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This leture introdues wavelets.
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WaveletsIn previous letures we saw that the STFT hadproblems. The Wavelet transform is the way tooverome these problems. One of the niest aspets ofwavelets is that they are so natural: they have beeninvented several times, eah time from a differentviewpoint, so we will onsider several approahes thatnaturally result in a Wavelet transform, starting byextending our understanding of the unertainty prinipleand Windowed Fourier Transforms.
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The main referene for this part of the ourse is Stéphane Mallat's book �A Wavelet Tour ofSignal Proessing�, 2n edition, Aademi Press, San Diego, 2001.
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Limitations of the STFT

◮ omputational ost O(nm logm)

◮ time/frequeny resolution tradeoff

⊲ small m better time, worse frequeny resolution

◮ time/frequeny resolution tradeoff is �xed

⊲ higher freq. an hange faster than low freq.

⊲ appropriate resolution for eah frequeny?

◮ how an we do better?

⊲ some improvement might be gained throughusing better window funtions (I have just usedretangular windows above)

⊲ lets try to get a more theoretial understandingof windows, and unertainty bounds
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Cutting up the time-frequeny spae

STFT partition of time-frequeny
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Areas of boxes don't get smaller!
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Saling property of FT

If we sale a funtion in time, then

F { f (at)} =
1
a

F
( s

a

)

◮ Reiproal saling in eah domain

◮ Tighter in Time, makes it looser in Fourier domain

◮ This ontributes to unertainty!!!!

⊲ in the STFT we use a window funtion torestrit the support of basis funtions

⊲ tighter support on window funtion (lessunertainty in the time domain) results in awider funtion in the frequeny domain (and somore unertainty there).
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Refresher on properties of the FT from leture 2:

◮ Linearity: a f1(t)+b f2(t) → aF1(s)+bF2(s)

◮ Time shift: f (t − t0) → F(s)e−i2πst0

◮ Time saling: f (at) → 1
|a|F

(

s
a

)

◮ Duality: F(t) → f (−s)

◮ Frequeny shift: f (t)e−i2πs0t → F(s− s0)

◮ Convolution: f1(t)∗ f2(t) → F1(s)F2(s)

◮ Differentiation I: dn

dtn f (t) → (i2πs)nF(s)

◮ Differentiation II: (−i2πt)n f (t) → dn

dsn F(s)

◮ Integration: R t
−∞ f (s)ds → 1

i2πs F(s)+πF(0)δ(s)
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Heisenberg's Unertainty Priniple

Heisenberg's inequality is

∆x∆p ≥ h
2πwhere ∆x and ∆p are the unknown errors in position and momentum,respetively. It arises beause, when one measures, say the loationof a partile, one must boune a photon on the partile. The impat ofthe photon hanges the momentum of the partile by an unknownamount. One an redue the energy of the photon to redue the rangeof unertainty in this hange in momentum, but only by reduing thephoton's frequeny, thereby reduing the auray of the loalizationgained through the measurement.
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Heisenberg's Unertainty Priniple led (in part) to the development of quantum mehanis,one of the most suessful physis theories ever. Part of the theory is onerned with the dualnature of sub-atomi objets (eletrons, photons, et.) as both partiles and waves. Wavesrelate this bak to our ourse.
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Unertainty Priniple

Given a transient signal f (t), we want to loalize thissignal in time and frequeny. We measure mean loationof transient time and frequeny by

u =
1

|| f ||2
Z ∞

−∞
t| f (t)|2dt

ξ =
1

|| f ||2
Z ∞

−∞
s|F(s)|2 ds

Measure unertainties in time and frequeny by varianeabout the mean, e.g.

σ2
t =

1
|| f ||2

Z ∞

−∞
(t −u)2| f (t)|2 dt

σ2
s =

1
|| f ||2

Z ∞

−∞
(s−ξ)2|F(s)|2 ds
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Signals are not usually deltas, i.e., they have some extent in time and frequeny. So we an'ttalk as if they are perfetly loalized in either time or frequeny. When we talk about loation,we are talking about the mean loation,. Remember that

|| f ||2 =
Z ∞

−∞
| f (t)|2 dt = ||F ||2 =

Z ∞

−∞
|F(t)|2 dt.The unertainty is not a measurement artifat � we an talk about unertainty of a signal f (t)without any randomness in the measurements. It is simple the fat that the signal is spreadout in time (and/or frequeny).In partiular, if you had two suh signals that overlap, then the degree of overlap determineswhether you an resolve them as separate signals. So unertainty tells us something aboutresolution (in time and frequeny).Why is it important here? We will be using funtion as a basis in order to represent our signal.If the funtions must satisfy the unertainty priniple, then so too must our representation.Note we will be onerned with signals for whih the above quantities are de�ned, and �nite(i.e. signals that drop to zero �fast enough�). This is fair enough for transient signals.
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Unertainty Priniple

Theorem: For a funtion f ∈ L2, the temporal andfrequeny variane satisfy

σt σs ≥
1
4πAnd this is an equality only if there exist

(u,ξ,a,b) ∈ R
2×C

2 suh that
f (t) = ae−b(t−u)2

ei2πξtfor whih

σ2
t =

1
4πb2

σ2
s =

b2

4π
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Unertainty Priniple

Proof: It is suf�ient to prove the theorem for f suhthat u = ξ = 0 as we an always perform shifts in timeand frequeny, e.g. by taking exp(i2πξt) f (t −u), to getthe general ase. In the ase u = ξ = 0 we get

σ2
t σ2

s =
1

|| f ||4
Z ∞

−∞
t2| f (t)|2 dt

Z ∞

−∞
s2|F(s)|2 ds

Remember F
{

d f
dt

}

= (i2πs)F(s), so Rayleigh's theoremimplies

Z ∞

−∞
|i2πsF(s)|2 ds = 4π2

Z ∞

−∞
| f ′(t)|2dt
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Rayleigh's theorem says

Z ∞

−∞
|F(s)|2 ds =

Z ∞

−∞
| f (x)|2 dx
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Unertainty Priniple

Proof: Hene we an write

σ2
t σ2

s =
1

4π2|| f ||4
Z ∞

−∞
t2| f (t)|2 dt

Z ∞

−∞
| f ′(t)|2 dt

Shwarz's inequality (for real funtions)
Z b

a
ψ1(x)

2dx
Z b

a
ψ2(x)

2dx ≥
[

Z b

a
ψ1(x)ψ2(x)dx

]2

with equality only if ψ2(x) = αψ1(x) for some onstant α.

σ2
t σ2

s ≥
1

4π2|| f ||4
[

Z ∞

−∞
t f ′(t) f (t)dt

]2
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For Shwarz's inequality (sometimes alled the Cauhy-Shwarz or Buniakowsky inequality)see Gradshteyn and Ryzhik, p.1099, or

http://mathworld.wolfram.com/SchwarzsInequality.htm lA quik proof-sketh: if we integrate [ψ1(x)+ tψ2(x)]
2 the terms inside the integral are squared,and so non-negative, so the integral is non-negative, i.e.,

Z b

a
[ψ1(x)+ tψ2(x)]

2 dx ≥ 0.Expand the integral into its omponents and we get

Z b

a
[ψ1(x)+ tψ2(x)]

2 dx =
Z b

a
ψ2

1(x)dx+2t
Z b

a
ψ1(x)ψ2(x)dx+ t2

Z b

a
ψ2

2(x)dx

= A+ tB+ t2C ≥ 0Now again the integrands of A and C are non-negative so A,C ≥ 0. So the quadrati urveabove has a minimum, whih we know is greater than zero. A quadrati urve suh as thishas zeros if B2 −4AC ≥ 0, so we know that B2 ≤ 4AC, and thene Shwarz's inequality, withequality only if ψ1(x)+ tψ2(x) = 0 for some value of t, for all x.
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Unertainty Priniple

Proof: When ψ1(x) and ψ1(x) are omplex, a moreappropriate form of Shwarz's inequality is (fromBraewell, p.176) gives

4
Z b

a
|ψ1(x)|2dx

Z b

a
|ψ2(x)|2dx≥

[

Z b

a
(ψ∗

1(x)ψ2(x)+ψ1(x)ψ∗
2(x))dx

]2

So

σ2
t σ2

s ≥ 1
16π2|| f ||4

[

Z ∞

−∞
t
(

f ′(t) f ∗(t)+ f ∗′(t) f (t)
)

dt

]2

≥ 1
16π2|| f ||4

[

Z ∞

−∞
t

d
dt

( f (t) f ∗(t)) dt

]2

≥ 1
16π2|| f ||4

[

[

t | f (t)|2
]∞
−∞ +

Z ∞

−∞
| f (t)|2 dt

]2
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The last step is the result of integration by parts.
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Unertainty Priniple

Proof: The Theorem holds for all f ∈ L2(R), but we aremainly interested in transient signals
◮ transient signals go to zero at some point
◮ lets have a fairly weak de�nition lim |t|→∞

√
t f (t) = 0

◮ in this ase, the �rst term in the integration byparts is zero, so

σ2
t σ2

s ≥ 1
16π2|| f ||4

[

Z ∞

−∞
| f (t)|2 dt

]2

≥ 1
16π2|| f ||4

[

|| f ||2
]2

≥ 1
16π2
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Unertainty Priniple

Proof: To obtain an equality, note that Shwarz'sinequality requires ψ2(x) = αψ1(x) for some onstant α,whih in this ase implies that

f ′(t) = −2bt f (t)whih is true only for

f (t) = ae−bt2

This is the result for (u,ξ) = (0,0). We perform afrequeny and time translation to freq. ξ and time u toget

f (t) = ae−b(t−u)2
ei2πξt

2
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Gabor funtionDe�nition: A Gabor funtion

fa,b,u,ξ(t) = ae−bπ(t−u)2
ei2πξt

It has FT

Fa,b,u,ξ(s) =
a√
b

e−π(s−ξ)2/be−i2πsu

Mean position and frequeny are u and ξ, and theunertainty in loation is
σ2

t =
1

|| f ||2
Z ∞

−∞
(t −u)2| f (t)|2 dt =

1
b

Z ∞

−∞
t2e−2bπt2

dt =
1

4πb2

σ2
s =

1
|| f ||2

Z ∞

−∞
(s−ξ)2|F(s)|2 ds =

1
b

Z ∞

−∞
t2e−2bπt2

dt =
b2

4π
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Gabor funtionGabor funtion
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Gabor funtion= Gaussian window applied to a omplex sinusoid
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function s = chirp(t, t_0, f_0, T, beta)
% chirp generates a Gaussian chirp signal
% a special case is a Gabor function
%
% file: chirp.m, (c) Matthew Roughan, Thu Aug 12 2004
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au
%
% see Bracewell, p. 135, 502
% and Mallat, p. 71, and 100
%
% inputs:
% t: time points for chirp samples
% t_0: mid-pulse time (t_0=u for a Gabor function)
% f_0: mid-pulse frequency (f_0=xi for a Gabor function)
% T: Gaussian window width (T=1/b for a Gabor function)
% 2* beta: chirp sweep rate (beta = 0 for a Gabor function)
%

s = exp(-pi * (t-t_0).ˆ2/T) . * exp(i * 2* pi * (f_0 * (t-t_0) + beta * (t-t_0).ˆ2));
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Gabor funtionGabor funtion
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If we make the time-domain funtion narrowerthe frequeny domain funtion gets wider
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Cutting up the time-frequeny spae

Basis-like funtions for a STFT with a window funtion
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Note that the olors in the plot are only there to help distinguish the different funtions.Note that the funtions are not really a basis, beause we have not shown that they are linearlyindependent, or that all possible funtions an be represented. It is perhaps better to think ofthe funtions as atoms whih ombined form a Ditionary, whih we an use to desribe otherfuntions.
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An alternativeRemember that we an sale window funtions to hangethe resolution in time and frequeny.
◮ higher frequenies an hange more quikly
◮ why not hange frequeny resolution to math thefrequeny?

◮ just have to make the window width a funtion offrequeny

◮ e.g. for the Gabor funtions f (t) = ae−bπ(t−u)2
ei2πξtmake the window frequeny dependent by making ba funtion of ξ

⊲ higher frequenies make the window narrower

⊲ so for larger ξ we want smaller b.
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WaveletsWavelet are the natural result of this idea.

◮ start with a funtion we all the Mother Wavelet

⊲ e.g. a retangular pulse, or a Gabor funtion

⊲ denote by ψ(t)

⊲ require ψ ∈ L2, ||ψ|| = 1 and R ∞
−∞ ψ(t)dt = 0

◮ onstrut a set of atomi funtions ψu,s (atoms)from this funtion by

⊲ dilation (strething and shrinking by s)

⊲ translation (shifting in time by u)

ψu,s(t) =
1√
s
ψ

(

t −u
s

)

◮ e.g. ould generate any Gabor funtion this way
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De�nition: AtomsTime-frequeny atoms {φγ}, underly many transforms
◮ φγ ∈ L2

◮ ||φγ|| = 1

◮ Transform F(γ) =
〈

f (t),φγ(t)
〉

For example the STFT
φγ(t) = gξ,u(t) = e−i2πξtg(t −u)where g(t) is the (suitably normalized) window funtion.
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Continuous wavelet transformWavelet Transform (analysis)

W { f (t)} = Wf (u,s) = 〈 f ,ψu,s〉 =

Z ∞

−∞
f (t)

1√
s
ψ∗

(

t −u
s

)

dt

Wavelet Reonstrution (synthesis), hoose a omplete,orthogonal set of wavelets {ψ j,n}, then

f = ∑
j
∑
n

〈 f ,ψn, j〉ψn, j

Similar to the generalized Fourier transform.
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WaveletsThere are many possible Mother Wavelets
◮ Haar

◮ Daubehies

◮ Mexian hat

◮ Gabor

◮ ...Eah has slightly different properties � muh the sameas when we onsidered window funtions.
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Wavelet Example

Mexian Hat wavelets are given by the seondderivative of a Gaussian funtion, e.g.

ψ(t) =
2

π1/4
√

3σ

(

t2

σ2
−1

)

exp

(−t2

2σ2

)

Its FT is

Ψ(ω) =
−
√

8σ5/2π1/4

√
3

ω2exp

(−σ2ω2

2

)

where ω = 2πs is frequeny in radians per time unit.

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.23/71

One again, we would generate all other wavelets via a translation and dilation of this motherwavelet.
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Wavelet Example

Mexian Hat waveletswavelet
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% file: wavelets_mex_hat.m, (c) Matthew Roughan, Wed Aug 3 2 005
% Mexican hat wavelets

t = -5:0.01:5;
w = -5:0.01:5;
sigma = 1;
psi = (2/(sqrt(sqrt(pi) * 3* sigma))) * ...

((t.ˆ2/sigmaˆ2)-1) . * exp(-t.ˆ2/(2 * sigmaˆ2));
Psi = -( sqrt(8) * sigmaˆ(5/2) * piˆ(1/4)/sqrt(3) ) * w.ˆ2 . * ...

exp(-sigmaˆ2 * w.ˆ2/2);

figure(1)
hold off
plot(t, psi, ’linewidth’, 3);
hold on
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’time’);
ylabel(’\psi’);
print(’-depsc’, ’Plots/wavelets_mexican_hat_psi.eps’ );

figure(2)
hold off
plot(t, Psi, ’linewidth’, 3);
hold on
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’frequency’);
ylabel(’\Psi’);
print(’-depsc’, ’Plots/wavelets_mexican_hat_Psi.eps’ );
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Example wavelet transform
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The �gure is a reprodution of a �gure from Mallat, p.81, using Wave-Lab http://www-stat.stanford.edu/~wavelab/ , and in partiular the tool WT-Browser. The signal is transformed using a large range of possible dilations and translationsof the Mexian Hat wavelet.

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.25/71

Wavelet BasisWe don't need to onsider all possible wavelettranslations and dilations:

◮ We an think of the wavelet transform as ageneralized FT

◮ So we want to �nd an orthogonal basis
◮ Also want time resolution tuned to frequeny

◮ Choose a set of wavelets suh that we get this

◮ Choose points on the dyadi grid
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Dyadi grid

Higher frequenies hange more rapidly than lowfrequenies and so need to be sampled at a higher rate.
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Blue dots indiate sample points within the time-frequeny spae.
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Wavelet Partition
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Note that for high-frequenies we have lower frequeny resolution, but better spaial resolu-tion. Even so, the area of the retangles is still onstant.
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Cutting up the time-frequeny spae

Basis funtions for a wavelet(-like) transform
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Note that the olors in the plot are only there to help distinguish the different funtions.This time, if we hoose the mother-wavelet and sample points orretly, we an derive a setof basis funtions for the spae (though we haven't shown this yet).
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Wavelet transforms

◮ Continuous Wavelet Transform (CWT) is thetransform onto the whole spae (u,s).
◮ Disrete Wavelet Transform (DWT) is theontinuous transform, onto the disrete spae givenby the dyadi grid.

⊲ wavelet basis on dyadi grid de�ned by
s = 2j

u = 2jnwhere n and j are integers. So we get the basis

ψn, j(t) =
1√
2j

ψ
( t

2j
−n

)
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Note that the Disrete wavelet transform is still a ontinuous transform (it involves an integralover R, but it maps to a disrete set of basis funtions (indexed by ( j,n) on the dyadi grid).
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Salogram

Take the power in eah wavelet oef�ient, e.g.

|Wf (u,s)|2and all this the salogram

◮ analogous to periodogram (power of Fouriertransform)

◮ analogous to spetrogram (power of STFT)
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Time-Frequeny Measurement

We an perform transform in either time or frequenydomain

W { f} = Wf (u,s) =

Z ∞

−∞
f (t)ψ∗

u,s(t)dt =

Z ∞

−∞
F(r)Ψ∗

u,s(r)dr

where Ψ∗
u,s(r) = F

{

ψ∗
u,s(t)

}

Note that

Ψu,s(r) = e−i2πur√sΨ(sr)using the saling and time-translation properties.
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Z ∞

−∞
f (t)ψ∗

u,s(t)dt =
Z ∞

−∞
F(r)Ψ∗

u,s(r)drdue to Planheral's theorem (see Leture 7).
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Time-Frequeny resolution

Time-frequeny resolution of a wavelet

W { f (t)} = Wf (u,s) = 〈 f ,ψu,s〉 =

Z ∞

−∞
f (t)

1√
s
ψ∗

(

t −u
s

)

dt

Suppose WLOG that ψ is entered at 0, whih implies

ψu,s is entered at u, then

Z ∞

−∞
(t −u)2|ψu,s|2 dt =

Z ∞

−∞
t2|ψ0,s|2 dt = s2

Z ∞

−∞
t2|ψ(t) |2 dt = s2σ2

t

So the energy spread of a wavelet atom ψu,s is a �box�

sσt wide in time.

◮ σt depends on the partiular mother wavelet
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For instane we already know σt = 1
2
√

πb

for the Gabor wavelet.
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Time-Frequeny resolution

The FT of a wavelet is

Ψu,s(r) = e−i2πur√sΨ(sr)The enter frequeny is therefore ηψ/s, where ηψ is theenter frequeny of the mother wavelet.
◮ hene we all s the sale, and note that is itproportional to one over the frequeny.
◮ the enter frequeny of the mother wavelet is givenby

ηψ =

Z ∞

−∞
ω|Ψ(ω)|2 dω
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Time-Frequeny resolution

The energy spread of the wavelet about the entralfrequeny ηψ/s is

1
2π

Z ∞

0

(

ω− η
s

)2
|Ψu,s(ω)|dω =

σ2
ω

s2where

σ2
ω =

1
2π

Z ∞

0
(ω−η)2 |Ψ(ω)|dωSo the energy spread of a wavelet atom ψu,s is a �box�

◮ sσt wide in time (wider for lower frequenies)

◮ σω/s in frequeny (�ner for lower freq.)
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MultiResolution

Approximation

and WaveletsWavelets were independently invented from severaldifferent viewpoints. In this setion we start byonsidering how we an approximate funtions atdifferent levels of detail, and by doing so ome up againwith the notion of wavelets.
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The previous setion presents wavelets from one point of view: as a better way ofdoing a STFT. Generating a set of atomi funtions by saling and translation is a verygeneral approah, and by sampling these atomi funtion appropriately we reate a repre-sentation in the time-frequeny domain that adapts it resolution to the orret point in the plane.However, wavelets were independently invented from several different viewpoints, and thereis another one that provide a great deal of insight into wavelets, and in partiular the �salingfuntion�. We takle this in this setion.
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MultiResolution Analysis

◮ a noted, we all s sale

◮ time-resolution at a partiular sale s is �xed

◮ at different sales, the time resolution isproportional to the sale

◮ like observing the data at multiple sales

◮ hene the name multiresolution analysis

⊲ we an take this onept further by onsideringmultiresolution approximation
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Approximation

De�nition: An approximation of a funtion f ∈ L2 insubspae V is de�ned as the orthogonal projetion of fonto V (e.g. the projetion f̂ ∈ V that minimizes || f − f̂ ||).

If an orthonormal basis {φγ} for V exists, then theprojetion into the spae is given by
f̂ = ∑

γ

〈

f ,φγ
〉

φγ
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Projetion

Simple example of projetion:

◮ projeting an (x,y,z)vetor into the x− y plane.

◮ vetor v ∈ R
3 is projetedto v̂ ∈ R

2

◮ take (1,0,0) and (0,1,0) asthe basis vetors of the

x− y plane.

◮ inner produt is justvetor dot produt

v

z

y

x

v

v̂ = [v.(1,0,0)](1,0,0)+ [v.(0,1,0)](0,1,0)

= (v1,v2,0)
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This example is from �rst year maths, but the idea of projetion is muh more general, and inour ase we want to apply it to funtion spaes.
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Approximation
φ 1

f(x)

φ φ φ2 3 4
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The φi are our basis funtions. They are simple retangular pulses, translated along the x-axis.

f (x) is the funtion we wish to approximate.
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Approximation

φ 1

f(x)

φ φ φ2 3 4
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The approximation in terms of the retangular pulses is obvious. The approximation an onlybe made of a linear ombination of these retangular funtions. The funtions do not overlap,so the resulting approximation will be a pieewise onstant urve. Assume that we use thestandard L2 inner produt

〈 f ,g〉 =
Z ∞

−∞
f (x)g(x)dxIf the basis funtions are one unit wide, then

〈 f ,φi〉 =
Z ∞

−∞
f (x)φi(x)dx =

Z i+1

i
f (x)dxSo the inner produt is the average value of the funtion over the interval, [i, i+1], whih wewill denote bar fi and the orresponding approximation is

f̂ (x) = ∑
i

f̄iφi(x)It should be obvious that this funtion is pieewise onstant, and its value on eah interval

[i, i+1], is the mean of the funtion on that interval f̄i.
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MultiResolution Approximation (MRA)

A sequene {V j} j∈Z of losed subspaes of L2(R) isalled a MultiResolution Approximation (MRA) if1. V j+1 ⊂ V j for all j ∈ Z2. f (t) ∈ V j ⇔ f (t −2jk) ∈ V j for all j,k ∈ Z3. f (t) ∈ V j ⇔ f (t/2) ∈ V j+1 for all j,k ∈ Z4. lim j→∞ V j = {0}5. lim j→−∞ V j = L2(R)6. ∃θ suh that {θ(t −n)}n∈Z is a Riesz basis of V0.We an think of V j grouping together theapproximations at sale 2j. Sometimes all j the otave(through analogy to musi).
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1. The approximation at otave j has all the information needed for the approximation atotave j +1, so anything we an represent in Vj+1 will be possible to represent in Vj .2. The approximation at otave j an be translated by an integer multiple of 2j , and it willstill be a valid approximation at otave j3. Dilating a funtion in Vj by 2 puts it into a oarser resolution Vj+1.4. When otave goes to ∞, we lose all details, and the only possible approximation is thezero funtion.5. When otave goes to −∞, we an represent any funtion in L2, i.e. we an obtain anarbitrarily good level of detail in our approximations.6. See appendies for de�nition of Riesz basis. We need a basis to make projetionsimple.
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MRA example

φ 0,0

f(x)
V0
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MRA example
φ 0,1

f(x)
V1
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MRA example

φ 0,−1

f(x)
V−1
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MRA examples

Examples:

◮ pieewise onstant: see above.
◮ Shannon approximation: using frequenyband-limited funtions (whih hene must havein�nite support in the time domain). Orthonormalbasis sinc(t −n).

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

◮ Spline approximation:
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MRA and saling funtions

From the Riesz basis ∃θ for the MRA, we an derive anorthonormal basis {φn, j(t)}n∈Z for V j. The funtions φ arealled saling funtions, and an be derived from amother saling funtion as with wavelets, e.g.

φn, j(t) =
1√
2j

φ
( t

2j
−n

)

The approximation of a funtion f ∈ L2(R) is given by

f̂ j(t) = ∑
n∈Z

〈 f ,φn, j〉φn, j(t)where

〈 f ,φn, j〉=
Z ∞

−∞
f (t)φn, j(t)dt =

Z ∞

−∞
f (t)

1√
2j

φ
( t

2j
−n

)

dt =
[

f ∗ φ̄ j

]

(n)
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The form of approximation

f̂ j(t) = ∑
n∈Z

〈

f ,φn, j
〉

φn, j(t)is just the standard projetion operation.

φ̄ j is the time reversed version of φ j, i.e.

φ̄ j(t) = φ j(−t)So that

〈

f ,φn, j
〉

=
Z ∞

−∞
f (t)

1√
2j

φ
( t

2j −n
)

dt

=
Z ∞

−∞
f (t)

1√
2j

φ̄
(

n− t
2j

)

dt

whih is just a standard onvolution of f (t) with the funtion φ̄ j = 1√
2 j φ̄

(

t
2 j

), sampled at thepoints n.
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The Approximation

The approximation of a funtion f ∈ L2(R) is given by
f̂ j(t) = ∑

n∈Z

〈 f ,φn, j〉φn, j(t) = ∑
n∈Z

a j(n)φn, j(t)where a j(n) = 〈 f ,φn, j〉 =
[

f ∗ φ̄ j
]

(n)

◮ frequeny response of the approximationoef�ients a j(n) depends on the frequenyresponse of the saling funtion
◮ saling funtion typially a low-pass, so thisbeomes a low-frequeny approximation.

◮ larger sale gives a oarse approx, so lower-freq.

◮ onsistent with saling law (as we dilate salingfuntion, the �lter pass-band is redued)
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We an write approximation oef�ients

a j(n) =
〈

f ,φn, j
〉

=
[

f ∗ φ̄ j
]

(n)where ∗ is a generalization of the onvolution operation, and φ̄ j is the time reversed versionof φ j.
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Relationship to wavelets

The approximation of a funtion f̂ j ∈Vj into Vj+1 is

f̂ j+1(t) = ∑
n∈Z

〈

f̂ j,φn, j
〉

φn, j(t)

◮ when we approximate a funtion f ∈Vj with aoarser approximation f ∈Vj+1 we lose detail

◮ prefer a deomposition of Vj into an orthogonal sumof Vj+1 and Wj+1

⊲ Wj+1 are the bits we lost in the approximation

⊲ should be able to reombine Vj+1 and Wj+1 to getbak to f ∈Vj+1

◮ natural to assoiate Wj+1 somehow with the wavelet
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Some rough notes (I am not being very preise here, its just to give you some idea)The diret sum of two subspaes (e.g. Vj+1 and Wj+1) is often denoted Vj+1 ⊕Wj+1, andimplies that Vj+1∩Wj+1 = {0}, i.e., the intersetion of the two sets is the zero element.Assume that we haveVj =Vj+1⊕Wj+1, and we have an (positive de�nite) inner produt de�nedon Vj, then the orthogonal ompliment of Vj+1 is

V⊥
j+1 = {v ∈Vj | 〈v,u〉 = 0,∀u ∈Vj+1}Given Vj and its orthogonal ompliment Wj+1 = V⊥

j+1 the spae Vj = Vj+1⊕Wj+1.
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Relationship to wavelets
projection

Vj

Vj+1

approximation
coarser

fine
approximation

j+1W
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Projetions from Vj into Vj+1 and Wj+1 work by

f̂ j+1 = ∑
n∈Z

〈

f̂ j,φn, j+1
〉

φn, j+1

= ∑
n∈Z

an, j+1 φn, j+1.

f j+1 = ∑
n∈Z

〈

f̂ j,ψn, j+1
〉

ψn, j+1

= ∑
n∈Z

dn, j+1 ψn, j+1

where {φn, j+1}n∈Z and {ψn, j+1}n∈Z are the respetive bases for Vj+1 and Wj+1, and f̂ j+1 and.

f j+1 are the projetions into these spaes.
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Relationship to wavelets

Properties imposed by the relationship1. Wj+1 ⊂Vj, so the basis vetors of Wj+1 must be ∈Vj.

◮ we want the basis of Wj+1 to be wavelets, so

ψ j+1 ∈Wj+1 ⊂Vj

◮ hene we an represent ψ j+1 in terms of ψ j, i.e.,

ψ0, j+1(t) = ∑
n

a j(n)φn, j(t)

2. Vj is an orthogonal sum of Vj+1 and Wj+1, so

〈φ0, j+1(t),ψn, j+1(t)〉 = 0
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Relationship to wavelets

Take the properties above (for j = 0), and work outrelationships between mother wavelet, and mothersaling funtion. First take the property that
ψ0, j+1(t) = ∑

n

a j(n)φn, j(t)

for j = 0

ψ0,1(t) = ∑
n

a1(n)φn,0(t) (1)

ψ(t/2)/
√

2 = ∑
n

a1(n)φ(t −n) (2)

ψ(t) = ∑
n

a(n)φ(2t −n) (3)
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(2) derives from the saling relationships.

ψn, j(t) =
1√
2j

ψ
( t

2j −n
)

φn, j(t) =
1√
2j

φ
( t

2j −n
)

(3) Note that â(n) =
√

2a1(n), and we have substituted t → 2t
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Relationship to wavelets

Combining the �rst and seond properties (from p.51)

ψ(t) = ∑
n

a(n)φ(2t −n)

〈ψ(t),φ(t −n)〉 =

Z ∞

−∞
ψ(t)φ(t −n)dt = 0we get

Z ∞

−∞
∑

k

a(k)φ(2t−k)φ(t−n)dt =∑
k

a(k)
Z ∞

−∞
φ(2t−k)φ(t−n)dt = 0

whih de�nes possible values for a(k)
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Example: Haar wavelets

Pieewise onstant approximation: so take
φ(t) =

{

1 if 0≤ t ≤ 1
0 otherwiseBasis funtions for approximations are retangularpulses.

∑
k

a(k)
Z ∞

−∞
φ(2t − k)φ(t −n)dt = 0

∑
k

a(k)
Z n+1

n
φ(2t − k)dt = 0
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Example: Haar wavelets

Now, φ(2t − k) is only positive in the interval [n,n+1] for

k = 2n or 2n+1

∑
k

a(k)
Z n+1

n
φ(2t − k)dt = 0

a(2n)+a(2n+1) = 0beause in both ases the integral is 1.

The funtion with minimal support that satis�es thisrelationship has a(0) = 1 and a(1) = −1 and all other

a(k) = 0, so

ψ(t) = φ(2t)−φ(2t −1)
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Remember

ψ(t) = ∑
n

a(n)φ(2t−n)
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Haar waveletsSaling and wavelet funtions for the Haar transformshown below

t t

scaling function mother wavelet

Approximations are pieewise onstant urves.
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Haar wavelets: freq. representation

At sale j = 0, sale by 20 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5

0

0.5

1

time
0 0.1 0.2 0.3 0.4

0
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1

1.5

2

frequency

scaling function
wavelet
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Haar wavelets: freq. representation

At sale j = 1, sale by 21 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5
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1

time
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Haar wavelets: freq. representation

At sale j = 2, sale by 22 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5
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time
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Haar wavelets: freq. representation

At sale j = 3, sale by 23 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))
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Haar wavelets: freq. representation

◮ saling funtion is a low-pass

⊲ approximations are low-freq. approximations

⊲ larger sale, low-frequeny stop-band

◮ wavelet funtion is a band-pass

⊲ together with saling they break up a blok ofthe frequeny spetrum
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Subband oding

The idea (looking aross frequenies or sales) is thatthe transform breaks frequeny spetrum into bands.

w
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Sudband oding is yet another approah to derive a wavelet transform. We derive the subbandharateristis of (Haar) wavelets here, rather than using it to derive wavelets, but we ouldhave started with subband oding as our goal, and derived a wavelet transform.
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MRA and waveletsTake mother wavelet ψ(t), with orthogonal disretewavelet basis on the dyadi grid

ψn, j(t) =
1√
2j

ψ
( t

2j
−n

)

Form losed subspaes

Wj = Sp{ψn, j|n ∈ Z}As noted earlier,

Vj = ⊕∞
i= jWi

fr
eq

u
en

cy

time

scale

2j

is a MRA and the saling funtion φ was also given earlier,and Vj−1 = Vj ⊕Wj so an orthogonal projetion into Vj−1an be deomposed into projetions into Vj and Wj.
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Suessive deompositions

We an iteratively deompose approximation Vj into awavelet part (the details) and a oarser saleapproximation Vj−1 = Vj ⊕Wj using the projetionoperationForm f j−1 ∈Vj−1 by

f̂ j+1 = ∑
n∈Z

〈

f̂ j,φn, j+1
〉

φn, j+1

= ∑
n∈Z

an, j+1φn, j+1.

f j+1 = ∑
n∈Z

〈

f̂ j,ψn, j+1
〉

ψn, j+1

= ∑
n∈Z

dn, j+1ψn, j+1

Vj

Vj+1

Vj+2

Vj+3

Vj+4

j+1W

j+2W

j+3W

j+4W approximation

Succesive
approximations

fine
approximation

coarse
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MRA and wavelets

f̂ j = f̂ j+1 +

.

f j+1

= ∑
n∈Z

an, j+1φn, j+1 + ∑
n∈Z

dn, j+1ψn, j+1

◮ f̂ j+1 is a oarser sale approximation of f

◮ it loses some �detail�

◮ details are aptured in the wavelet omponent .

f j+1

◮ often all the oef�ients

⊲ an, j the approximation

⊲ dn, j the details

◮ As j →−∞ the approximation f̂ j → f
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The oef�ients an, j are often alled the approximation, but remember the real approximatingfuntion is a linear ombination of the basis funtions, i.e.

f̂ j = ∑
n∈Z

an, jφn, j

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.65/71

The Saling Funtion

The above representation requires wavelet oef�ientsfor s = −∞, . . . ,∞ and u = −∞, . . . ,∞. We an still manageif we have oef�ients 〈 f ,ψu,s〉 for s < s0, by using asaling funtion φ(t).

◮ an be thought of as a low frequeny (high sale)approximation of the signal
◮ form saling funtions φu,s(t) by the same dilationsand translation used to form wavelets
◮ saling funtion φ(t) brings in info from sales s > 1,so it is the aggregation of wavelets above this sale

|Φ(ω)|2 =

Z ∞

1
|Ψ(sω)|21

s
ds =

Z ∞

ω
|Ψ(ξ)|21

ξ
dξ
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The Saling Funtion

◮ DWT representation

f =
∞

∑
j= j0

∞

∑
n=−∞

〈 f ,ψn, j〉ψn, j +
∞

∑
n=−∞

〈 f ,φn, j0〉φn, j0
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Wavelet Properties

Potential wavelet properties

◮ �nite support

◮ vanishing moments

◮ orthogonal/ bi-orthogonal
◮ omplex(analyti) or real
◮ redundant (framelets)
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Appliations

◮ edge (and anomaly) detetion

◮ motion detetion

◮ denoising

◮ ompression (JPEG 2000)To do these, we will need to

◮ perform wavelet transforms on disrete data.

◮ make the algorithms ef�ient (as with FFT)
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Appendies
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Riesz basisA family of elements {en}n∈Z from a Hilbert spae H issaid to be a Riesz basis of H if it is linearly independentand there exists A > 0 and B > 0 suh that for any f ∈ Hone an �nd λn with

f (t) =
∞

∑
n=−∞

λnen

whih satis�es

1
B
|| f ||2 ≤

∞

∑
n=−∞

|λn|2 ≤
1
A
|| f ||2

If A = B the frame is said to be tight.
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