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Windows

No we don't mean the common operating system.
Windows are a way of minimizing leakage when
performing Fourier transforms, but they lead into a
more sophisticated time-sensitive versions of the

Fourier Transform called the Short-Time Fourier
Transform.
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Leakage

m always have finite signals
m implicit assumption in DFT is periodicity

m we look at correlation of signal to sin's and
cosines with periods that match the length of
the data

m What if a signal is not periodic?

m What if the period is not the same as the length of
the data?

m We get leakage
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Leakage example
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Leakage example
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What causes leakage

m The DFT uses a finite number of frequencies.

m Not all signals fit this mold exactly: what happens
to sinusoids with non-integral frequencies?

m Their power is spread over a few frequencies.

m Note we are representing the signal by a series of
numbers X (k) which represent the correlation of
the signal to a particular sinusoid with freq. kfs/N,

m another way to understand, is to think of each
element X(k) of the DFT as a narrow bandpass
filter, centered on frequency kfs/N, but which have
side lobes.
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Alternative view

m alternative view: DFT fruncated signal implicitly
assumes signal is periodic, but it isn't, so what
happens at the edges?

m Edges induce transients

m transients introduce extra frequency components

Why do we care?
m side lobes reduce sensitivity

m determine the smallest signal we can detect against
a background of another signal
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Periodic signal view

signal
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Yet another view

The signal can be thought of as an infinite duration
signal, that has been truncated by rectangular window.

m input signal is the result of the product of an
(infinite) signal with a rectangular window

m convolution property

m resulting FT is the convolution of the FT of the
rectangle (a sinc), with the FT of the signal

m FT of a rectangle is a sinc function
m what happens if we use a smoother window?
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Windows

Windows reduce the transient at the edges, but giving
edge points less weight, e.qg.

signal signal
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Impact of Windows

Product of the signal with a window function

product in time domain = convolution in frequency domain

m just have to look at fransfer functions of windows.

m want to reduce size of side-lobes
m we canh choose our own window function!

Note that windows may drop the overall power of the
signal so (by Rayleigh-Parseval) the power in the output
signal drops. However, relative magnitudes are more
important here than absolutes!
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Windows

All defined forn=0,1,... N—1
m Rectangular (default) wy(n) =1

m Bartlett (friangular) wy(n) = 1—

n—N/2
|

2
= Welch (Riesz) wiy(n) = 1 ("2
m Hanning wy(n) = 0.5— 0.5cos(2%)
m Hamming wy(n) = 0.54— 0.46 cog 2% )

m Blackman wy(n) = 0.42— 0.5cos(&™) 4 0.08 cog( ™)

m Blackman-Harris (3 term)
Wi (n) = 0.42323-0.49755c0$4") +0.07922 cog =)

2
B Gaussian Wy (n) = exp [_4'5 (HKDIZ/Z) ]
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Basis for Comparison

m measure drop to largest side-lobe
m measure of sensitivity

m also measure "width" of the windows frequency
response by looking at where the power drops of f
by a factor of a half, i.e. we find Aw such that

F(Aw/2)]2 1

FO)P 2

® minimum resolution bandwidth

m two peaks of same magnitude have to be at least
this far apart to resolve them as separate

m we will also look at some other properties in a minute
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Rectangular Window
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Rectangular Window
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Rectangular Window
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Rectangular Window
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Rectangular Window

The window you have when you don't have a window
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Triangular Window

Reduce the size of the discontinuity
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Welch Window

Reduce the size of the discontinuity, but keep power.
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Hanning Window

Make the discontinuity smooth, as well as small.
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Hamming Window

Side-lobe reduction, from wy(n) =a+ (1—a) COS(%{”)
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Blackman Window

Side-lobe reduction through an extra term.
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Blackman-Harris Window (3 term)

Optimize Blackman.
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Gaussian Window

Minimum uncertainty (see later)
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Windowing

There is a tradeoff between resolution and sensitivity!

m better sensitivity (lower side-lobes)
= less resolution

m better resolution (of frequencies)
= worse sensitivity

Another tradeoff in the roll-off of side lobes.

m smoother function
= steeper roll-of f

but less drop of f in first side-lobe

Some windows have a parameter that can tune the
tradeoffs
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Tunable tradeoffs

Windows with tunable tradeoffs

m Kaiser-Bessel

where p="-1, and |y is the zero order modified
Bessel function of the first kind, given by

lo(X) = 1+ Yo X2

Choosing different values of B tunes the tradeoff
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Kaiser Window

Kaiser window

|V
frequency

/lo(B)
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Tunable tradeoffs

Windows with tunable tradeoffs

m Chebyshev (Dolph-Chebyshev)
wy(n) = the N-point inverse DFT of
cos|Ncos* (acos(I))]

cosi{Ncosh*(a))

where

o= cosh[% cosh? (1OV)]

not shown here
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Tunable tradeoffs

Windows with tunable tradeoffs

m Gaussian (tune the standard deviation)

wn(n) = exp|—a (nKI/N2/2> .

We find size of the discontinuity at the edge of the window by taking
n=0, e.q. it is exp(—a). The side-lobes from such an edge will
resemble the rectangular side-lobes, with their -13dB attenuation,
and so the side-lobes of the Gaussian will be approximately

side-lobe = —13+20log,e “ = —13—20alog, €

Actually they vary from this a little, but the relationship is useful, as
we can also predict the width of the Gaussian window precisely as it is
just a scaled version of itself.
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The Uncertainty
Principle

We have seen there are basic tradeoffs in window
choice. The uncertaintly principle shows that these

tradeoffs are fundamental and unavoidable.
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Uncertainty principle

The tradeoff relates to a general principle: uncertainty
m We can't squeeze more information out of a
sequence
m we can only change the way we see the information

m here we tradeoff sensitivity for resolution

Scaling property of FTs tells us something

- e (2

m if we make the window ‘narrower’ to exclude more
of the transients (that cause leakage), then we
make the FT 'wider’
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Uncertainty principle

Another way to understand

m frequency resolution depends on the number of data
points in our dataset

m Windowing reduces the power from some data
points

m a little like reducing the number of data points

m so we need a longer data sequence for a finer
resolution
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Regularity and decay

We can extend the intuition from the above by looking
at relationship between reqularity of the function f(t)
and the decay rate of |F(s)|, e.g.

If there exists a constant K, and € > 0 such that

K
| <
1+ ‘S‘ p+14-€

F(s)

Then f has at least p continuous derivatives.

Hence, if F(s) has compact support then f € C~.
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Regularity and decay
Proof: By definition of the IFT
f(t) :/w F(s)e2™ ds

If F € LY(R) then the above implies f is continuous and
bounded, because

fol< [ P ia= [ F(9)ds
Take the kth order derivative, WRT to t, and we get

90 < [ li2ms)F(9e2|as < (2m) [ |skIF(9)]s
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Regularity and decay

Proof: Now, if
K
| <
1+ ‘S‘ p+14-€

F(s)

Then,

0 ©* K(1+|s|P)
/w\F<s>r<1+\s\p>dss/mli,s,p!ﬁdsw

which also implies that

[ IF()lskds<e

for all k < p, so the derivative f¥(t) exists and is
bounded.
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Regularity and decay

Windowing examples: consider 5 windowing functions
m Rectangular: wy(n) =1
This has a discontinuity.

m Triangular: wy(n) =1—

n—N/2
e

This has a discontinuity in the first derivative.

m Welch: wy(n)=1- (”KD'Z/Z)Z

This has a discontinuity in the first derivative.
m Hanning: wy(n) = 0.5—0.5cos(<%)

This has a discontinuity in the 2nd derivative.
m Hamming: wy(n) = 0.54— 0.46 co &%)

This has a discontinuity, but of smaller size than
for the rectangular window.
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Rectangular Window

Discontinuous

2 0]
_20.
> 1.5}
é ' A=
§ _40.
8 1
-]
g -60}
3
05
_80.
0 —-100
K
Decay F(s) ~
Y 1+

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.35/79



Triangular Window

Discontinuity in the first derivative
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Welch Window

Discontinuity in the first derivative
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Hanning Window

Discontinuity in the 2nd derivative
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Hamming window

Hamming Window

Discontinuous (wy(0) = 0.54—0.46 = 0.08)
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Blackman window

Blackman Window

Discontinuity in the 2nd derivative
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Regularity and decay and duality

Duality implies that 7{F(t)} = f(—s), so the above
regularity properties work in reverse as well, e.qg. if
there exists a constant K, and € > 0 such that

K
‘f(t)‘ < 14 ’t’p—l—l+€

Then F has at least p continuous derivatives.

Hence, if f(t) has compact support then F € C*.
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Compactness

Theorem: If f # 0 has compact support then F(s) can't
be O on a whole interval. Similarly, if F # 0 has compact
support then f(t) can't be zero on a whole interval.

Proof: Assume F(s) # 0 has compact support in the
interval [—b,b]. From the definition of the IFT

f(t) = /ZF(s)eizmds

If non-trivial function f(t) =0 fort € [c,d], then
f(V(ty) = 0 inside the interval (c,d), and so by
differentiating n times under the integral at to,

b .
0= £ (ty) = /_ F(s)(i2rm)"e s
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Compactness

A

/ f(t)

C A d -

m The function is flat (constant) at t
m The derivatives of f at to must all be O
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Compactness
Proof: We can write the IFT as
f(t) = / ’ F (s)e?m(t—t)g2msh g
—b

And we can expand the exponential exp(i2rs(t —tp)) in a
power series about tp o get

00 _+\N b |
V=3 ( n!tO) /_ F(s)(i2ms)"e? s

However note that we have already shown that each of
the integrals in the above sum are zero, and so the sum
is zero leading to f(t) =0, which contradicts the
assumption that f(t) is nontrivial (i.e. f(t) #0 for some t).
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Meaning

Given a
B more compact

m irregular
m sharper

function in the time (frequency) domain we get a
m |less compact

m smoother
m wider
function in the frequency (time) domain.
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Windows summary

Name max side lobe | width | roll off polynomial
rectangular -13dB | 0.89 | K/(1+]9|)
triangular

(Bartlett) -27dB | 128 | K/(1+]5)
Welch (Riesz) -21dB | 116 | K/(1+|s?)
Hanning -32dB | 144 | K/(1+]sP®)
Hamming -43dB | 130 | K/(1+]9])
Blackman -58dB | 168 | K/(1+]s]®)
Blackman-Harris -67dB | 166 | K/(1+]9))
Kaiser (B=6) -44dB | 140 | K/(1+]9|)
Kaiser (B=8) -58dB | 158 | K/(1+]9|)
Kaiser (B=10) -74dB | 174 | K/(1+]9))
Gaussian (0=4.5) -56dB | 155 | K/(1+|9)

Where available results from "On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform”, F.J.Harris, Proc. of the IEEE, Vol.66, No.1, Jan. 1978,

pp-91-63. Transform Methods & Signal Processing (APP MTH 4043): lexi8 — p.46/79



Sensitivity vs resolution

90 Gaussian
30 rectangular
triangular
70 Welch
. Hanning
2 50 Hamming
NG Blackman
T 50 Blackman—Harris
= Kaiser
o 40
7))
30
20
10
0.5

width

Transform Methods & Signal Processing (APP MTH 4043): lex@B — p.47/79



Transient Signal Analysis

We have previously seen that the Fourier transform is
not appropriate for analyzing transient signals, but what
should we do then? The first step is to look at the
Short-Time or Windowed Fourier Transform.
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Transient signals

m all signals are transient
m they have a start and stop at least

m sometimes this doesn't matter

m often it does
m conversation is full of transients
H music
H images

m the Fourier transform

m the Fourier tfransform is nice because it
diagonalises time-invariant linear systems

m doesn't localize in time at all
m we need something more for transient signals
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EM Frequency Band Allocations

Frequency Band Designation Typical use

3-30 kHz Very Low Frequency (VLF) Long-range navigation
30-300 kHz Low Frequency (LF) Marine Communications
300-3000 kHz ~ Medium Frequency (MF) AM radio

3-30 MHz High Frequency (HF) Jindalee, Amateur Radio

30-300 MHz Very High Frequency (VHF)  FM radio, VHF TV
300-3000 MHz  Ultra High Frequency (UHF) UHF TV, radar
3-30 GHz SuperHigh Frequency (SHF) Satellite Comms

From p. 308 of Philips, Parr and Riskin.

m Audible sound frequencies: ~ 20— 20,000Hz
m AM radio frequencies: 535— 161%Hz
m FM radio frequencies: 88— 108VIHz

m how should we carry sound on radio?

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.50/79




Amplitude Modulation (AM)

AM Radio
m modulation of signal x(t) with a cosine function

y(t) = cos(2mtfeariet) [1+ X(1)]
] fcarriere [535_ 1615kHZ
m modulation property of FT

F{f(t)cog2mspt)} = %F(S—So) + %F(s+ So)

audio signal spectrum modulated signal spectrum

A

power

5 10 15 20 7/~ 0.98 0.99 1.00 1.01

frequency (kHz) fcz;rrier

frequency (MHz)
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Amplitude Modulation (AM)

(znfcarriert) ‘X(t) ‘

V)

y(t) =co

signal, x(t)

arrier

C

moulated
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Amplitude Modulation (AM)

y(t) = cos(2Ttfcarriet) [1+ X(1)]

Unnnnnnnnnnnnnnnﬂ

carrier  signal, x(t)

! VVVVUVVUVVVVY

VAYAVAVAVAVMYMVAV
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Frequency Modulation (FM)

FM Radio (88-108 MHz in the US)
m modulate the frequency of the signal

m given a signal x(t) to be transmitted
y(t) = cog2mp(t))

where @(t) is now a (non-linear) function of time,
depending on the signal x(t) to be transmitted.

m instantaneous frequency is the rate of change of

phase, e.qg. ]
f(t) = —alt)
m so take

t
(P(t) = /O fearrier+ X(t) dt
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Frequency Modulation (FM)

y(t) = cos(2mp(t)) where @(t) = feariet + B [LX(t) dt

signal, x(t)

carrier

WW”
IV

I} /)
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Frequency Modulation (FM)

The FM signal is transient (even if input isn't)

signal, x(t)

carrier

modulated

nMW\M
VY
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Envelope and phase

We can change two things
m Envelope (amplitude modulation)
m Phase (frequency modulation)
Result is a signal

y(t) = A(t) cos(2rm(t))

In transient analysis of this signal we would like to be
able to determine A(t) and @(t).

m note that a real signal (e.g. music) would consist of a
superposition of a number of such terms, e.g.
m plucked string has a number of harmonics
m each decays at different rates
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A Chirp

Both Amplitude and Frequency Modulation can happen at
once, a simple example being a chirp. Examples:

m a linear chirp

y(t) = A(t) cos[2m(bt* + ct)]
Instantaneous frequency

f(t)= % [bt2+ct} =2bt+cC

m a hyperbolic chirp

y(t):cos<%> and f(t):(Bgt)Z
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An Example Chirp

A Chirp y(t) = cog2m5t?), so instantaneous freq. f(t) =3

(\

|

Ny
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0.6 0.8 1 1.2 1.4 1.6 1.8 2
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A Chirp

DFT of a chirp
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Instantaneous frequency

Just to reiterate, given a signal

y(t) = A(t) cos[2rm(t),

The Instantaneous frequency is

do
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Windows, windows everywhere

We can use windowing functions in other ways

m analysis of transient signals

m use windows to select a chunk of data
m move the window along

m so perform FT of a series of functions
g(n;t) = f(Mw'(t—t)

m we get the Short-Time Fourier Transform (STFT)
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STFT of a Chirp

STFT of the chirp from slide ?2.

sample freq = 1000Hz, block size = 200
100 T T T T | — | T

frequency (Hz)
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Short Time Fourier Transform

m The Fourier transform goes from time- to frequency-domain
m |ose all time dependence

m but, e.g. music does not have same frequency over long time
periods

m want to frequencies over shorter time periods

m get STFT by applying time-shifted window function w(t —t)
STFT{f;t,s}:/oo f (D)W (T — t)e 2 g
Magnitude? of the STFT results in the spectrogram.

spectrograrff;t,s) = |STFT{f;t,s}|°
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Discrete time STFT

m apply a standard window (e.g. Hamming)

m DFT a block of data of size M fromnton+M —1.
m do so for all n.

n+M-1
DSTFT{x;n,k} = X(n;k) = Z f(m — n)eg 12mkm/N

m In X(n;k) the nindexes time (in the trans. domain)
m In X(n;k) the k indexes frequency (as in the DFT)

m often it is only performed on non-overlapping blocks

m only calculate X(n;k) at time points
nN=0M,2M,...
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Example spectrogram

Most sounds aren't continuous, they are transient
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Example spectrogram
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Cutting up the time-frequency space

Time domain

A

frequency

time

Transform Methods & Signal Processing (APP MTH 4043): lexB — p.68/79



Cutting up the time-frequency space

Frequency domain (Fourier transform)

A

frequency

: —
time
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Cutting up the time-frequency space

STFT

-

frequency

>

time
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Uncertainty

Fundamental limitation on STFT is uncertainty

m if we make the window short, we get good time
resolution, but poor frequency resolution

m if we make the window long, we get poor time
resolution, but good frequency resolution

m we can't do better in both

m there is an uncertainty bound between time and
frequency

Transform Methods & Signal Processing (APP MTH 4043): lex@B — p.71/79



Resolution

Given rectangular window of width M samples, and
sampling intervals ts
m time resolution is just Mt

®m signals have to be in different boxes to be
resolved

m frequency resolution is 1/Mtg

m standard frequency resolution for a series with
sample rate fs=1/ts and M samples.

Notice that the product of the two resolutions is a
constant!
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Cutting up the time-frequency space

STFT (different width window)

A

frequency

time
Areas of boxes don't get smaller!
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Spectrogram of a Chirp

Spectrogram of a chirp

sample freq = 1000Hz, block size = 200
100 T T T T | — | T

frequency (Hz)
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Spectrogram of a Chirp

Spectrogram of a chirp

sample freq = 1000Hz, block size = 100
100 | | n || | | | | | n | | | | O

frequency (Hz)

time
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Spectrogram of a Chirp

Spectrogram of a chirp

sample freq = 1000Hz, block size = 400

0 R ’

frequency (Hz)
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Windows

m STFT with a window: sometimes called the
Windowed FT (WFT)

m What window should we use?

m Choice involves tradeoffs
m length of window (and hence computational cost)
(e.g. does it have compact support)

m size of uncertainty (Gabor function has minimal
uncertainty region)

m reqularity of window, and roll off in Fourier
domain

m windows side-lobes vs its width in Fourier domain

m can scale window and tradeoff frequency for
time resolution
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Limitations of the STFT

m computational cost O(nmlogm)

m tfime/frequency resolution tradeoff
m small mbetter time, worse frequency resolution
m large m better frequency, worse time resolution

m time/frequency resolution tradeoff is fixed

m higher frequencies can change faster than lower
frequencies

m would be nice to have appropriate resolution for
each frequency
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The answer: wavelets

m next lecture
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