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Wavelets

In previous lectures we saw that the STFT had
problems. The Wavelet transform is the way to
overcome these problems. One of the nicest aspects of
wavelets is that they are so natural: they have been
invented several times, each time from a different
viewpoint, so we will consider several approaches that
naturally result in a Wavelet transform, starting by
extending our understanding of the uncertainty principle
and Windowed Fourier Transforms.
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This lecture introduces wavelets.
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The main reference for this part of the course is Stéphane Mallat's book “A Wavelet Tour of
Signal Processing”, 2n edition, Academic Press, San Diego, 2001.
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Limitations of the STFT

» computational cost O(nmlogm)

» time/frequency resolution tradeoff
> small mbetter time, worse frequency resolution

» time/frequency resolution tradeoff is fixed
> higher freq. can change faster than low freq.
> appropriate resolution for each frequency?
» how can we do better?
> some improvement might be gained through

using better window functions (I have just used
rectangular windows above)

> lets try to get a more theoretical understanding
of windows, and uncertainty bounds

Transform Methods & Signal Processing (APP MTH 4043): lexf® — p.3/71

Cutting up the time-frequency space

STFT partition of time-frequency

frequency
frequency

- o -
time time

Areas of boxes don't get smaller!
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Scaling property of FT

If we scale a function in time, then

ity = (5)

a \a

» Reciprocal scaling in each domain
» Tighter in Time, makes it looser in Fourier domain

» This contributes to uncertaintyllll

> in the STFT we use a window function to
restrict the support of basis functions

> tighter support on window function (less
uncertainty in the time domain) results in a
wider function in the frequency domain (and so
more uncertainty there).
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Heisenberg's Uncertainty Principle

Heisenberg's inequality is
h
> —
AXAp > o

where Ax and Ap are the unknown errors in position and momentum,
respectively. It arises because, when one measures, say the location
of a particle, one must bounce a photon on the particle. The impact of
the photon changes the momentum of the particle by an unknown
amount. One can reduce the energy of the photon to reduce the range
of uncertainty in this change in momentum, but only by reducing the
photon's frequency, thereby reducing the accuracy of the localization
gained through the measurement.
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Refresher on properties of the FT from lecture 2:

v

Linearity: afy(t) +bfa(t) — aFi(s) +bF(s)
Time shift: f(t —tg) — F(s)e 12™0

Time scaling: f(at) — I_;\F ()

Duality: F(t) — f(—s)

Frequency shift: f(t)e 2™t — F(s—so)
Convolution: fy(t) x f2(t) — Fi(S)F(S)
Differentiation I: % f(t) — (i2ms)"F (s)

Differentiation II: (—i2rt)"f(t) — &3 F(s)

vV vV vV vy VvV VvY VY

Integration: [*., f(s)ds— AF(s)+ T (0)3(s)

i2ms
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Heisenberg’s Uncertainty Principle led (in part) to the development of quantum mechanics,
one of the most successful physics theories ever. Part of the theory is concerned with the dual
nature of sub-atomic objects (electrons, photons, etc.) as both particles and waves. Waves
relate this back to our course.
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Uncertainty Principle

Given a fransient signal f(t), we want to localize this
signal in time and frequency. We measure mean location
of ftransient time and frequency by

1 00
u = W/mt|f(t)|2ct
1 ® 2
£ = W/_wS’F(S” ds

Measure uncertainties in time and frequency by variance
about the mean, e.qg.

1 [e0)

Ay IR LOIR
1 [e0)

e BNCRORLICTEC
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Uncertainty Principle

Theorem: For a function f € L?, the temporal and
frequency variance satisfy

GG >
tYS = an

And this is an equality only if there exist
(u,€,a,b) € R? x C? such that

f(t) = ag -’ g2t

for which
02 = L
U 42
b2
2 — R
% = In
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Signals are not usually deltas, i.e., they have some extent in time and frequency. So we can’t
talk as if they are perfectly localized in either time or frequency. When we talk about location,
we are talking about the mean location,. Remember that

1112= [ 1foPa=FR= [ FoPa.

The uncertainty is not a measurement artifact — we can talk about uncertainty of a signal f(t)

without any randomness in the measurements. It is simple the fact that the signal is spread
out in time (and/or frequency).

In particular, if you had two such signals that overlap, then the degree of overlap determines
whether you can resolve them as separate signals. So uncertainty tells us something about
resolution (in time and frequency).

Why is it important here? We will be using function as a basis in order to represent our signal.
If the functions must satisfy the uncertainty principle, then so too must our representation.

Note we will be concerned with signals for which the above quantities are defined, and finite
(i.e. signals that drop to zero “fast enough”). This is fair enough for transient signals.

Transform Methods & Signal Processing (APP MTH 4043): lex@® — p.7/71

Transform Methods & Signal Processing (APP MTH 4043): lex@® — p.8/71




Uncertainty Principle

Proof: It is sufficient to prove the theorem for f such
that u=¢& = 0 as we can always perform shifts in time
and frequency, e.g. by taking exp(i2rét) f (t —u), to get
the general case. In the case u=¢§ =0 we get

1
0?02 — W/ /£ (t) |2dt/ 2IF(

Remember f{%} = (i2rms)F (s), so Rayleigh's theorem
implies

/_ li2msF (s)[2ds = 4n2/ ()2t
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Uncertainty Principle

Proof: Hence we can write

_ 1 2 2 2
0?0l = 42HfH4/t|f |ot/ ()2t

Schwarz's inequality (for real functions)

NI [ [ w0020 dx] 2

with equality only if W(x) = ay(x) for some constant a.

ool Zﬁf”‘l V L (t) f(t )dr
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Rayleigh’s theorem says

[ FPs= [ 1R
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For Schwarz's inequality (sometimes called the Cauchy-Schwarz or Buniakowsky inequality)
see Gradshteyn and Ryzhik, p.1099, or
http://mathworld.wolfram.com/SchwarzsInequality.htm |

A quick proof-sketch: if we integrate [(1(x) +tw2(x)]2 the terms inside the integral are squared,
and so non-negative, so the integral is non-negative, i.e.,

b
[ 00+t 0 x> 0

Expand the integral into its components and we get

[0 e o = [ wiooe 2 [ wow x| uE0gax

= A+tB+tC>0

Now again the integrands of A and C are non-negative so A,.C > 0. So the quadratic curve
above has a minimum, which we know is greater than zero. A quadratic curve such as this
has zeros if B2 — 4AC > 0, so we know that B2 < 4AC, and thence Schwarz’s inequality, with
equality only if Y1(X) +tz(x) = O for some value of t, for all x.
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http://mathworld.wolfram.com/SchwarzsInequality.html

Uncertainty Principle

Proof: When y1(x) and Y1(x) are complex, a more
appropriate form of Schwarz's inequality is (from

Bracewell, p.176) gives

b b b 2
[t [ a0 o | [ i0u00-+0s00w0) o

So
1 B (<)
2 2 > ! * x/
50 > fgrea _/_mt(f(t)f OESMOH0) d]
1 [/ d 2
16me||f |4 / it f(t))d]
1 2
oy | LT +/ ’d]

2

Transform Methods & Signal Processing (APP MTH 4043): lez@0 — p.11/71

Uncertainty Principle

Proof: The Theorem holds for all f € L%(R), but we are
mainly interested in transient signals

» transient signals go to zero at some point
» lets have a fairly weak definition lim;_..,/tf(t) =0

» in this case, the first ferm in the integration by
parts is zero, so

1 00
2 2 > 2
oot > g || 10P]

1
p——— ¥
= 161'[2||f||4 [H “}

1
1612

2

Transform Methods & Signal Processing (APP MTH 4043): lez@® — p.12/71

The last step is the result of integration by parts.
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Uncertainty Principle

Proof: To obtain an equality, note that Schwarz's
inequality requires Y(x) = ays(x) for some constant a,
which in this case implies that

f/(t) = —2btf(t)
which is true only for
f(t) =ae ™

This is the result for (u,§) = (0,0). We perform a

frequency and time translation to freq. & and time u to
get

f(t) = ag bW’ g2t

O
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Gabor function

Definition: A Gabor function
fa,b,u,E (t) — ae—bT[(t—u)zeiZT[it

It has FT a L

Fa,b,u,E(S) — %e—n(s—z) /be—|2nsu
Mean position and frequency are uand &, and the
uncertainty in location is

1 e 1 [ ) 1

2 02 24 _ © 2p-2bmt2 ¢

o2 — —”f||2/°°(t w2t (1) o b/mt il S
1 > 1 /> 2 b?

2 72 2a_ = 2p-20m? 4

0-S - Hf”z/—oo(S E) “:(S)l dS b/_oote d: 4.,.[
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Gabor function

Gabor function FFT of Gabor function

— real

1 1 —— imaginary
envelope

0 Of v

— real
-1 — imaginary -1
envelope
0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50

Gabor function
= Gaussian window applied to a complex sinusoid
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Gabor function

FFT of Gabor function

— real
—— imaginary
envelope

Gabor function

— real
-1 — imaginary -1
envelope
0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50

If we make the time-domain function narrower
the frequency domain function gets wider
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function s = chirp(t, t 0, f_0, T, beta)
% chirp generates a Gaussian chirp signal

% a special case is a Gabor function

%

% file: chirp.m, (c) Matthew Roughan, Thu Aug 12 2004
% author: Matthew Roughan

% email: matthew.roughan@adelaide.edu.au

%
% see Bracewell, p. 135, 502
% and Mallat, p. 71, and 100
%

% inputs:

% t time points for chirp samples

% t 0: mid-pulse time (t_0=u for a Gabor function)

% f_0: mid-pulse frequency  (f_O=xi for a Gabor function)

% T: Gaussian window width (T=1/b for a Gabor function)

% 2 beta: chirp sweep rate (beta = 0 for a Gabor function)

%

s = exp(-pi  *(t-t_0)."2/T) . * exp(i *2+pi x(f 0 «* (t-t_0) + beta *(t-t_0)."2));
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Cutting up the time-frequency space

Basis-like functions for a STFT with a window function

- -t
- o~ -

R
A\
L\

frequency

I

time
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An alternative

Remember that we can scale window functions to change
the resolution in time and frequency.

» higher frequencies can change more quickly

» why not change frequency resolution to match the
frequency?

» just have to make the window width a function of
frequency

» e.g. for the Gabor functions f(t) = ag Prt-u)’g2mt
make the window frequency dependent by making b
a function of &
> higher frequencies make the window narrower

> so for larger & we want smaller b.
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Note that the colors in the plot are only there to help distinguish the different functions.

Note that the functions are not really a basis, because we have not shown that they are linearly
independent, or that all possible functions can be represented. It is perhaps better to think of
the functions as atoms which combined form a Dictionary, which we can use to describe other
functions.
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Wavelets

Wavelet are the natural result of this idea.

» start with a function we call the Mother Wavelet
> e.g. a rectangular pulse, or a Gabor function
> denote by Y(t)
> require Y€ L?, |W|=1and [~ Y(t)d =0
» construct a set of atomic functions Y, s (atoms)
from this function by
> dilation (stretching and shrinking by s)
> translation (shifting in time by u)

Wus(t) = %Sw (t%“)

> e.g. could generate any Gabor function this way
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Definition: Atoms

Time-frequency atoms {@,}, underly many transforms
> @ €L?

> ol =1
» Transform F(y) = (f(t),q(t))

For example the STFT
@(t) = Geu(t) =€ gt —u)

where g(t) is the (suitably normalized) window function.
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Continuous wavelet transform

Wavelet Transform (analysis)

WO} =Wi(us) = (fu) = [ 1070 () o

Wavelet Reconstruction (synthesis), choose a complete,
orthogonal set of wavelets {y;n}, then

f ZEZ“ann,J)qJn,J

Similar to the generalized Fourier transform.
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Wavelets

There are many possible Mother Wavelets

Haar
Daubechies

>
>

» Mexican hat
» Gabor

>

Each has slightly different properties - much the same
as when we considered window functions.
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Wavelet Example

Mexican Hat wavelets are given by the second
derivative of a Gaussian function, e.g.

Wavelet Example

Mexican Hat wavelets

wavelet FT of the wavelet
2 t2 —t? 0
Wity = — > (__1) exp(_) .
1/4 2 2
T8/4/30 \ O 20 ) N
. -0.6]
Its FT IS -0.2
ES > -0.8
-0.4
=1
—/8a%21t/4 — 020 e
Y(w)=—Fwexpl —— 12
\/§ 2 -0.8 ~14
. . . . . ES 0 s % 5
where w= 21 is frequency in radians per time unit. tme frequency
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Once again, we would generate all other wavelets via a translation and dilation of this mother % file: wavelets_mex_hat.m, (c) Matthew Roughan, Wed Aug 3 2 005
wavelet. % Mexican hat wavelets
t = -5:0.01:5;
w = -5:0.01:5;
sigma = 1;
psi = (2/(sqrt(sqrt(pi) *3*sigma)))  * ..
((t."2/sigma2)-1) . * exp(-t."2/(2 *sigma’“2));
Psi = -( sqrt(8) *sigma’(5/2) = pi"(1/4)/sqrt(3) ) * W2 L % L
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exp(-sigma™2  *w."2/2);

figure(1)

hold off

plot(t, psi, 'linewidth’, 3);

hold on

set(gca, 'linewidth’, 3, ‘fontsize’, 18);

xlabel('time’);

ylabel(\psi’);

print(-depsc’, 'Plots/wavelets_mexican_hat_psi.eps’ );

figure(2)

hold off

plot(t, Psi, ’linewidth’, 3);

hold on

set(gca, 'linewidth’, 3, ‘fontsize’, 18);

xlabel(‘'frequency’);

ylabel(\Psi');

print(-depsc’, 'Plots/wavelets_mexican_hat_Psi.eps’ );
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Example wavelet transform

| | | | | | | | |
100 200 300 400 500 600 700 800 900 1000

log2(s)

| | | 1 1
0 100 200 300 400 500 600 700 800 900 1000
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Wavelet Basis

We don't need to consider all possible wavelet
translations and dilations:

» We can think of the wavelet transform as a
generalized FT

So we want to find an orthogonal basis
Also want time resolution funed to frequency
Choose a set of wavelets such that we get this

vV v. vy

Choose points on the dyadic grid
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The figure is a reproduction of a figure from Mallat, p.81, using Wave-
Lab http://www-stat.stanford.edu/~wavelab/ , and in particular the tool WT-
Browser. The signal is transformed using a large range of possible dilations and translations
of the Mexican Hat wavelet.
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http://www-stat.stanford.edu/~wavelab/

Dyadic grid Wavelet Partition

Higher frequencies change more rapidly than low
frequencies and so need to be sampled at a higher rate. A

A 000000000000000000000000000000000 >\
® 6 ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o © o oo o o O

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] %
- >
(&) [ ) [ ] [ ] [ ] [ ] U
& o
o L
o
b ° ° °

time
. . time
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Note that for high-frequencies we have lower frequency resolution, but better spacial resolu-

Blue dots indicate sample points within the time-frequency space.
tion. Even so, the area of the rectangles is still constant.
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Cutting up the time-frequency space

Basis functions for a wavelet(-like) transform

frequency

——

—/\/\—

——— N

Il time
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Wavelet transforms

» Continuous Wavelet Transform (CWT) is the
transform onto the whole space (u,s).

» Discrete Wavelet Transform (DWT) is the
continuous transform, onto the discrete space given
by the dyadic grid.

> wavelet basis on dyadic grid defined by
2i
u = 2n

where nand j are integers. So we get the basis
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Note that the colors in the plot are only there to help distinguish the different functions.

This time, if we choose the mother-wavelet and sample points correctly, we can derive a set
of basis functions for the space (though we haven’t shown this yet).
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Note that the Discrete wavelet transform is still a continuous transform (it involves an integral
over R, but it maps to a discrete set of basis functions (indexed by (j,n) on the dyadic grid).
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Scalogram

Take the power in each wavelet coefficient, e.g.
W (u,s)|?
and call this the scalogram

» analogous to periodogram (power of Fourier
transform)

» analogous to spectrogram (power of STFT)
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Time-Frequency Measurement

We can perform transform in either time or frequency
domain

Wit =Whus = [ fOwa= [ FOWnd
where qJlj.ﬁj.,s(r) = —‘}-{q—'as(t)}

Note that _
LIJU,S(r): _'zm‘rstIJ(sr)

using the scaling and time-translation properties.
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[ twwisnd= [ Fowme

due to Plancheral’s theorem (see Lecture 7).
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Time-Frequency resolution

Time-frequency resolution of a wavelet

° 1 t—u
WL} =W (U,9) = (f, Pus) :/_wf(t)%q_u* (T) d
Suppose WLOG that y is centered at O, which implies
Yus is centered at u, then

[ - vtuda= [ Cluofa=2 [ @ Pd = o

So the energy spread of a wavelet atom s is a "box"
so; wide in time.

» O; depends on the particular mother wavelet
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Time-Frequency resolution

The FT of a wavelet is
W, s(r) = e 2™ /sW(sr)
The center frequency is therefore ny/s, where ny is the

center frequency of the mother wavelet.

» hence we call s the scale, and note that is it
proportional o one over the frequency.

» the center frequency of the mother wavelet is given
by
ny= [ _lW(e)Pde
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For instance we already know ¢; = ﬁ for the Gabor wavelet.
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Time-Frequency resolution

The energy spread of the wavelet about the central
frequency ny/sis

1 o0 n 2 _0_(20
E‘[/o <00—g> |L|Ju,s(00)|doo_?

where
1 00
2 . 2
03 =5 | (@) [¥(w)|do

So the energy spread of a wavelet atom Y is a "box"
» so; wide in time (wider for lower frequencies)

» Oy/sin frequency (finer for lower freq.)
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MultiResolution
Approximation
and Wavelets

Wavelets were independently invented from several
different viewpoints. In this section we start by
considering how we can approximate functions at
different levels of detail, and by doing so come up again
with the notion of wavelets.
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The previous section presents wavelets from one point of view: as a better way of
doing a STFT. Generating a set of atomic functions by scaling and translation is a very
general approach, and by sampling these atomic function appropriately we create a repre-
sentation in the time-frequency domain that adapts it resolution to the correct pointin the plane.

However, wavelets were independently invented from several different viewpoints, and there
is another one that provide a great deal of insight into wavelets, and in particular the “scaling
function”. We tackle this in this section.
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MultiResolution Analysis

» a nhoted, we call sscale
» time-resolution at a particular scale sis fixed

» at different scales, the time resolution is
proportional fo the scale

» like observing the data at multiple scales

» hence the name multiresolution analysis

> we can take this concept further by considering
multiresolution approximation
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Approximation

Definition: An approximation of a function f € L2 in
subspace V is defined as the orthogonal projection of f
onto V (e.g. the projection f €V that minimizes ||f — f|).

If an orthonormal basis {@,} for V exists, then the
projection into the space is given by

f=>{f.a)a

Y
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Projection

Simple example of projection: z
» projecting an (X,y,z)
vector into the x—y plane. v
» vector ve R®is projected :
to V€ R?
» take (1,0,0) and (0,1,0) as

the basis vectors of the
x—Yy plane.

<>

» inner product is just
vector dot product

9 = [v(1,0,0)](1,0,0)+[v.(0,1,0)](0,1,0)
= (V17V270)

y
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Approximation

A
flx)

Q1| @2
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This example is from first year maths, but the idea of projection is much more general, and in
our case we want to apply it to function spaces.
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The @ are our basis functions. They are simple rectangular pulses, translated along the x-axis.
f(x) is the function we wish to approximate.
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Approximation MultiResolution Approximation (MRA)

A A sequence {V}jcz of closed subspaces of L%(R) is
1) called a MultiResolution Approximation (MRA) if
1. ViacVjforaljez
2. f(t)eVje f(t—2k) eV, forall jkeZ
= \ 3. f(t)eV;< f(t/2) eVj1 forall jkeZ
\ / 4 |iijmVj = {0}
' B. limj__»Vj=L3R)

6. 36 such that {6(t —n)}ncz is a Riesz basis of Vo.

Q1 oo We can think of V; grouping together the

approximations at scale 2/, Sometimes call j the octave
- (through analogy to music).
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The approximation in terms of the rectangular pulses is obvious. The approximation can only

be made of a linear combination of these rectangular functions. The functions do not overlap,

so the resulting approximation will be a piecewise constant curve. Assume that we use the

standard L? inner product 2. The approximation at octave j can be translated by an integer multiple of 21, and it will
(f.g) = [m f(x)g(x) o still be a valid approximation at octave j

1. The approximation at octave j has all the information needed for the approximation at
octave j + 1, so anything we can represent in Vj, 1 will be possible to represent in V;.

Dilating a function in V; by 2 puts it into a coarser resolution Vj 1.

If the basis functions are one unit wide, then 4. When octave goes to o, we lose all details, and the only possible approximation is the

zero function.

(f,q) = /00 f(X) @ (x) ok = /'I+1 f(x) ok 5. When octave goes to —o, we can represent any function in L2, i.e. we can obtain an
—oo i arbitrarily good level of detail in our approximations.

6. See appendices for definition of Riesz basis. We need a basis to make projection

So the inner product is the average value of the function over the interval, [i,i + 1], which we simple

will denote bar f; and the corresponding approximation is
fo=3 fia
|

It should be obvious that this function is piecewise constant, and its value on each interval
[i,i+1], is the mean of the function on that interval f;.
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MRA example

AVO

fix)

74

®o,0
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MRA example

} Vl  flx)

S /

®o,1
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MRA example

A
V_l  flx)

N

®o,-1
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MRA examples

Examples:
» piecewise constant: see above.

» Shannon approximation: using frequency
band-limited functions (which hence must have
infinite support in the time domain). Orthonormal
basis sindt —n).

1

0.5

0

-05 " " " " " " "
-4 -3 -2 -1 0 1 2 3 4

» Spline approximation:
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MRA and scaling functions

From the Riesz basis 30 for the MRA, we can derive an
orthonormal basis {@ j(t) }nez for Vj. The functions @are
called scaling functions, and can be derived from a
mother scaling function as with wavelets, e.g.

1 t
G j(t) = \/—54’(5 - n>
The approximation of a function f € L?(R) is given by

i) =" (f,0n) o)
nez
where

()= [ 1080 = [~ 10—0(5-n)a=[fe] 0
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The Approximation

The approximation of a function f € LZ(R) is given by

ﬂ(t) 2<f(pnj(PnJ Zaj

neZ nez
where aj(n) = (f,@n;) = [f* @] (n)

» frequency response of the approximation
coefficients aj(n) depends on the frequency
response of the scaling function

» scaling function typically a low-pass, so this
becomes a low-frequency approximation.

» larger scale gives a coarse approx, so lower-freq.

» consistent with scaling law (as we dilate scaling
function, the filter pass-band is reduced)
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The form of approximation

is just the standard projection operation.

c_pj is the time reversed version of @j, i.e.

So that

(fon) = [ 10

which is just a standard convolution of f(t) with the function (E,- \/_.(p(zi) sampled at the
points n.
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We can write approximation coefficients
aj(m = (f,enj) =[f+e] ()

where * is a generalization of the convolution operation, and (Bj is the time reversed version
of ;.
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Relationship to wavelets

The approximation of a function fj €V; into V1 is

fia® =3 (fimi) i)

nez

» when we approximate a function f € V; with a
coarser approximation f € Vj 1 we lose detail

» prefer a decomposition of V; into an orthogonal sum
of Vj+1 and VVj+1
> Wi.1 are the bits we lost in the approximation
> should be able fo recombine Vj.1 and Wj;1 to get
back to f €Vj;1

» natural to associate W1 somehow with the wavelet

Transform Methods & Signal Processing (APP MTH 4043): lez@@0 — p.49/71

Relationship to wavelets

fine _
Vj approximation

projection

Wi+1 e Vij+1

coarser
approximation
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Some rough notes (I am not being very precise here, its just to give you some idea)

The direct sum of two subspaces (e.g. Vj;1 and Wj,1) is often denoted V1 ©®W;1, and
implies that Vj 1 NWj1 = {0}, i.e., the intersection of the two sets is the zero element.

Assume that we have Vj =Vj 1 ®W 1, and we have an (positive definite) inner product defined
on Vj, then the orthogonal compliment of Vj, 1 is

Vit ={veVj[(vu) = 0,Yue Vj;1}

Given Vj and its orthogonal compliment Wj 1 = Vjﬁl the space Vj = Vj1 ©Wj1.
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Projections from Vj into Vj, 1 and W, 1 work by

fiza = i, Ohjva) Gnjsa
i+ ngz<1 1) hjr

= z an j+1Phj+1

nez

?Hl = ngz<l?j,l|»'n,j+1>wn‘j+1

= Ezd”‘Hl '~|»'n.j+1
né

where {¢nj+1}nez and {Yn j+1}nez are the respective bases for Vi1 and Wi, 1, and ﬂ-“ and

le are the projections into these spaces.
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Relationship to wavelets

Properties imposed by the relationship

1. Wj;1 CV;, so the basis vectors of W1 must be € V.
» we want the basis of W, 1 to be wavelets, so

Pir1 €W CVj
» hence we can represent ;1 in terms of yj, i.e.,

Wo,j+1(t) = aj(n)@n(t)

2. Vj is an orthogonal sum of V; 1 and W1, so

(@0 j11(t),Wn j41(t)) =0
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Relationship to wavelets

Take the properties above (for j =0), and work out
relationships between mother wavelet, and mother
scaling function. First take the property that

Wo,j+1(t) = > aj(nen,(t)

for j =0
Woi®) = 3 a(gholt) (1)

WE/2)/V2 = Y amott—n) 2)

o) = Yame-n) 3)

n
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(2) derives from the scaling relationships.
1 t
i) = 75 (7 —n)
1 t
Onj(t) = ﬁ‘l’(j *n)

(3) Note that &(n) = \/Eal(n), and we have substituted t — 2t
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Relationship to wavelets

Combining the first and second properties (from p.51)
W(t) = T ame(2—n)

(i) ot —m) = [ witjet—nma =0

we get
/_(:Za(k)(P(Zt—k)(p(t—n)d:Za(k)/_z(p(z_k)(p(t_n)dzo

which defines possible values for a(k)
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Example: Haar wavelets

Piecewise constant approximation: so take

(p(t):{ 1 ifo<t<1

0 otherwise

Basis functions for approximations are rectangular
pulses.
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Example: Haar wavelets

Now, ¢(2t — k) is only positive in the interval [n,n+ 1] for
k=2nor2n+1

Za(k)/nH(p(Zt—k)d _ 0
a2n)+a(2n+1) = 0

because in both cases the integral is 1.

The function with minimal support that satisfies this
relationship has a(0) =1 and a(1) = —1 and all other
a(k)=0, so

W(t) = @(2t) — (2t —1)
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Haar wavelets

Scaling and wavelet functions for the Haar fransform
shown below

scaling function mother wavelet

Approximations are piecewise constant curves.
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Remember

W(t) = 5 a(me2 —n)
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Haar wavelets: freq. representation

At scale j =0, scale by 2° (W (t) = %LU (21))

1 2
= scaling function
== wavelet

0.5 15

0.5

L4
0 0.5 1 0 0.1 0.2 0.3 0.4
time frequency
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Haar wavelets: freq. representation

At scale j =1, scale by 2! (Yo,j(t) = ¥ (3))

1 2 4
— scaling function R
== wavelet B Y
A}
:' '
0.5 15 1 '
" ) '
I 1
1 P 1
" ' |
1
of » 1 ;! ‘
1 ! '
'L
1 ! " ‘\
] : N )
-0.5} "= 0.5 ' “
')
’ A
’ A}
) ‘\
-1 okl B
0 0.5 1 0 01 02 03 04
time frequency
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Haar wavelets: freq. representation

At scale j =2, scale by 2% (Yo,j(t) = ¥ (3))

1 2
= scaling function
== wavelet
0.5 1.5
1
]
1
0 : 1
1
1
]
-0.5 0.5
-1 0
0 0.5 1 0 0.1 0.2 0.3 0.4
time

frequency
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Haar wavelets: freq. representation

At scale j = 3, scale by 22 (Yo (t) = %w (21))

1

2
— scaling function "
= = wavelet Y
1 1
1
05 15|+
[ 1
1 1
1 [
1 1 '|
1 U
0 . . 1 1
1 1 '
lnmmmw '
1
l 1
1
-0.5 ost'l %
1 1
1 1
1 1
1 1,
0 0.5 1 0 0.1 0.2 0.3 0.4
time

frequency

Transform Methods & Signal Processing (APP MTH 4043): lez@® — p.60/71

Transform Methods & Signal Processing (APP MTH 4043): |ez0 — p.59/71

Transform Methods & Signal Processing (APP MTH 4043): lex@® — p.60/71




Haar wavelets: freq. representation

» scaling function is a low-pass
> approximations are low-freq. approximations
> larger scale, low-frequency stop-band

» wavelet function is a band-pass

> together with scaling they break up a block of
the frequency spectrum
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Subband coding

The idea (looking across frequencies or scales) is that
the transform breaks frequency spectrum into bands.

\

} -

[¢)]

=

(@]

Q] o
i

- | o — o

S| I L
s | B o ©
E | © © o
2| 3 g g
5_3 =
o
©

v

frequency
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Sudband coding is yet another approach to derive a wavelet transform. We derive the subband
characteristics of (Haar) wavelets here, rather than using it to derive wavelets, but we could
have started with subband coding as our goal, and derived a wavelet transform.
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MRA and wavelets

Take mother wavelet Y(t), with orthogonal discrete
wavelet basis on the dyadic grid

L|J (t) _ 1 LIJ ( t i n) ‘\ :‘:‘:.:‘:‘:.:‘:‘:.:‘:‘:.:‘:‘:.:‘:
n,) - \/E 2] _ . . . ° ° ° ° ° °
Form closed subspaces 1 e
W, = Sp{ynjln€ Z} kK _—
As noted earlier, .
time
Vi = @iL W , Y

is a MRA and the scaling function @ was also given earlier,
and Vj_1 =V; &W, so an orthogonal projection into Vj_1
can be decomposed into projections into Vj and W,.
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Successive decompositions

We can iteratively decompose approximation V;j info a
wavelet part (the details) and a coarser scale
approximation Vj_1 = V; &W, using the projection
operation

Form fj_1 € Vj_1 by

fj+1

—he

j+1

fine . i
approximation

S (fi 1) i

nNeZ Wi+
z An,j+1¢h,j+1

nez Wi+

z <fAJ'7qJn7]+1> llJn,j+1

nez

Z Onj+1Wn,j+1 Wi

nez

Succesive
approximations

Wi+

coarse
approximation
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MRA and wavelets

fj = fj+1—|— fj+l
= Z anj+1¢hj+1t+ z Cn,j+1Wn j+1
nez nez

A

fi11 is a coarser scale approximation of f
it loses some "detail”

details are captured in the wavelet component f i1

vV v vY

often call the coefficients
> a,j the approximation

> dnj the details

» As j — —oo the approximation f; — f
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The Scaling Function

The above representation requires wavelet coefficients
for s= -, ...,0and u= —,... 0. We can still manage
if we have coefficients (f,y,s) for s< s, by using a
scaling function @(t).

» can be thought of as a low frequency (high scale)
approximation of the signal

» form scaling functions @,s(t) by the same dilations
and translation used to form wavelets

» scaling function @(t) brings in info from scales s> 1,
so it is the aggregation of wavelets above this scale

o= [ W ds= [ |wiE) gk
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The coefficients an j are often called the approximation, but remember the real approximating
function is a linear combination of the basis functions, i.e.

fi= ngzan.j%j
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The Scaling Function

» DWT representation

f=
i

_Z <f7l-|Jn,j>qJn,j+ z <f7(pﬂ7jo>%,jo

n=—oo

IM s

ohn
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Wavelet Properties

Potential wavelet properties

» finite support
vanishing moments
orthogonal/ bi-orthogonal

complex(analytic) or real

vV v. vy

redundant (framelets)

Transform Methods & Signal Processing (APP MTH 4043): lexi® — p.68/71

Transform Methods & Signal Processing (APP MTH 4043): ez — p.67/71

Transform Methods & Signal Processing (APP MTH 4043): le=@® — p.68/71




Applications

» edge (and anomaly) detection
» motion detection

» denoising

» compression (JPEG 2000)

To do these, we will need to

» perform wavelet transforms on discrete data.
» make the algorithms efficient (as with FFT)
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Appendices
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Riesz basis

A family of elements {e,}ncz from a Hilbert space H is
said to be a Riesz basis of H if it is linearly independent
and there exists A> 0and B > 0 such that for any f ¢ H
one can find A, with

which satisfies
1 & 1
ZIfI2 < |2 < = ]2
SITIP< 3 o< Il

If A=B the frame is said to be tight.
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