = 0.54−0.46= 0.08)
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Blakman WindowDisontinuity in the 2nd derivative
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Regularity and deay and duality

Duality implies that F {F(t)} = f (−s), so the aboveregularity properties work in reverse as well, e.g. ifthere exists a onstant K, and ε > 0 suh that

| f (t)| ≤
K

1+ |t|p+1+ε

Then F has at least p ontinuous derivatives.Hene, if f (t) has ompat support then F ∈C∞.
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Compatness

Theorem: If f 6= 0 has ompat support then F(s) an'tbe 0 on a whole interval. Similarly, if F 6= 0 has ompatsupport then f (t) an't be zero on a whole interval.Proof: Assume F(s) 6= 0 has ompat support in theinterval [−b,b]. From the de�nition of the IFT
f (t) =

Z b

−b
F(s)ei2πst dsIf non-trivial funtion f (t) = 0 for t ∈ [c,d], then

f (n)(t0) = 0 inside the interval (c,d), and so bydifferentiating n times under the integral at t0,

0 = f (n)(t0) =

Z b

−b
F(s)(i2πs)nei2πst0 ds
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The support of a funtion is the set where the funtion takes non-zero values. We write thesupport as
supp{ f} = {x| f (x) 6= 0}Funtions with ompat support are zero outside a ompat set. For example, a funtionwith ompat support would only be non-zero in the set [−a,b] ∈ R,

f (x) = 0 for x 6∈ [−a,b]NB: I have tried to keep this simple, omitting de�nitions of ompat set (a losed, boundedset), and the fat that we de�ne support to be the losure of a set.
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Compatness

c dt0

f(t)

◮ The funtion is �at (onstant) at t0

◮ The derivatives of f at t0 must all be 0
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See Mallat, pp.32-33
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Compatness

Proof: We an write the IFT as

f (t) =

Z b

−b
F(s)ei2πs(t−t0)ei2πst0 ds

And we an expand the exponential exp(i2πs(t − t0)) in apower series about t0 to get
f (t) =

∞

∑
n=0

(t − t0)n

n!

Z b

−b
F(s)(i2πs)nei2πst0 ds

However note that we have already shown that eah ofthe integrals in the above sum are zero, and so the sumis zero leading to f (t) = 0, whih ontradits theassumption that f (t) is nontrivial (i.e. f (t) 6= 0 for some t).
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Remember that the Taylor series for an exponential is given by

ei2πs(t−t0) =
∞

∑
n=0

(t − t0)n

n!
(i2πs)n.
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Meaning
Given a

◮ more ompat

◮ irregular

◮ sharperfuntion in the time (frequeny) domain we get a

◮ less ompat

◮ smoother

◮ widerfuntion in the frequeny (time) domain.
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We will extend these onepts later when we onsider the unertainty priniple.
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Windows summary

Name max side lobe width roll off polynomialretangular -13 dB 0.89 K/(1+ |s|)triangular(Bartlett) -27 dB 1.28 K/(1+ |s|2)Welh (Riesz) -21 dB 1.16 K/(1+ |s|2)Hanning -32 dB 1.44 K/(1+ |s|3)Hamming -43 dB 1.30 K/(1+ |s|)Blakman -58 dB 1.68 K/(1+ |s|3)Blakman-Harris -67 dB 1.66 K/(1+ |s|)Kaiser (B=6) -44 dB 1.40 K/(1+ |s|)Kaiser (B=8) -58 dB 1.58 K/(1+ |s|)Kaiser (B=10) -74 dB 1.74 K/(1+ |s|)Gaussian (α=4.5) -56 dB 1.55 K/(1+ |s|)Where available results from �On the Use of Windows for Harmoni Analysis with theDisrete Fourier Transform�, F.J.Harris, Pro. of the IEEE, Vol.66, No.1, Jan. 1978,pp.51-83.
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Sensitivity vs resolution

0.5 1 1.5 2
10

20

30

40

50

60

70

80

90

width

se
ns

iti
vi

ty
 (

dB
)

Gaussian
rectangular
triangular
Welch
Hanning
Hamming
Blackman
Blackman−Harris
Kaiser

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.47/79

Figure shows the tradeoff between sensitivity and resolution. As noted, there are othertradeoffs not shown in the �gure.
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Transient Signal Analysis

We have previously seen that the Fourier transform isnot appropriate for analyzing transient signals, but whatshould we do then? The �rst step is to look at theShort-Time or Windowed Fourier Transform.
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Transient signals

◮ all signals are transient

⊲ they have a start and stop at least

◮ sometimes this doesn't matter

◮ often it does

⊲ onversation is full of transients

⊲ musi

⊲ images

◮ the Fourier transform

⊲ the Fourier transform is nie beause itdiagonalises time-invariant linear systems

⊲ doesn't loalize in time at all

◮ we need something more for transient signals
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EM Frequeny Band Alloations

Frequeny Band Designation Typial use3-30 kHz Very Low Frequeny (VLF) Long-range navigation30-300 kHz Low Frequeny (LF) Marine Communiations300-3000 kHz Medium Frequeny (MF) AM radio3-30 MHz High Frequeny (HF) Jindalee, Amateur Radio30-300 MHz Very High Frequeny (VHF) FM radio, VHF TV300-3000 MHz Ultra High Frequeny (UHF) UHF TV, radar3-30 GHz SuperHigh Frequeny (SHF) Satellite CommsFrom p. 308 of Philips, Parr and Riskin.

◮ Audible sound frequenies: ∼ 20−20,000Hz

◮ AM radio frequenies: 535−1615kHz

◮ FM radio frequenies: 88−108MHz

◮ how should we arry sound on radio?
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Some referenes:
http://encyclopedia.thefreedictionary.com/Radio\%20 spectrum
http://encyclopedia.thefreedictionary.com/Electroma gnetic\%20spectrum
http://encyclopedia.thefreedictionary.com/AM\%20ban d*� ignore \ sign before % in the URLs above
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Amplitude Modulation (AM)

AM Radio

◮ modulation of signal x(t) with a osine funtion

y(t) = cos(2π fcarriert) [1+ x(t)]

◮ fcarrier∈ [535−1615]kHz

◮ modulation property of FT

F { f (t)cos(2πs0t)} =
1
2

F(s− s0)+
1
2

F(s+ s0)

fcarrier

5 10 2015
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Amplitude modulation allows us to send a audio signal (with frequenies of up to a few kHz,in the frequeny band of hundreds of kHz.p. 309 of Philip, Parr and Riskin
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Amplitude Modulation (AM)
y(t) = cos(2π fcarriert) |x(t)|
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% file: am.m, (c) Matthew Roughan, Wed Oct 6 2004
%
N = 1000; x = (1:N)/N;
f = 0.3 * sin(pi * x) - 0.4 * sin(pi * 3* x) + 0.2 * sin(pi * 4* x) + 0.2 * sin(pi * 7* x);
carrier_freq = 17;
carrier = cos(2 * pi * carrier_freq * x);
am_signal = carrier . * abs(f);

figure(1)
hold off
plot(x, f, ’b’, ’linewidth’, 3);
hold on
plot([0 1], [0 0], ’:’, ’linewidth’, 3);
set(gca, ’xtick’, [], ’ytick’, [], ’fontsize’, 24, ’linewi dth’, 3);
ylabel(’signal, x(t)’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 20 5])
print(’-depsc’, ’Plots/am_1.eps’);

figure(2)
hold off
plot(x, carrier, ’g’, ’linewidth’, 3);
hold on
plot([0 1], [0 0], ’:’, ’linewidth’, 3);
set(gca, ’xtick’, [], ’ytick’, [], ’ylim’, [-1.2 1.2], ’fon tsize’, 24, ’linewidth’, 3);
ylabel(’carrier’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 20 5])
print(’-depsc’, ’Plots/am_2.eps’);

figure(3)
hold off
plot(x, am_signal, ’g’, ’linewidth’, 3);
hold on
plot([0 1], [0 0], ’:’, ’linewidth’, 3);
plot(x, [f; -f], ’b’, ’linewidth’, 3);
set(gca, ’xtick’, [], ’ytick’, [], ’ylim’, [-1.2 1.2], ’fon tsize’, 24, ’linewidth’, 3);
ylabel(’moulated’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 20 5])
print(’-depsc’, ’Plots/am_3.eps’);

figure(4)
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Amplitude Modulation (AM)

y(t) = cos(2π fcarriert) [1+ x(t)]
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Note that the result is a transient signal! The (arrier) frequeny is onstant, but the amplitudehanges over time. This is not that interest (yet) beause the only non-stationarity in the signalis in the input signal.
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Frequeny Modulation (FM)

FM Radio (88-108 MHz in the US)

◮ modulate the frequeny of the signal
◮ given a signal x(t) to be transmitted

y(t) = cos(2πφ(t))where φ(t) is now a (non-linear) funtion of time,depending on the signal x(t) to be transmitted.

◮ instantaneous frequeny is the rate of hange ofphase, e.g.
f (t) =

d
dt

φ(t)

◮ so take
φ(t) =

Z t

0
fcarrier+ x(t)dt
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Some referenes:
http://encyclopedia.thefreedictionary.com/Frequency \%20modulation
http://encyclopedia.thefreedictionary.com/FM\%20rad io*� ignore \ sign before % in the URLs above
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Frequeny Modulation (FM)

y(t) = cos(2πφ(t)) where φ(t) = fcarriert +β
R t

0 x(t)dt
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% file: fm.m, (c) Matthew Roughan, Wed Oct 6 2004
%
N = 1000; x = (1:N)/N;
f = 0.3 * sin(pi * x) - 0.4 * sin(pi * 3* x) + 0.2 * sin(pi * 4* x) + 0.2 * sin(pi * 7* x);
carrier_freq = 17;
carrier = cos(2 * pi * carrier_freq * x);
phi = cumsum(carrier_freq+20 * f)/N;
fm_signal = cos(2 * pi * phi);

figure(1)
hold off
plot(x, f, ’b’, ’linewidth’, 3);
hold on
plot([0 1], [0 0], ’:’, ’linewidth’, 3);
set(gca, ’xtick’, [], ’ytick’, []);
set(gca, ’fontsize’, 24, ’linewidth’, 3);
ylabel(’signal, x(t)’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 20 5])
print(’-depsc’, ’Plots/fm_1.eps’);

figure(2)
hold off
plot(x, carrier, ’g’, ’linewidth’, 3);
hold on
plot([0 1], [0 0], ’:’, ’linewidth’, 3);
set(gca, ’xtick’, [], ’ytick’, [], ’ylim’, [-1.2 1.2], ’fon tsize’, 24, ’linewidth’, 3);
ylabel(’carrier’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 20 5])
print(’-depsc’, ’Plots/fm_2.eps’);

figure(3)
hold off
plot(x, fm_signal, ’g’, ’linewidth’, 3);
hold on
plot([0 1], [0 0], ’:’, ’linewidth’, 3);
set(gca, ’xtick’, [], ’ytick’, [], ’ylim’, [-1.2 1.2], ’fon tsize’, 24, ’linewidth’, 3);
ylabel(’modulated’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 20 5])
print(’-depsc’, ’Plots/fm_3.eps’);
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Frequeny Modulation (FM)

The FM signal is transient (even if input isn't)
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The modulated signal is

y(t) = cos(2πφ(t)) where φ(t) = fcarriert +β
Z t

0
x(t)dtTake input x(t) = cos(2πt), and then

φ(t) = fcarriert +β
Z t

0
x(t)dt

= fcarriert +β′ sin(2πt)
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Envelope and phase

We an hange two things

◮ Envelope (amplitude modulation)

◮ Phase (frequeny modulation)Result is a signal

y(t) = A(t)cos(2πφ(t))In transient analysis of this signal we would like to beable to determine A(t) and φ(t).

◮ note that a real signal (e.g. musi) would onsist of asuperposition of a number of suh terms, e.g.

⊲ pluked string has a number of harmonis

⊲ eah deays at different rates
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Note that the representation is not neessarily unique, e.g.

2sinxsiny = cos(x− y)−cos(x+ y)So we write

2sin(2π f t)sin(2πφ(t)) = cos[2π( f t −φ(t))]−cos[2π( f t +φ(t))]

A(t)sin(2πφ(t)) = cos[2π( f t −φ(t))]−cos[2π( f t +φ(t))]So we ould represent our signal as above (with varying amplitude and frequeny term), or inanother representation with only varying frequeny.
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A Chirp
Both Amplitude and Frequeny Modulation an happen atone, a simple example being a hirp. Examples:

◮ a linear hirp

y(t) = A(t)cos
[

2π(bt2 + ct)
]

Instantaneous frequeny
f (t) =

d
dt

[

bt2 + ct
]

= 2bt + c

◮ a hyperboli hirp
y(t) = cos

(

2πα
β− t

) and f (t) =
α

(β− t)2

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.58/79

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.58/79



An Example Chirp

A Chirp y(t) = cos(2π15t2), so instantaneous freq. f (t) = 30t
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% file: chirp_spectrogram.m, (c) Matthew Roughan, Thu Oct 7 2004
%
N = 1000; K=2;
Fs = N;
t = (1:K * N)/N;
b = 15.0;
c = 0.0;
chirp = cos(2 * pi * (b * t.ˆ2 + c * t));
% b = -15.0;
% c = 60.0;
% chirp = cos(2 * pi * (b * t.ˆ2 + c * t));
z = fft(chirp);
w = abs(fftshift(z));
w = 20* log10(w/max(w));

figure(12)
hold off
plot(t, chirp, ’linewidth’, 1);
set(gca, ’ytick’, [], ’ylim’, [-1.2 1.2], ’xlim’, [0 2], ’fo ntsize’, 18, ’linewidth’, 3);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 32 16])
print(’-depsc’, ’Plots/chirp_spect_1.eps’);

figure(15)
plot(-Fs/2:Fs/(K * N):Fs/2-Fs/(K * N), w, ’linewidth’, 3);
set(gca, ’fontsize’, 18, ’linewidth’, 3);
set(gca, ’xlim’, [0 200]);
ylabel(’dB’);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 32 16])
print(’-depsc’, ’Plots/chirp_spect_5.eps’);

figure(16)
s = -Fs/2+Fs/(K * N):Fs/(K * N):Fs/2;
result = calc_sinc(s);
hold off
plot(s, w, ’linewidth’, 3);
hold on
plot(s, 20 * log10(abs(result)), ’g’);
% plot(s, 20 * log10(abs(cos(s.ˆ2/(8 * pi * b) + pi/4))), ’m’);
plot(s, 20 * log10(abs(conv2(cos(s.ˆ2/(pi * b) + pi/4), result, ’same’))), ’r’);
set(gca, ’fontsize’, 18, ’linewidth’, 3);
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A Chirp
DFT of a hirp
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Note that the spetrum appears to be roughly �at over a range from 0 to 60 Hz. We know,however, that the frequeny should have distint peaks (at any point in time), and that thespread ours beause we are averaging a frequeny that hanges from 0 to 60 over theourse of the 2 seond observation.
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Instantaneous frequeny

Just to reiterate, given a signal

y(t) = A(t)cos[2πφ(t)]The Instantaneous frequeny is

f (t) =
dφ
dt
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Windows, windows everywhere

We an use windowing funtions in other ways
◮ analysis of transient signals

◮ use windows to selet a hunk of data
◮ move the window along
◮ so perform FT of a series of funtions

g(τ; t) = f (τ)w∗(τ− t)

◮ we get the Short-Time Fourier Transform (STFT)
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STFT of a Chirp

STFT of the hirp from slide 59.
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Spetrogram ode:

http://www.mathworks.com/matlabcentral/fileexchange /loadFile.do?
objectId=1553&objectType=file
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Short Time Fourier Transform
◮ The Fourier transform goes from time- to frequeny-domain

⊲ lose all time dependene

◮ but, e.g. musi does not have same frequeny over long timeperiods

◮ want to frequenies over shorter time periods
◮ get STFT by applying time-shifted window funtion w(τ− t)

STFT{ f ; t,s} =
Z ∞

−∞
f (τ)w∗(τ− t)e−i2πsτ dτ

Magnitude2 of the STFT results in the spetrogram.

spectrogram( f ; t,s) = |STFT{ f ; t,s}|2
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Disrete time STFT

◮ apply a standard window (e.g. Hamming)

◮ DFT a blok of data of size M from n to n+M−1.

◮ do so for all n.

DST FT{x;n,k} = X(n;k) =
n+M−1

∑
m=n

f (m)w∗(m−n)e−i2πikm/N

◮ In X(n;k) the n indexes time (in the trans. domain)

◮ In X(n;k) the k indexes frequeny (as in the DFT)

◮ often it is only performed on non-overlapping bloks

⊲ only alulate X(n;k) at time points

n = 0,M,2M, . . .
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NB: in the STFT, doesn't matter if the sequene is �nite, or not, beause we only analyze �nitehunks.
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Example spetrogram

Most sounds aren't ontinuous, they are transient
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Example spetrogram

Dark side of the moon: Breathe lip
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Cutting up the time-frequeny spae

Time domain
time
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Cutting up the time-frequeny spae

Frequeny domain (Fourier transform)
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Cutting up the time-frequeny spae

STFT
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Unertainty

Fundamental limitation on STFT is unertainty

◮ if we make the window short, we get good timeresolution, but poor frequeny resolution

◮ if we make the window long, we get poor timeresolution, but good frequeny resolution

◮ we an't do better in both

◮ there is an unertainty bound between time andfrequeny
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ResolutionGiven retangular window of width M samples, andsampling intervals ts

◮ time resolution is just Mts
⊲ signals have to be in different boxes to beresolved

◮ frequeny resolution is 1/Mts
⊲ standard frequeny resolution for a series withsample rate fs = 1/ts and M samples.Notie that the produt of the two resolutions is aonstant!
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Overlapping windows doesn't really help. It may make the spetrogram look like it has �nertime resolution, but it just has more points. We still ouldn't resolve details any �ner, but itan be useful to make the spetrogram look smoother.Using different windows an hange the effetive frequeny resolution, and therefore hangethe onstant, but it is still onstant for a given window funtion.
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Cutting up the time-frequeny spae

STFT (different width window)

time

fr
eq

u
en

cy

Areas of boxes don't get smaller!
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Area of boxes is the time resolution times the frequeny resolution, and so from the argumentabove, the area is a onstant.

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.73/79

Spetrogram of a Chirp

Spetrogram of a hirp
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Spetrogram of a Chirp

Spetrogram of a hirp
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Spetrogram of a Chirp

Spetrogram of a hirp
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Windows

◮ STFT with a window: sometimes alled theWindowed FT (WFT)

◮ What window should we use?

◮ Choie involves tradeoffs

⊲ length of window (and hene omputational ost)(e.g. does it have ompat support)

⊲ size of unertainty (Gabor funtion has minimalunertainty region)

⊲ regularity of window, and roll off in Fourierdomain

⊲ windows side-lobes vs its width in Fourier domain

⊲ an sale window and tradeoff frequeny fortime resolution
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Limitations of the STFT

◮ omputational ost O(nm logm)

◮ time/frequeny resolution tradeoff
⊲ small m better time, worse frequeny resolution
⊲ large m better frequeny, worse time resolution

◮ time/frequeny resolution tradeoff is �xed
⊲ higher frequenies an hange faster than lowerfrequenies
⊲ would be nie to have appropriate resolution foreah frequeny

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.78/79

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.78/79



The answer: wavelets

◮ next leture

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.79/79

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.79/79


	
	
	
	Leakage
	
	Leakage example
	
	What causes leakage
	
	Alternative view
	
	Periodic signal view
	
	Yet another view
	
	Windows
	
	Impact of Windows
	
	Windows
	
	Basis for Comparison
	
	Rectangular Window
	
	Rectangular Window
	
	Rectangular Window
	
	Triangular Window
	
	Welch Window
	
	Hanning Window
	
	Hamming Window
	
	Blackman Window
	
	Blackman-Harris Window (3 term)
	
	Gaussian Window
	
	Windowing
	
	Tunable tradeoffs
	
	Kaiser Window
	
	Tunable tradeoffs
	
	Tunable tradeoffs
	
	
	
	Uncertainty principle
	
	Uncertainty principle
	
	Regularity and decay
	
	Regularity and decay
	
	Regularity and decay
	
	Regularity and decay
	
	Rectangular Window
	
	Triangular Window
	
	Welch Window
	
	Hanning Window
	
	Hamming Window
	
	Blackman Window
	
	Regularity and decay and duality
	
	Compactness
	
	Compactness
	
	Compactness
	
	Meaning
	
	Windows summary
	
	Sensitivity vs resolution
	
	
	
	Transient signals
	
	EM Frequency Band Allocations
	
	Amplitude Modulation (AM)
	
	Amplitude Modulation (AM)
	
	Amplitude Modulation (AM)
	
	Frequency Modulation (FM)
	
	Frequency Modulation (FM)
	
	Frequency Modulation (FM)
	
	Envelope and phase
	
	A Chirp
	
	An Example Chirp
	
	A Chirp
	
	Instantaneous frequency
	
	Windows, windows everywhere
	
	STFT of a Chirp
	
	Short Time Fourier Transform
	
	Discrete time STFT
	
	Example spectrogram
	
	Example spectrogram
	
	Cutting up the time-frequency space
	
	Cutting up the time-frequency space
	
	Cutting up the time-frequency space
	
	Uncertainty
	
	Resolution
	
	Cutting up the time-frequency space
	
	Spectrogram of a Chirp
	
	Spectrogram of a Chirp
	
	Spectrogram of a Chirp
	
	Windows
	
	Limitations of the STFT
	
	The answer: wavelets
	

