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Windows

No we don't mean the common operating system.
Windows are a way of minimizing leakage when
performing Fourier tfransforms, but they lead into a
more sophisticated time-sensitive versions of the
Fourier Transform called the Short-Time Fourier

Transform.
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This lecture considers window functions, and the Short-Time Fourier Transform (STFT), which
uses window functions to localize frequency analysis by the FT.
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Leakage
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always have finite signals
implicit assumption in DFT is periodicity

> we look at correlation of signal to sin's and
cosines with periods that match the length of
the data

What if a signal is not periodic?

What if the period is not the same as the length of
the data?

We get leakage
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Leakage example

time
8 T T T T T T
£
=
5
(]
ol
()]
)
=
“tof
0 5 10 15 20 25 30
frequency

Transform Methods & Signal Processing (APP MTH 4043): lex@8 — p.4/79

Transform Methods & Signal Processing (APP MTH 4043): lex@8 — p.3/79

Note that the power spectrum doesn’t have a single distinct peak. Rather, energy is “leaked”
into neighboring frequencies.

Transform Methods & Signal Processing (APP MTH 4043): lex@B8 — p.4/79




What causes leakage

» The DFT uses a finite number of frequencies.

» Not all signals fit this mold exactly: what happens
to sinusoids with non-integral frequencies?

» Their power is spread over a few frequencies.

» Note we are representing the signal by a series of
numbers X (k) which represent the correlation of
the signal to a particular sinusoid with freq. kfs/N,

» another way to understand, is to think of each
element X(k) of the DFT as a narrow bandpass
filter, centered on frequency kfs/N, but which have
side lobes.
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Alternative view

» alternative view: DFT truncated signal implicitly
assumes signal is periodic, but it isn't, so what
happens at the edges?

» Edges induce transients

» transients intfroduce extra frequency components

Why do we care?
» side lobes reduce sensitivity

» determine the smallest signal we can detect against
a background of another signal
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All filters have side-lobes. Why don’t these impact the DFT for integral frequencies? Well,
the side-lobes of a rectangular pulse look like a sinc function which has nulls in between the
peaks. As we will see, the default DFT of a finite signal looks like the signal multiplied by
a rectangular pulse that truncates a signal (which is otherwise assumed to be infinite). For
integral frequencies, the nulls exactly line up with the other frequencies, and so there is no
leakage. For non-integral frequencies, the nulls don’t line up, and so we see leakage.
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Periodic signal view

signal
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Yet another view

The signal can be thought of as an infinite duration
signal, that has been truncated by rectangular window.

» input signal is the result of the product of an
(infinite) signal with a rectangular window

> convolution property

> resulting FT is the convolution of the FT of the
rectangle (a sinc), with the FT of the signal

> FT of arectangle is a sinc function
» what happens if we use a smoother window?
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% file: complex_view_4.m, (c) Matthew Roughan, Sun Aug 22 20 04

N = 64;

X = (0:N-1)/N;

fl = 3.4;

yl = sin(2 *pi *fl *x);

figure(11)

hold off

plot([x; x], [zeros(size(yl)); y1],’b’, ’'linewidth’, 3);

hold on

plot(x, y1, 'bo’, ’linewidth’, 4);

set(gca, 'linewidth’, 3, ‘fontsize’, 18, 'ylim’, [-1.2 1.2 1, xlim', [0 max(x)], 'xtick’, [], 'ytick’,
title('signal’);

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperOrientatio n’, ‘portrait’, 'PaperPosition’, [0 0 20 12])
print(-depsc’, 'Plots/circular_view_of_period_1.eps );

%% now do circular view
figure(21)

theta = 0:2 *pi/N:2 *pi-2 *pi/N;
circ_x = cos(theta);

circ_y = sin(theta);

hold off

plot3(circ_x, circ_y, y1, '0’, 'linewidth’, 5);

hold on

plot3([circ_x; circ_x], [circ_y; circ_y], [zeros(size(y 1)); y1], 'b-, ’linewidth’, 3);

plot3(circ_x, circ_y, zeros(size(y1)), 'k:', 'linewidth ', 3);

grid on

set(gca,’xlim’,[-1.5 1.5],'ylim’,[-1.5 1.5], 'linewidt h', 3, 'fontsize’, 18);

view(-130,50);

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperOrientatio n’, 'portrait’, 'PaperPosition’, [0 0 18 14])
print(-depsc’, 'Plots/circular_view_of_period_2.eps );
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Windows

Windows reduce the transient at the edges, but giving
edge points less weight, e.g.

signal

signal

Transform Methods & Signal Processing (APP MTH 4043): lexfiB — p.9/79

Impact of Windows

Product of the signal with a window function

product in time domain = convolution in frequency domain

» just have to look at transfer functions of windows.

» want to reduce size of side-lobes
» we can choose our own window function!

Note that windows may drop the overall power of the
signal so (by Rayleigh-Parseval) the power in the output
signal drops. However, relative magnitudes are more
important here than absolutes!
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Windows

All defined forn=0,1,...,N—1
» Rectangular (default) wy(n) =1

» Bartlett (triangular) wy(n) =1—

n—N/2
N/2 ‘

2
Welch (Riesz) wy(n) = 1— (_”N’;‘Z/Z)
Hanning wy (n) = 0.5— 0.5 cos( %)
Hamming wy(n) = 0.54— 0.46 cog( 2)

Blackman wy(n) = 0.42—0.5cos(Z™) + 0.08 cog 4™)

Blackman-Harris (3 term)
wy(n) = 0.42323— 0.49755cogZ™) 4 0.07922 cog4™)

vVvyvVvyVvyy

2
» Gaussian wy(n) = exp l—4.5 (”N’}‘f) ]
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Basis for Comparison

» measure drop to largest side-lobe
> measure of sensitivity
» also measure "width" of the windows frequency

response by looking at where the power drops of f
by a factor of a half, i.e. we find Aw such that

F(Aw/2)* 1
F(O))2 2
> minimum resolution bandwidth

> two peaks of same magnitude have to be at least
this far apart to resolve them as separate

» we will also look at some other properties in a minute
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See
» Lyons, pages 77, 179, and 486
» Bracewell, pages 164-169, and 171

» fred harris, “On the use of Windows for Harmonic Analysis with the Discrete Fourier
Transform”, Proceedings of the IEEE, Vol.66, No.1, January 1978, pp 51-83.

Also see

http://www.cis.rit.edu/resources/software/sig_manua I/windows.html
http://astronomy.swin.edu.au/~pbourke/other/windows /
http://en.wikipedia.org/wiki/Window_function

Other window functions: Blackman-Nuttall, Bartlett-Hann, Bessel, von Hann, Tukey, Cauchy,
Bohman, Dolph-Tschebyscheff, Taylor, Extended Cosine Bell Window, Riemann, ...
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Other metrics that aren’t considered here
» equivalent noise bandwidth
» scalloping loss
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http://www.cis.rit.edu/resources/software/sig_manual/windows.html
http://astronomy.swin.edu.au/~pbourke/other/windows/
http://en.wikipedia.org/wiki/Window_function

Rectangular Window

1
» calculate results for |
rectangular window
0.8}
» F{r(t)} =sinqs)
0.7
» figure shows sing(s)? ©
0.6 IG]
» Aw=0.89is the 9
width o5 |@
®
» drop to the max side  04f =
lobe is —13dB 0.3t
0.2
0.1}
0 A : \ : N
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Rectangular Window

—sinc
—sum

1.5} separation = 0.51 -
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Note the “nulls”, or places where the spectrum drops to zero. These are at +1,2,..., and so
exactly line up with other frequencies for integral frequencies — so no leakage.
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Rectangular Window

The window you have when you don't have a window
2 ors
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time frequency

WN<n) =1

Transform Methods & Signal Processing (APP MTH 4043): le=8 — p.15/79

Triangular Window

Reduce the size of the discontinuity

1 0
-10
0.8
=20
S
2 -30
g 0.6
3 8 -40
=
504 ~50
=
-60
0.2
=70
0 - -80
time frequency
n—N/2
wy(n)=1—|——+—
(n) N/
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The red curve provides a reference to the frequency response of the rectangular window (for
comparison).

We can see immediately that the first side lobe of the triangular window is much lower (-27 dB
instead of -13 dB). However, the width is significantly larger, 1.27 as opposed to 0.89.
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Welch Window

Reduce the size of the discontinuity, but keep power.
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Hanning Window

Make the discontinuity smooth, as well as small.

1 orse
Width=1.44
-10
0.8
=20
2
206 -30
; 3 -40
% 0.4 -50
I
-60
0.2
=70
0 - -80
time frequency

2
wy(n) =05-0.5 cos( N Zml)
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The first side lobe is lower than the rectangular window, but not as low as for the triangular
window, but the main lobe is narrower.
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The aim here is to reduce the discontinuity in the first derivative (as well at the step disconti-
nuity). The result (as we will see later) is not just a lower side lobe, but also a faster roll off in
the side lobes.
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Hamming Window

Side-lobe reduction, from wy(n) = o + (1—a)cos(&")

N
1 orse
Width=1.30
0.8 7
g
206
H
E 0.4
T
0.2
0 - -80 ;
time frequency
2m
wn(n) =0.54—0.46co8] ——
o )
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Blackman Window

Side-lobe reduction through an extra term.

Blackman window

1 0

0.5 240

time ' frequency

2 4
wn(n) =0.42—-0.5 cos(%n) +0.08 cos(Wm)
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The Hamming window starts from a family of windows wy(n) = o + (1—0()005(%‘”) and
chooses the value of a = 0.54 that minimizes the side lobe.

A noticeable feature of the Hamming window is that unlike the Hanning window its side-lobes
don’t roll off (but they do start lower). We will study why this is in a minute, but note that the
window does have a small discontinuity at the edge.
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Blackman-Harris Window (3 term)

Optimize Blackman.
1

Blackman Harris window
o
0

o
)

0

time ' frequency

2 4
Wy (n) = 0.42323— 0.49755 cos(%n> +0.07922 cos(%'”)
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Gaussian Window

Minimum uncertainty (see later)

1 0
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z
206 30
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° time = frequency
n—N/2\?2
Wy (n) = exp|—4.5 <T2/>
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Note that the co-efficients of the Blackman-Harris Window are very close to the Blackman
window, but that this still has a large impact. Clearly, if such small changes can have an
impact, we even have to consider the impact of finite precision on side-lobes.
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The Gaussian windows are actually a family, with a parameter (4.5 in the example) that can
be tuned to tradeoff resolution for the side lobe reduction.

Generally speaking there are often such tradeoffs here.
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Windowing

There is a tradeoff between resolution and sensitivity!

» better sensitivity (lower side-lobes)
= less resolution

» better resolution (of frequencies)
= worse sensitivity

Another tradeoff in the roll-off of side lobes.

» smoother function
= steeper roll-of f
but less drop off in first side-lobe

Some windows have a parameter that can tune the
tradeoffs
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Tunable tradeoffs

Windows with tunable tradeoffs

» Kaiser-Bessel

where p="-1,and I, is the zero order modified

Bessel function of the first kind, given by

. 2k
lo(x) = 1+ 3o %o

Choosing different values of B tunes the tradeoff
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Kaiser Window

0
— B=6 — B=6
— B=8 -10 — B=8
— B=10 — B=10
-20
§ -30
c
: s LI\ ~44dB
% 50
© -
o /A \\ U R 1l\Ta ~58dB
-60
=70 -
- -80
time frequency

2
wh(n) = lo | By/1- (%’) /1o(B)
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Tunable tradeoffs

Windows with tunable tradeoffs

» Chebyshev (Dolph-Chebyshev)
wn(n) = the N-point inverse DFT of
cos[Ncos* (acos(X))]

cosi{Ncosh(a))

where
o= cosh[% cosht (10V)]

not shown here
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The figure shows the window and its frequency response for three different values of B.
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Tunable tradeoffs

Windows with tunable tradeoffs

» Gaussian (tune the standard deviation)

Wy (N) = exp !—a (%) 2]

We find size of the discontinuity at the edge of the window by taking
n=0, eg. it is exp(—a). The side-lobes from such an edge will
resemble the rectangular side-lobes, with their -13dB attenuation,
and so the side-lobes of the Gaussian will be approximately

side-lobe = —13+20log e = —13— 20alog;pe
Actually they vary from this a little, but the relationship is useful, as
we can also predict the width of the Gaussian window precisely as it is
just a scaled version of itself.
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The Uncertainty
Principle
We have seen there are basic tradeoffs in window

choice. The uncertaintly principle shows that these
tradeoffs are fundamental and unavoidable.
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Uncertainty principle

The tradeoff relates to a general principle: uncertainty
» We can't squeeze more information out of a
sequence
» we can only change the way we see the information
» here we tradeoff sensitivity for resolution

Scaling property of FTs tells us something

f(at) — %F (g)

» if we make the window ‘narrower’ to exclude more
of the transients (that cause leakage), then we
make the FT 'wider'
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Uncertainty principle

Another way o understand
» frequency resolution depends on the number of data
points in our dataset

» Windowing reduces the power from some data
points

» a little like reducing the number of data points

» so we need a longer data sequence for a finer
resolution
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Regularity and decay

We can extend the intuition from the above by looking
at relationship between regularity of the function f(t)
and the decay rate of |F(s), e.g.

If there exists a constant K, and € > 0 such that

K

’F(S)\Sm

Then f has at least p continuous derivatives.

Hence, if F(s) has compact support then f € C*.
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Regularity and decay

Proof: By definition of the IFT
F(t) = /w F(s)e2™ ds

If F € LY(R) then the above implies f is continuous and
bounded, because

1)< [ F9er™|ss= [ |F(9)ics
Take the kth order derivative, WRT to t, and we get

9] < [ li2mF(9e2™ < (2% [ |8kIF ()]s
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We use the inequality

[ oo < [ asies

and the fact that [€2™| = 1.
Then remember the differentiation formula for FTs (from Lecture 2)

#{ g 10} = (2R

and |i|=1
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Regularity and decay

Proof: Now, if
K
IF(9)] < Tr|grie
Then,
” © K(1+]s")
[FeIashes [ e

which also implies that
| Fs)lskds<os

for all k < p, so the derivative f(t) exists and is
bounded.
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Regularity and decay

Windowing examples: consider 5 windowing functions
» Rectangular: wy(n)=1
This has a discontinuity.

» Triangular: wy(n)=1-

n—N/2
N/2 ’

This has a discontinuity in the first derivative.

» Welch: wy(n)=1- (”N—'>'2/2>2
This has a discontinuity in the first derivative.
» Hanning: wy(n) = 0.5—0.5cos(2™%)
This has a discontinuity in the 2nd derivative.
» Hamming: wy(n) = 0.54—0.46coq %)
This has a discontinuity, but of smaller size than
for the rectangular window.
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See Mallat, p.29-30.
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Rectangular Window

Discontinuous
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Triangular Window

Discontinuity in the first derivative

1

I o o
I o2} [

Triangular window

o
S

0

-20

-80

-100

K
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The black dashed line is 0 1/(1+ |s|), the decay of the side-lobes.
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Welch Window

Discontinuity in the first derivative
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Hanning Window

Discontinuity in the 2nd derivative

1 0
0.8 =20
=2
[e]
206 -40
=
g
S04 -60
[
T
0.2 -80
0 -100
K
Decay F(s) ~ ———
y F(s) 1+|s3
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Hamming Window Blackman Window

Discontinuous (wy(0) = 0.54—0.46= 0.08) Discontinuity in the 2nd derivative
1 0 1 0
0.8 -20 -20
2 2
3 3
£ 06 -40 £ -40
2 2
2 £ 05
£ 04 -60 g ~60
] ke
T 0
0.2 -80 -80
0 -100 0 -100 m
K K
Decay F(s) ~ —— Decay F(S) ~ ———
YFO~ 175 YO~ 11 e
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Regularity and decay and duality

Duality implies that F{F(t)} = f(—s), so the above
regularity properties work in reverse as well, e.g. if
there exists a constant K, and € > 0 such that

K
|f(t)|§m

Then F has at least p continuous derivatives.

Hence, if f(t) has compact support then F € C*.
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Compactness

Theorem: If f #0 has compact support then F(s) can't
be O on a whole interval. Similarly, if F # 0 has compact
support then f(t) can't be zero on a whole interval.

Proof: Assume F(s) # 0 has compact support in the
interval [—b,b]. From the definition of the IFT
b .
F(t) = / F(s)d?™ds
b
If non-trivial function f(t) =0 fort € [c,d], then
f((ty) = 0 inside the interval (c,d), and so by
differentiating n times under the integral at to,

b .
0= (ty) = /_bF(s)(izns)”éZTHOds
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The support of a function is the set where the function takes non-zero values. We write the
support as

supp{f} = {x/f(x) # 0}
Functions with compact support are zero outside a compact set. For example, a function
with compact support would only be non-zero in the set [—a,b] € R,

f(x) =0 forx¢[—a,b]

NB: | have tried to keep this simple, omitting definitions of compact set (a closed, bounded
set), and the fact that we define support to be the closure of a set.
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Compactness

A

/] f(t)

c 3 d -

» The function is flat (constant) at to
» The derivatives of f at to must all be O
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Compactness

Proof: We can write the IFT as
b . .
F(t) = / F (5)@2S(t-to) g2 g
—b

And we can expand the exponential exp(i2ms(t —to)) in a
power series about ty to get

f(t) = ;W/_ZF(S)(iZm)”ézmods

However note that we have already shown that each of
the integrals in the above sum are zero, and so the sum
is zero leading to f(t) =0, which contradicts the
assumption that f(t) is nontrivial (i.e. f(t) # 0 for some t).

Transform Methods & Signal Processing (APP MTH 4043): lexiB — p.44/79

See Mallat, pp.32-33
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Remember that the Taylor series for an exponential is given by

8

(t—to)"
n!

gZet—to) = (i2ms)".

=1
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Meaning

Given a
» more compact
» irregular
» sharper
function in the time (frequency) domain we get a
» less compact

» smoother
» wider
function in the frequency (time) domain.
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Windows summary

Name max side lobe | width | roll off polynomial
rectangular -13dB | 0.89 | K/(1+]s])
triangular

(Bartlett) -27dB | 128 | K/(1+]9?)
Welch (Riesz) -21dB | 116 | K/(1+]sP?)
Hanning -32dB | 144 | K/(1+]|9®)
Hamming -43dB | 130 | K/(1+]9)
Blackman 58 dB | 1.68 | K/(1+]s])
Blackman-Harris -67dB | 166 | K/(1+]9)
Kaiser (B=6) -44 dB | 140 | K/(1+]d))
Kaiser (B=8) 58 dB | 158 | K/(1+]s))
Kaiser (B=10) 74 dB | 174 | K/(1+]s)
Gaussian (0=4.5) -56 dB | 155 | K/(1+]9))

Where available results from "On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform”, F.J.Harris, Proc. of the IEEE, Vol.66, No.1, Jan. 1978,

01-63. . .
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We will extend these concepts later when we consider the uncertainty principle.
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Sensitivity vs resolution
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90 .
—— Gaussian
L O rectangular
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Transient Signal Analysis

We have previously seen that the Fourier transform is
not appropriate for analyzing fransient signals, but what
should we do then? The first step is o look at the
Short-Time or Windowed Fourier Transform.
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Figure shows the tradeoff between sensitivity and resolution. As noted, there are other
tradeoffs not shown in the figure.
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Transient signals

» all signals are transient
> they have a start and stop at least

» sometimes this doesn't matter

» often it does
> conversation is full of transients
> music
> images

» the Fourier transform

> the Fourier transform is nice because it
diagonalises time-invariant linear systems

> doesn't localize in time at all
» we need something more for transient signals
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EM Frequency Band Allocations

Frequency Band Designation Typical use

3-30 kHz Very Low Frequency (VLF) Long-range navigation
30-300 kHz Low Frequency (LF) Marine Communications
300-3000 kHz ~ Medium Frequency (MF) AM radio

3-30 MHz High Frequency (HF) Jindalee, Amateur Radio

30-300 MHz Very High Frequency (VHF)  FM radio, VHF TV
300-3000 MHz  Ultra High Frequency (UHF) UHF TV, radar
3-30 GHz SuperHigh Frequency (SHF) Satellite Comms

From p. 308 of Philips, Parr and Riskin.
Audible sound frequencies: ~ 20— 20,000Hz
AM radio frequencies: 535— 161%Hz
FM radio frequencies: 88— 108MHz
how should we carry sound on radio?

vV v. vy
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Some references:

http://encyclopedia.thefreedictionary.com/Radio\%20 spectrum
http://encyclopedia.thefreedictionary.com/Electroma gnetic\%20spectrum
http://encyclopedia.thefreedictionary.com/AM\%20ban d

*—ignore \ sign before % in the URLs above
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Amplitude Modulation (AM)

AM Radio
» modulation of signal x(t) with a cosine function

y(t) = cos(2rtfearriet) [1+ X(t)]
» fcarrier € [535_ 161akH Z
» modulation property of FT

Amplitude Modulation (AM)

y(t) = cos(21tfearriet) [X(1)]

signal, x(t)

o)
1 1 =
F{f(t)coq2msopt)} = =F(s— %) + =F(s+ %) o
2 2 O
audio signal spectrum modulated signal spectrum
g g 5
2 2 ks
>
v o
5 10 15 20 1.00 1.01 1.02 E
frequency (kHz) fca?mer frequency (MHz)
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% file: am.m, (c) Matthew Roughan, Wed Oct 6 2004

Amplitude modulation allows us to send a audio signal (with frequencies of up to a few kHz,
in the frequency band of hundreds of kHz.

p. 309 of Philip, Parr and Riskin
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%

N = 1000; x = (L:N)/N;

f=03 =« sin(pi *x) - 0.4 * sin(pi *3+x) + 0.2
carrier_freq = 17;

carrier = cos(2 *pi * carrier_freq *X);

am_signal = carrier . * abs(f);

figure(1)

hold off

plot(x, f, 'b’, 'linewidth’, 3);

hold on

plot([0 1], [0 0], ", 'linewidth’, 3);

set(gca, ‘xtick’, [], 'ytick', [], 'fontsize’, 24, ’linewi
ylabel('signal, x(t));

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’,
print(-depsc’, 'Plots/am_1.eps’);

figure(2)

hold off

plot(x, carrier, 'g’, 'linewidth’, 3);
hold on

plot([0 1], [0 0], ', 'linewidth’, 3);

set(gca, 'xtick’, [, 'ytick’, [], 'ylim’, [-1.2 1.2], *fon
ylabel('carrier’);

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’,
print(-depsc’, 'Plots/am_2.eps’);

figure(3)

hold off

plot(x, am_signal, 'g’, 'linewidth’, 3);
hold on

plot([0 1], [0 0], 7, 'linewidth’, 3);

plot(x, [f; -fl, 'b’, ’linewidth’, 3);
set(gea, ‘xtick’, [], 'ytick', [], ‘ylim, [-1.2 1.2], ‘fon
ylabel('moulated’);

* sin(pi *4xx) + 0.2 * sin(pi *7*X);

dth, 3);

[0 0 20 5])

tsize’, 24, ’linewidth’, 3);

[0 0 20 5])

tsize’, 24, ’linewidth’, 3);

SeROCT, Paperunie, cenumeters, papersoston,

print(-depsc’, "Plots/am_3.eps);  Transform Methods & Signal Processing (APP MTH 4043): |ex@8 — p.52/79

100 20 o)




Amplitude Modulation (AM)

y(t) = cos(2mfcarriet) [1 + X(1)]

signal, x(t)

carrier

moulated
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Frequency Modulation (FM)

FM Radio (88-108 MHz in the US)
» modulate the frequency of the signal
» given a signal x(t) to be transmitted
y(t) = cog2rmp(t))

where @(t) is now a (non-linear) function of time,
depending on the signal x(t) to be transmitted.

» instantaneous frequency is the rate of change of
phase, e.g.

» so take .
o(t) :/0 fearriert X(t)dt
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Note that the result is a transient signal! The (carrier) frequency is constant, but the amplitude
changes over time. This is not that interest (yet) because the only non-stationarity in the signal
is in the input signal.
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Some references:
http://encyclopedia.thefreedictionary.com/Frequency \%20modulation
http://encyclopedia.thefreedictionary.com/FM\%20rad io

*—ignore \ sign before % in the URLs above
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Frequency Modulation (FM)

y(t) = cos(2rm(t)) where @(t) = feariett + B Jo X(t) dt

—~

signal, x(t)

carrier

modulated
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Frequency Modulation (FM)

The FM signal is transient (even if input isn't)

signal, x(t)

carrier

modulated
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% file: fm.m, (c) Matthew Roughan, Wed Oct 6 2004

%

N = 1000; x = (LN)/IN;

f =03 = sin(pi *x) - 0.4 * sin(pi *3*x) + 0.2 * sin(pi *4xx) + 0.2 * sin(pi *7*X);
carrier_freq = 17;

carrier = cos(2 *pi *carrier_freq *X);

phi = cumsum(carrier_freq+20 *f)IN;

fm_signal = cos(2  *pi *phi);

figure(1)

hold off

plot(x, f, 'b’, 'linewidth’, 3);

hold on

plot([0 1], [0 0], ', ’linewidth’, 3);

set(gca, ‘xtick’, [I, 'ytick’, []);

set(gca, 'fontsize’, 24, 'linewidth’, 3);

ylabel('signal, x(t));

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 20 5))
print(-depsc’, 'Plots/fm_1.eps’);

figure(2)

hold off

plot(x, carrier, 'g’, 'linewidth’, 3);

hold on

plot([0 1], [0 0], ', ’linewidth’, 3);

set(gca, 'xtick’, [], 'ytick’, [], 'ylim’, [-1.2 1.2], 'fon tsize’, 24, 'linewidth’, 3);
ylabel(carrier’);

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 20 5))

print(-depsc’, 'Plots/fm_2.eps’);

figure(3)

hold off

plot(x, fm_signal, 'g’, 'linewidth’, 3);

hold on

plot([0 1], [0 0], ', 'linewidth’, 3);

set(gca, 'xtick’, [1, 'ytick', [, 'ylim’, [-1.2 1.2], 'fon tsize’, 24, 'linewidth’, 3);

ylabel( modulated),

set(gef, 'Paperunits', ‘centimeters’, Pgeresfsm Methods & Signad Rrocessing (APP MTH 4043): lezi8 — p.55/79

print('-depsc’, 'Plots/fm_3.eps’);

The modulated signal is

Y(t) = cos(2rgt)) where §(t) = feariot + B | Xt)ct

Take input x(t) = cog2rt), and then

ot) = feamiet+ B/Ot X(t) dt

= fcarriert + Bl SiI"I(ZT[t)
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Envelope and phase

We can change two things
» Envelope (amplitude modulation)
» Phase (frequency modulation)
Result is a signal

y(t) = A(t) cos(2rmp(t))

In transient analysis of this signal we would like to be
able to determine A(t) and @(t).

» note that a real signal (e.g. music) would consist of a
superposition of a number of such terms, e.g.
> plucked string has a number of harmonics
> each decays at different rates
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A Chirp

Both Amplitude and Frequency Modulation can happen at
once, a simple example being a chirp. Examples:

» a linear chirp
y(t) = A(t) cos[2m(bt? +ct)]

Instantaneous frequency

f(t):%[bt2+ct}:2bt+c

» a hyperbolic chirp

y(t):cos<%> and f(t):(Bﬁt)z

Transform Methods & Signal Processing (APP MTH 4043): leziB — p.58/79

Note that the representation is not necessarily unique, e.g.
2sinxsiny = cogx—Y) — cogx+Y)
So we write

2sin(2mtft) sin(2mwp(t)) cos[2m( ft — @(t))] — cos[2m(ft + @(t))]
A(t)sin(2mp(t)) = cos[2r( ft — @(t))] — cos[2m( ft+ @(t))]

So we could represent our signal as above (with varying amplitude and frequency term), or in
another representation with only varying frequency.
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An Example Chirp A Chirp

A Chirp y(t) = cog2ml5t?), so instantaneous freq. f(t) =30 DFT of a chirp

T T T T T T T T 0

_700 20 40 60 80 100 120 140 160 180 200
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% file: chirp_spectrogram.m, (c) Matthew Roughan, Thu Oct 7 2004
% Note that the spectrum appears to be roughly flat over a range from 0 to 60 Hz. We know,

however, that the frequency should have distinct peaks (at any point in time), and that the
(LK «NN; spread occurs because we are averaging a frequency that changes from 0 to 60 over the

= 15. .
=00 course of the 2 second observation.
hirp = cos(2  *pi*(b*t2 + ¢ * 1)

hirp = cos(2 *pi*(b*t"2 + ¢ * 1)
fft(chirp);

abs(fftshift(z));

20+ log10(w/max(w));

figure(12)

hold off

plot(t, chirp, 'linewidth’, 1);

set(gca, ‘ytick', ], 'ylim', [-1.2 1.2], xlim’, [0 2], ‘fo ntsize’, 18, 'linewidth’, 3);
set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 32 16])

print(-depsc’, 'Plots/chirp_spect_1.eps’);

figure(15)

plot(-Fs/2:Fs/(K *N):Fs/2-Fs/(K  *N), w, 'linewidth’, 3);

set(gca, 'fontsize’, 18, 'linewidth’, 3);

set(gca, 'xlim’, [0 200]);

ylabel('dB’);

set(gcf, 'PaperUnits’, 'centimeters’, 'PaperPosition’, [0 0 32 16])
print('-depsc’, 'Plots/chirp_spect_5.eps’);

figure(16)

s = -Fs/2+Fs/(K  *N):Fs/(K *N):Fs/2;
result = calc_sinc(s);

hold off

plot(s, w, 'linewidth’, 3);

hold on

% plots, 20 +logl0(abs(cos(s 2T ransfor MEHDAY& Siaqnnal Processing (APP MTH 4043): lez@i8 — p.59/79 Transform Methods & Signal Processing (APP MTH 4043): |ezf28 — p.60/79

plot(s, 20  *log10(abs(conv2(cos(s."2/(pi *b) + pi/4), result, 'same’))), 'r');




Instantaneous frequency

Just to reiterate, given a signal
y(t) = A(t) cos2rm(t)]
The Instantaneous frequency is

d
=g
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Windows, windows everywhere

We can use windowing functions in other ways

analysis of transient signals
use windows to select a chunk of data
move the window along

vV v.yvyy

so perform FT of a series of functions
gmt) = FOW (T 1)
» we get the Short-Time Fourier Transform (STFT)
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STFT of a Chirp

STFT of the chirp from slide 59.

sample freq = 1000Hz, block size = 200
100

80F

= -30
T 60F
& -40
§ 3
g 40 -50
-60
20 -70
-80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time
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Short Time Fourier Transform

» The Fourier transform goes from time- to frequency-domain
> lose all fime dependence

» but, e.g. music does not have same frequency over long time
periods

» want to frequencies over shorter time periods
» get STFT by applying time-shifted window function w(t —t)

STFT{f;t,s}:/w ()W (T — t)e 2% g

Magnitude? of the STFT results in the spectrogram.
spectrograrff;t,s) = |STFT{f;t,s}|?
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Spectrogram code:
http://www.mathworks.com/matlabcentral/fileexchange NloadFile.do?
objectld=1553&objectType=file
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Discrete time STFT

» apply a standard window (e.g. Hamming)
» DFT ablock of data of size M fromnton+M —1.
» do so forall n.

n+M-1 o
DSTFT{x;n,k} = X(n;k) = z f (MW (M— n)e 1 ZTkm/N
m=n

» In X(n;k) the nindexes time (in the trans. domain)

» In X(n;k) the k indexes frequency (as in the DFT)

» often it is only performed on non-overlapping blocks

> only calculate X(n;k) at time points
n=0,M,2M,...
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Example spectrogram

Most sounds aren't continuous, they are transient
0.67 T T T T

0.4
0.2
0

signal

-0.2
-0.4r

5 10 15 20 25 30
time (seconds)

Dark side of the moon: Breathe clip 0

Transform Methods & Signal Processing (APP MTH 4043): lexiB — p.66/79

NB: in the STFT, doesn’t matter if the sequence is finite, or not, because we only analyze finite
chunks.
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Example spectrogram

5 10 15 20 25 30
time (seconds)

Dark side of the moon: Breathe clip St
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Cutting up the time-frequency space

Time domain

A

frequency

time
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Cutting up the time-frequency space

Frequency domain (Fourier transform)

frequency

A

time
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Cutting up the time-frequency space

STFT

frequency

T

time
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Uncertainty

Fundamental limitation on STFT is uncertainty

» if we make the window short, we get good fime
resolution, but poor frequency resolution

» if we make the window long, we get poor time
resolution, but good frequency resolution
» we can't do better in both

» there is an uncertainty bound between time and
frequency
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Resolution

Given rectangular window of width M samples, and
sampling intervals ts
» time resolution is just Mts
> signals have to be in different boxes to be
resolved
» frequency resolution is 1/Mts
> standard frequency resolution for a series with
sample rate fs=1/ts and M samples.

Notice that the product of the two resolutions is a
constant!
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Overlapping windows doesn't really help. It may make the spectrogram look like it has finer
time resolution, but it just has more points. We still couldn’t resolve details any finer, but it
can be useful to make the spectrogram look smoother.

Using different windows can change the effective frequency resolution, and therefore change
the constant, but it is still constant for a given window function.
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Cutting up the time-frequency space

STFT (different width window)

A

A

frequency

time
Areas of boxes don't get smaller!
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Spectrogram of a Chirp

Spectrogram of a chirp

100

sample freq = 1000Hz, block size = 200

frequency (Hz)
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Area of boxes is the time resolution times the frequency resolution, and so from the argument
above, the area is a constant.
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Spectrogram of a Chirp

Spectrogram of a chirp

sample freq = 1000Hz, block size = 100
100 T T T T T T T T T 0

frequency (Hz)

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
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Spectrogram of a Chirp

Spectrogram of a chirp

sample freq = 1000Hz, block size = 400
100 T 0

frequency (Hz)
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Windows

» STFT with a window: sometimes called the
Windowed FT (WFT)

» What window should we use?

» Choice involves tradeoffs

> length of window (and hence computational cost)
(e.g. does it have compact support)

> size of uncertainty (Gabor function has minimal
uncertainty region)

> regularity of window, and roll off in Fourier
domain

> windows side-lobes vs its width in Fourier domain

> can scale window and tradeoff frequency for
time resolution
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Limitations of the STFT

» computational cost O(nmlogm)

» time/frequency resolution tradeoff
> small mbetter time, worse frequency resolution
> large m better frequency, worse fime resolution

» time/frequency resolution tradeoff is fixed
> higher frequencies can change faster than lower
frequencies
> would be nice to have appropriate resolution for
each frequency
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The answer: wavelets

» next lecture
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