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WindowsNo we don't mean the ommon operating system.Windows are a way of minimizing leakage whenperforming Fourier transforms, but they lead into amore sophistiated time-sensitive versions of theFourier Transform alled the Short-Time FourierTransform.
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Leakage
always have �nite signalsimpliit assumption in DFT is periodiitywe look at orrelation of signal to sin's andosines with periods that math the length ofthe dataWhat if a signal is not periodi?What if the period is not the same as the length ofthe data?We get leakage
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Leakage example
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Leakage example
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What auses leakage

The DFT uses a �nite number of frequenies.Not all signals �t this mold exatly: what happensto sinusoids with non-integral frequenies?Their power is spread over a few frequenies.Note we are representing the signal by a series ofnumbers X(k) whih represent the orrelation ofthe signal to a partiular sinusoid with freq. k fs/N,another way to understand, is to think of eahelement X(k) of the DFT as a narrow bandpass�lter, entered on frequeny k fs/N, but whih haveside lobes.
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Alternative viewalternative view: DFT trunated signal impliitlyassumes signal is periodi, but it isn't, so whathappens at the edges?Edges indue transientstransients introdue extra frequeny omponents

Why do we are?side lobes redue sensitivitydetermine the smallest signal we an detet againsta bakground of another signal
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Periodi signal view
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Yet another viewThe signal an be thought of as an in�nite durationsignal, that has been trunated by retangular window.input signal is the result of the produt of an(in�nite) signal with a retangular windowonvolution propertyresulting FT is the onvolution of the FT of theretangle (a sin), with the FT of the signalFT of a retangle is a sin funtionwhat happens if we use a smoother window?

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.8/79



WindowsWindows redue the transient at the edges, but givingedge points less weight, e.g.

signal signal
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Impat of Windows

Produt of the signal with a window funtionprodut in time domain = onvolution in frequeny domainjust have to look at transfer funtions of windows.want to redue size of side-lobeswe an hoose our own window funtion!Note that windows may drop the overall power of thesignal so (by Rayleigh-Parseval) the power in the outputsignal drops. However, relative magnitudes are moreimportant here than absolutes!
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WindowsAll de�ned for n = 0,1, . . . ,N −1Retangular (default) wN(n) = 1Bartlett (triangular) wN(n) = 1−
∣

∣

∣

n−N/2
N/2

∣

∣

∣Welh (Riesz) wN(n) = 1−
(

n−N/2
N/2

)2

Hanning wN(n) = 0.5−0.5cos
(

2πn
N−1

)

Hamming wN(n) = 0.54−0.46cos
(

2πn
N−1

)

Blakman wN(n) = 0.42−0.5cos
(

2πn
N

)

+0.08cos
(

4πn
N

)Blakman-Harris (3 term)
wN(n) = 0.42323−0.49755cos

(

2πn
N

)

+0.07922cos
(

4πn
N

)

Gaussian wN(n) = exp

[

−4.5
(

n−N/2
N/2

)2
]
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Basis for Comparison

measure drop to largest side-lobemeasure of sensitivityalso measure �width� of the windows frequenyresponse by looking at where the power drops offby a fator of a half, i.e. we �nd ∆ω suh that

|F(∆ω/2)|2

|F(0)|2
=

1
2minimum resolution bandwidthtwo peaks of same magnitude have to be at leastthis far apart to resolve them as separatewe will also look at some other properties in a minute
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Retangular Window

alulate results forretangular window

F {r(t)} = sinc(s)�gure shows sinc(s)2

∆w = 0.89 is thewidthdrop to the max sidelobe is −13 dB
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Retangular Window
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Retangular Window
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Retangular Window
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Retangular Window

The window you have when you don't have a window
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Triangular Window

Redue the size of the disontinuity
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Welh WindowRedue the size of the disontinuity, but keep power.
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Hanning Window

Make the disontinuity smooth, as well as small.
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Hamming Window

Side-lobe redution, from wN(n) = α+(1−α)cos
(

2πn
N

)
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Blakman WindowSide-lobe redution through an extra term.
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Blakman-Harris Window (3 term)

Optimize Blakman.
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Gaussian WindowMinimum unertainty (see later)
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Windowing

There is a tradeoff between resolution and sensitivity!better sensitivity (lower side-lobes)
⇒ less resolutionbetter resolution (of frequenies)
⇒ worse sensitivityAnother tradeoff in the roll-off of side lobes.smoother funtion
⇒ steeper roll-offbut less drop off in �rst side-lobeSome windows have a parameter that an tune thetradeoffs
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Tunable tradeoffsWindows with tunable tradeoffsKaiser-Bessel

wN(n) =

I0

[

B

√

1−
(

n−p
p

)2
]

I0(B)where p = N−1
2 , and I0 is the zero order modi�edBessel funtion of the �rst kind, given by

I0(x) = 1+∑∞
k=0

(x/2)2k

(k!)2Choosing different values of B tunes the tradeoff
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Kaiser Window
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Tunable tradeoffsWindows with tunable tradeoffsChebyshev (Dolph-Chebyshev)
wN(n) = the N-point inverse DFT of

cos
[

N cos−1
(

αcos
(πm

N

))]

cosh(N cosh−1(α))where

α = cosh

[

1
N

cosh−1(10γ)

]

not shown here
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Tunable tradeoffsWindows with tunable tradeoffsGaussian (tune the standard deviation)
wN(n) = exp

[

−α
(

n−N/2
N/2

)2
]

We �nd size of the disontinuity at the edge of the window by taking

n = 0, e.g. it is exp(−α). The side-lobes from suh an edge willresemble the retangular side-lobes, with their -13dB attenuation,and so the side-lobes of the Gaussian will be approximatelyside-lobe = −13+20log10e−α = −13−20α log10eAtually they vary from this a little, but the relationship is useful, aswe an also predit the width of the Gaussian window preisely as it isjust a saled version of itself.
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The Unertainty

Priniple

We have seen there are basi tradeoffs in windowhoie. The unertaintly priniple shows that thesetradeoffs are fundamental and unavoidable.

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.28/79



Unertainty priniple

The tradeoff relates to a general priniple: unertaintyWe an't squeeze more information out of asequenewe an only hange the way we see the informationhere we tradeoff sensitivity for resolutionSaling property of FTs tells us something

f (at) →
1
|a|

F
( s

a

)

if we make the window 'narrower' to exlude moreof the transients (that ause leakage), then wemake the FT 'wider'
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Unertainty priniple

Another way to understandfrequeny resolution depends on the number of datapoints in our datasetWindowing redues the power from some datapointsa little like reduing the number of data pointsso we need a longer data sequene for a �nerresolution
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Regularity and deay

We an extend the intuition from the above by lookingat relationship between regularity of the funtion f (t)and the deay rate of |F(s)|, e.g.If there exists a onstant K, and ε > 0 suh that
|F(s)| ≤

K
1+ |s|p+1+ε

Then f has at least p ontinuous derivatives.Hene, if F(s) has ompat support then f ∈C∞.
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Regularity and deay

Proof: By de�nition of the IFT

f (t) =

Z ∞

−∞
F(s)ei2πst ds

If F ∈ L1(R) then the above implies f is ontinuous andbounded, beause

| f (t)| ≤
Z ∞

−∞
|F(s)ei2πst |ds =

Z ∞

−∞
|F(s)|ds

Take the kth order derivative, WRT to t, and we get

| f (k)(t)| ≤
Z ∞

−∞
|(i2πs)kF(s)ei2πst |ds ≤ (2π)k

Z ∞

−∞
|s|k |F(s)|ds
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Regularity and deay

Proof: Now, if

|F(s)| ≤
K

1+ |s|p+1+εThen,

Z ∞

−∞
|F(s)|(1+ |s|p)ds ≤

Z ∞

−∞

K(1+ |s|p)
1+ |s|p+1+ε ds < ∞

whih also implies that
Z ∞

−∞
|F(s)| |s|k ds < ∞

for all k ≤ p, so the derivative f (k)(t) exists and isbounded.
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Regularity and deayWindowing examples: onsider 5 windowing funtionsRetangular: wN(n) = 1This has a disontinuity.Triangular: wN(n) = 1−
∣

∣

∣

n−N/2
N/2

∣

∣

∣This has a disontinuity in the �rst derivative.Welh: wN(n) = 1−
(

n−N/2
N/2

)2

This has a disontinuity in the �rst derivative.Hanning: wN(n) = 0.5−0.5cos
(

2πn
N−1

)This has a disontinuity in the 2nd derivative.Hamming: wN(n) = 0.54−0.46cos
(

2πn
N−1

)This has a disontinuity, but of smaller size thanfor the retangular window.

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.34/79



Retangular Window

Disontinuous
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Triangular Window

Disontinuity in the �rst derivative
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Welh WindowDisontinuity in the �rst derivative
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Hanning Window

Disontinuity in the 2nd derivative
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Hamming Window

Disontinuous (wN(0) = 0.54−0.46= 0.08)
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Blakman WindowDisontinuity in the 2nd derivative
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Regularity and deay and duality

Duality implies that F {F(t)} = f (−s), so the aboveregularity properties work in reverse as well, e.g. ifthere exists a onstant K, and ε > 0 suh that
| f (t)| ≤

K
1+ |t|p+1+ε

Then F has at least p ontinuous derivatives.Hene, if f (t) has ompat support then F ∈C∞.
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Compatness

Theorem: If f 6= 0 has ompat support then F(s) an'tbe 0 on a whole interval. Similarly, if F 6= 0 has ompatsupport then f (t) an't be zero on a whole interval.Proof: Assume F(s) 6= 0 has ompat support in theinterval [−b,b]. From the de�nition of the IFT
f (t) =

Z b

−b
F(s)ei2πst dsIf non-trivial funtion f (t) = 0 for t ∈ [c,d], then

f (n)(t0) = 0 inside the interval (c,d), and so bydifferentiating n times under the integral at t0,

0 = f (n)(t0) =

Z b

−b
F(s)(i2πs)nei2πst0 ds
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Compatness
c dt0

f(t)

The funtion is �at (onstant) at t0The derivatives of f at t0 must all be 0
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Compatness

Proof: We an write the IFT as

f (t) =

Z b

−b
F(s)ei2πs(t−t0)ei2πst0 ds

And we an expand the exponential exp(i2πs(t − t0)) in apower series about t0 to get
f (t) =

∞

∑
n=0

(t − t0)n

n!

Z b

−b
F(s)(i2πs)nei2πst0 ds

However note that we have already shown that eah ofthe integrals in the above sum are zero, and so the sumis zero leading to f (t) = 0, whih ontradits theassumption that f (t) is nontrivial (i.e. f (t) 6= 0 for some t).
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Meaning
Given amore ompatirregularsharperfuntion in the time (frequeny) domain we get aless ompatsmootherwiderfuntion in the frequeny (time) domain.
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Windows summary

Name max side lobe width roll off polynomialretangular -13 dB 0.89 K/(1+ |s|)triangular(Bartlett) -27 dB 1.28 K/(1+ |s|2)Welh (Riesz) -21 dB 1.16 K/(1+ |s|2)Hanning -32 dB 1.44 K/(1+ |s|3)Hamming -43 dB 1.30 K/(1+ |s|)Blakman -58 dB 1.68 K/(1+ |s|3)Blakman-Harris -67 dB 1.66 K/(1+ |s|)Kaiser (B=6) -44 dB 1.40 K/(1+ |s|)Kaiser (B=8) -58 dB 1.58 K/(1+ |s|)Kaiser (B=10) -74 dB 1.74 K/(1+ |s|)Gaussian (α=4.5) -56 dB 1.55 K/(1+ |s|)Where available results from �On the Use of Windows for Harmoni Analysis with theDisrete Fourier Transform�, F.J.Harris, Pro. of the IEEE, Vol.66, No.1, Jan. 1978,pp.51-83.
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Sensitivity vs resolution
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Transient Signal Analysis

We have previously seen that the Fourier transform isnot appropriate for analyzing transient signals, but whatshould we do then? The �rst step is to look at theShort-Time or Windowed Fourier Transform.
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Transient signals

all signals are transientthey have a start and stop at leastsometimes this doesn't matteroften it doesonversation is full of transientsmusiimagesthe Fourier transformthe Fourier transform is nie beause itdiagonalises time-invariant linear systemsdoesn't loalize in time at allwe need something more for transient signals
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EM Frequeny Band Alloations

Frequeny Band Designation Typial use3-30 kHz Very Low Frequeny (VLF) Long-range navigation30-300 kHz Low Frequeny (LF) Marine Communiations300-3000 kHz Medium Frequeny (MF) AM radio3-30 MHz High Frequeny (HF) Jindalee, Amateur Radio30-300 MHz Very High Frequeny (VHF) FM radio, VHF TV300-3000 MHz Ultra High Frequeny (UHF) UHF TV, radar3-30 GHz SuperHigh Frequeny (SHF) Satellite CommsFrom p. 308 of Philips, Parr and Riskin.Audible sound frequenies: ∼ 20−20,000HzAM radio frequenies: 535−1615kHzFM radio frequenies: 88−108MHzhow should we arry sound on radio?
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Amplitude Modulation (AM)

AM Radiomodulation of signal x(t) with a osine funtion
y(t) = cos(2π fcarriert) [1+ x(t)]

fcarrier∈ [535−1615]kHzmodulation property of FT
F { f (t)cos(2πs0t)} =

1
2

F(s− s0)+
1
2

F(s+ s0)

fcarrier
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Amplitude Modulation (AM)
y(t) = cos(2π fcarriert) |x(t)|
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Amplitude Modulation (AM)
y(t) = cos(2π fcarriert) [1+ x(t)]
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Frequeny Modulation (FM)

FM Radio (88-108 MHz in the US)modulate the frequeny of the signalgiven a signal x(t) to be transmitted
y(t) = cos(2πφ(t))where φ(t) is now a (non-linear) funtion of time,depending on the signal x(t) to be transmitted.instantaneous frequeny is the rate of hange ofphase, e.g.

f (t) =
d
dt

φ(t)so take
φ(t) =

Z t

0
fcarrier+ x(t)dt

Transform Methods & Signal Processing (APP MTH 4043): lecture 08 – p.54/79



Frequeny Modulation (FM)
y(t) = cos(2πφ(t)) where φ(t) = fcarriert +β

R t
0 x(t)dt
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Frequeny Modulation (FM)

The FM signal is transient (even if input isn't)
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Envelope and phase

We an hange two thingsEnvelope (amplitude modulation)Phase (frequeny modulation)Result is a signal

y(t) = A(t)cos(2πφ(t))In transient analysis of this signal we would like to beable to determine A(t) and φ(t).note that a real signal (e.g. musi) would onsist of asuperposition of a number of suh terms, e.g.pluked string has a number of harmoniseah deays at different rates
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A Chirp
Both Amplitude and Frequeny Modulation an happen atone, a simple example being a hirp. Examples:a linear hirp

y(t) = A(t)cos
[

2π(bt2 + ct)
]

Instantaneous frequeny
f (t) =

d
dt

[

bt2 + ct
]

= 2bt + c

a hyperboli hirp
y(t) = cos

(

2πα
β− t

) and f (t) =
α

(β− t)2
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An Example Chirp

A Chirp y(t) = cos(2π15t2), so instantaneous freq. f (t) = 30t
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A Chirp
DFT of a hirp
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Instantaneous frequeny

Just to reiterate, given a signal

y(t) = A(t)cos[2πφ(t)]The Instantaneous frequeny is
f (t) =

dφ
dt
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Windows, windows everywhere

We an use windowing funtions in other waysanalysis of transient signalsuse windows to selet a hunk of datamove the window alongso perform FT of a series of funtions
g(τ; t) = f (τ)w∗(τ− t)we get the Short-Time Fourier Transform (STFT)
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STFT of a Chirp

STFT of the hirp from slide ??.
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Short Time Fourier Transform

The Fourier transform goes from time- to frequeny-domainlose all time dependenebut, e.g. musi does not have same frequeny over long timeperiodswant to frequenies over shorter time periodsget STFT by applying time-shifted window funtion w(τ− t)

STFT{ f ; t,s} =
Z ∞

−∞
f (τ)w∗(τ− t)e−i2πsτ dτ

Magnitude2 of the STFT results in the spetrogram.

spectrogram( f ; t,s) = |STFT{ f ; t,s}|2
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Disrete time STFTapply a standard window (e.g. Hamming)DFT a blok of data of size M from n to n+M−1.do so for all n.

DST FT{x;n,k} = X(n;k) =
n+M−1

∑
m=n

f (m)w∗(m−n)e−i2πikm/N

In X(n;k) the n indexes time (in the trans. domain)In X(n;k) the k indexes frequeny (as in the DFT)often it is only performed on non-overlapping bloksonly alulate X(n;k) at time points

n = 0,M,2M, . . .
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Example spetrogram

Most sounds aren't ontinuous, they are transient
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Example spetrogram

Dark side of the moon: Breathe lip
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Cutting up the time-frequeny spae

Time domain
time
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Cutting up the time-frequeny spae

Frequeny domain (Fourier transform)
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Cutting up the time-frequeny spae

STFT
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Unertainty

Fundamental limitation on STFT is unertaintyif we make the window short, we get good timeresolution, but poor frequeny resolutionif we make the window long, we get poor timeresolution, but good frequeny resolutionwe an't do better in boththere is an unertainty bound between time andfrequeny
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ResolutionGiven retangular window of width M samples, andsampling intervals tstime resolution is just Mtssignals have to be in different boxes to beresolvedfrequeny resolution is 1/Mtsstandard frequeny resolution for a series withsample rate fs = 1/ts and M samples.Notie that the produt of the two resolutions is aonstant!
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Cutting up the time-frequeny spae

STFT (different width window)
time

fr
eq

u
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cy

Areas of boxes don't get smaller!
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Spetrogram of a Chirp

Spetrogram of a hirp
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Spetrogram of a Chirp

Spetrogram of a hirp
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sample freq = 1000Hz, block size = 100
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Spetrogram of a Chirp

Spetrogram of a hirp
time
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sample freq = 1000Hz, block size = 400
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WindowsSTFT with a window: sometimes alled theWindowed FT (WFT)What window should we use?Choie involves tradeoffslength of window (and hene omputational ost)(e.g. does it have ompat support)size of unertainty (Gabor funtion has minimalunertainty region)regularity of window, and roll off in Fourierdomainwindows side-lobes vs its width in Fourier domainan sale window and tradeoff frequeny fortime resolution
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Limitations of the STFTomputational ost O(nm logm)time/frequeny resolution tradeoffsmall m better time, worse frequeny resolutionlarge m better frequeny, worse time resolutiontime/frequeny resolution tradeoff is �xedhigher frequenies an hange faster than lowerfrequenieswould be nie to have appropriate resolution foreah frequeny
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The answer: waveletsnext leture
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