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This le
ture introdu
es wavelets.
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WaveletsIn previous le
tures we saw that the STFT hadproblems. The Wavelet transform is the way toover
ome these problems. One of the ni
est aspe
ts ofwavelets is that they are so natural: they have beeninvented several times, ea
h time from a differentviewpoint, so we will 
onsider several approa
hes thatnaturally result in a Wavelet transform, starting byextending our understanding of the un
ertainty prin
ipleand Windowed Fourier Transforms.

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.2/71

The main referen
e for this part of the 
ourse is Stéphane Mallat's book �A Wavelet Tour ofSignal Pro
essing�, 2n edition, A
ademi
 Press, San Diego, 2001.
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Limitations of the STFT

◮ 
omputational 
ost O(nm logm)

◮ time/frequen
y resolution tradeoff

⊲ small m better time, worse frequen
y resolution

◮ time/frequen
y resolution tradeoff is �xed

⊲ higher freq. 
an 
hange faster than low freq.

⊲ appropriate resolution for ea
h frequen
y?

◮ how 
an we do better?

⊲ some improvement might be gained throughusing better window fun
tions (I have just usedre
tangular windows above)

⊲ lets try to get a more theoreti
al understandingof windows, and un
ertainty bounds
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Cutting up the time-frequen
y spa
e

STFT partition of time-frequen
y
time
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Areas of boxes don't get smaller!
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S
aling property of FT

If we s
ale a fun
tion in time, then

F { f (at)} =
1
a

F
( s

a

)

◮ Re
ipro
al s
aling in ea
h domain

◮ Tighter in Time, makes it looser in Fourier domain

◮ This 
ontributes to un
ertainty!!!!

⊲ in the STFT we use a window fun
tion torestri
t the support of basis fun
tions

⊲ tighter support on window fun
tion (lessun
ertainty in the time domain) results in awider fun
tion in the frequen
y domain (and somore un
ertainty there).
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Refresher on properties of the FT from le
ture 2:

◮ Linearity: a f1(t)+b f2(t) → aF1(s)+bF2(s)

◮ Time shift: f (t − t0) → F(s)e−i2πst0

◮ Time s
aling: f (at) → 1
|a|F

(

s
a

)

◮ Duality: F(t) → f (−s)

◮ Frequen
y shift: f (t)e−i2πs0t → F(s− s0)

◮ Convolution: f1(t)∗ f2(t) → F1(s)F2(s)

◮ Differentiation I: dn

dtn f (t) → (i2πs)nF(s)

◮ Differentiation II: (−i2πt)n f (t) → dn

dsn F(s)

◮ Integration: R t
−∞ f (s)ds → 1

i2πs F(s)+πF(0)δ(s)
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Heisenberg's Un
ertainty Prin
iple

Heisenberg's inequality is

∆x∆p ≥ h
2πwhere ∆x and ∆p are the unknown errors in position and momentum,respe
tively. It arises be
ause, when one measures, say the lo
ationof a parti
le, one must boun
e a photon on the parti
le. The impa
t ofthe photon 
hanges the momentum of the parti
le by an unknownamount. One 
an redu
e the energy of the photon to redu
e the rangeof un
ertainty in this 
hange in momentum, but only by redu
ing thephoton's frequen
y, thereby redu
ing the a

ura
y of the lo
alizationgained through the measurement.
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Heisenberg's Un
ertainty Prin
iple led (in part) to the development of quantum me
hani
s,one of the most su

essful physi
s theories ever. Part of the theory is 
on
erned with the dualnature of sub-atomi
 obje
ts (ele
trons, photons, et
.) as both parti
les and waves. Wavesrelate this ba
k to our 
ourse.
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Un
ertainty Prin
iple

Given a transient signal f (t), we want to lo
alize thissignal in time and frequen
y. We measure mean lo
ationof transient time and frequen
y by

u =
1

|| f ||2
Z ∞

−∞
t| f (t)|2dt

ξ =
1

|| f ||2
Z ∞

−∞
s|F(s)|2 ds

Measure un
ertainties in time and frequen
y by varian
eabout the mean, e.g.

σ2
t =

1
|| f ||2

Z ∞

−∞
(t −u)2| f (t)|2 dt

σ2
s =

1
|| f ||2

Z ∞

−∞
(s−ξ)2|F(s)|2 ds
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Signals are not usually deltas, i.e., they have some extent in time and frequen
y. So we 
an'ttalk as if they are perfe
tly lo
alized in either time or frequen
y. When we talk about lo
ation,we are talking about the mean lo
ation,. Remember that

|| f ||2 =
Z ∞

−∞
| f (t)|2 dt = ||F ||2 =

Z ∞

−∞
|F(t)|2 dt.The un
ertainty is not a measurement artifa
t � we 
an talk about un
ertainty of a signal f (t)without any randomness in the measurements. It is simple the fa
t that the signal is spreadout in time (and/or frequen
y).In parti
ular, if you had two su
h signals that overlap, then the degree of overlap determineswhether you 
an resolve them as separate signals. So un
ertainty tells us something aboutresolution (in time and frequen
y).Why is it important here? We will be using fun
tion as a basis in order to represent our signal.If the fun
tions must satisfy the un
ertainty prin
iple, then so too must our representation.Note we will be 
on
erned with signals for whi
h the above quantities are de�ned, and �nite(i.e. signals that drop to zero �fast enough�). This is fair enough for transient signals.
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Un
ertainty Prin
iple

Theorem: For a fun
tion f ∈ L2, the temporal andfrequen
y varian
e satisfy

σt σs ≥
1
4πAnd this is an equality only if there exist

(u,ξ,a,b) ∈ R
2×C

2 su
h that
f (t) = ae−b(t−u)2

ei2πξtfor whi
h

σ2
t =

1
4πb2

σ2
s =

b2

4π
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Un
ertainty Prin
iple

Proof: It is suf�
ient to prove the theorem for f su
hthat u = ξ = 0 as we 
an always perform shifts in timeand frequen
y, e.g. by taking exp(i2πξt) f (t −u), to getthe general 
ase. In the 
ase u = ξ = 0 we get

σ2
t σ2

s =
1

|| f ||4
Z ∞

−∞
t2| f (t)|2 dt

Z ∞

−∞
s2|F(s)|2 ds

Remember F
{

d f
dt

}

= (i2πs)F(s), so Rayleigh's theoremimplies

Z ∞

−∞
|i2πsF(s)|2 ds = 4π2

Z ∞

−∞
| f ′(t)|2dt
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Rayleigh's theorem says

Z ∞

−∞
|F(s)|2 ds =

Z ∞

−∞
| f (x)|2 dx
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Un
ertainty Prin
iple

Proof: Hen
e we 
an write

σ2
t σ2

s =
1

4π2|| f ||4
Z ∞

−∞
t2| f (t)|2 dt

Z ∞

−∞
| f ′(t)|2 dt

S
hwarz's inequality (for real fun
tions)
Z b

a
ψ1(x)

2dx
Z b

a
ψ2(x)

2dx ≥
[

Z b

a
ψ1(x)ψ2(x)dx

]2

with equality only if ψ2(x) = αψ1(x) for some 
onstant α.

σ2
t σ2

s ≥
1

4π2|| f ||4
[

Z ∞

−∞
t f ′(t) f (t)dt

]2
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For S
hwarz's inequality (sometimes 
alled the Cau
hy-S
hwarz or Buniakowsky inequality)see Gradshteyn and Ryzhik, p.1099, or

http://mathworld.wolfram.com/SchwarzsInequality.htm lA qui
k proof-sket
h: if we integrate [ψ1(x)+ tψ2(x)]
2 the terms inside the integral are squared,and so non-negative, so the integral is non-negative, i.e.,

Z b

a
[ψ1(x)+ tψ2(x)]

2 dx ≥ 0.Expand the integral into its 
omponents and we get

Z b

a
[ψ1(x)+ tψ2(x)]

2 dx =
Z b

a
ψ2

1(x)dx+2t
Z b

a
ψ1(x)ψ2(x)dx+ t2

Z b

a
ψ2

2(x)dx

= A+ tB+ t2C ≥ 0Now again the integrands of A and C are non-negative so A,C ≥ 0. So the quadrati
 
urveabove has a minimum, whi
h we know is greater than zero. A quadrati
 
urve su
h as thishas zeros if B2 −4AC ≥ 0, so we know that B2 ≤ 4AC, and then
e S
hwarz's inequality, withequality only if ψ1(x)+ tψ2(x) = 0 for some value of t, for all x.
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Un
ertainty Prin
iple

Proof: When ψ1(x) and ψ1(x) are 
omplex, a moreappropriate form of S
hwarz's inequality is (fromBra
ewell, p.176) gives

4
Z b

a
|ψ1(x)|2dx

Z b

a
|ψ2(x)|2dx≥

[

Z b

a
(ψ∗

1(x)ψ2(x)+ψ1(x)ψ∗
2(x))dx

]2

So

σ2
t σ2

s ≥ 1
16π2|| f ||4

[

Z ∞

−∞
t
(

f ′(t) f ∗(t)+ f ∗′(t) f (t)
)

dt

]2

≥ 1
16π2|| f ||4

[

Z ∞

−∞
t

d
dt

( f (t) f ∗(t)) dt

]2

≥ 1
16π2|| f ||4

[

[

t | f (t)|2
]∞
−∞ +

Z ∞

−∞
| f (t)|2 dt

]2
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The last step is the result of integration by parts.
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Un
ertainty Prin
iple

Proof: The Theorem holds for all f ∈ L2(R), but we aremainly interested in transient signals
◮ transient signals go to zero at some point
◮ lets have a fairly weak de�nition lim |t|→∞

√
t f (t) = 0

◮ in this 
ase, the �rst term in the integration byparts is zero, so

σ2
t σ2

s ≥ 1
16π2|| f ||4

[

Z ∞

−∞
| f (t)|2 dt

]2

≥ 1
16π2|| f ||4

[

|| f ||2
]2

≥ 1
16π2
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Un
ertainty Prin
iple

Proof: To obtain an equality, note that S
hwarz'sinequality requires ψ2(x) = αψ1(x) for some 
onstant α,whi
h in this 
ase implies that

f ′(t) = −2bt f (t)whi
h is true only for

f (t) = ae−bt2

This is the result for (u,ξ) = (0,0). We perform afrequen
y and time translation to freq. ξ and time u toget

f (t) = ae−b(t−u)2
ei2πξt

2
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Gabor fun
tionDe�nition: A Gabor fun
tion

fa,b,u,ξ(t) = ae−bπ(t−u)2
ei2πξt

It has FT

Fa,b,u,ξ(s) =
a√
b

e−π(s−ξ)2/be−i2πsu

Mean position and frequen
y are u and ξ, and theun
ertainty in lo
ation is
σ2

t =
1

|| f ||2
Z ∞

−∞
(t −u)2| f (t)|2 dt =

1
b

Z ∞

−∞
t2e−2bπt2

dt =
1

4πb2

σ2
s =

1
|| f ||2

Z ∞

−∞
(s−ξ)2|F(s)|2 ds =

1
b

Z ∞

−∞
t2e−2bπt2

dt =
b2

4π
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Gabor fun
tionGabor fun
tion
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1
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FFT of Gabor fun
tion
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0

1
real
imaginary
envelope

Gabor fun
tion= Gaussian window applied to a 
omplex sinusoid
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function s = chirp(t, t_0, f_0, T, beta)
% chirp generates a Gaussian chirp signal
% a special case is a Gabor function
%
% file: chirp.m, (c) Matthew Roughan, Thu Aug 12 2004
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au
%
% see Bracewell, p. 135, 502
% and Mallat, p. 71, and 100
%
% inputs:
% t: time points for chirp samples
% t_0: mid-pulse time (t_0=u for a Gabor function)
% f_0: mid-pulse frequency (f_0=xi for a Gabor function)
% T: Gaussian window width (T=1/b for a Gabor function)
% 2* beta: chirp sweep rate (beta = 0 for a Gabor function)
%

s = exp(-pi * (t-t_0).ˆ2/T) . * exp(i * 2* pi * (f_0 * (t-t_0) + beta * (t-t_0).ˆ2));
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Gabor fun
tionGabor fun
tion
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If we make the time-domain fun
tion narrowerthe frequen
y domain fun
tion gets wider
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Cutting up the time-frequen
y spa
e

Basis-like fun
tions for a STFT with a window fun
tion

time

fr
eq

ue
nc

y
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Note that the 
olors in the plot are only there to help distinguish the different fun
tions.Note that the fun
tions are not really a basis, be
ause we have not shown that they are linearlyindependent, or that all possible fun
tions 
an be represented. It is perhaps better to think ofthe fun
tions as atoms whi
h 
ombined form a Di
tionary, whi
h we 
an use to des
ribe otherfun
tions.
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An alternativeRemember that we 
an s
ale window fun
tions to 
hangethe resolution in time and frequen
y.
◮ higher frequen
ies 
an 
hange more qui
kly
◮ why not 
hange frequen
y resolution to mat
h thefrequen
y?

◮ just have to make the window width a fun
tion offrequen
y

◮ e.g. for the Gabor fun
tions f (t) = ae−bπ(t−u)2
ei2πξtmake the window frequen
y dependent by making ba fun
tion of ξ

⊲ higher frequen
ies make the window narrower

⊲ so for larger ξ we want smaller b.
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WaveletsWavelet are the natural result of this idea.

◮ start with a fun
tion we 
all the Mother Wavelet

⊲ e.g. a re
tangular pulse, or a Gabor fun
tion

⊲ denote by ψ(t)

⊲ require ψ ∈ L2, ||ψ|| = 1 and R ∞
−∞ ψ(t)dt = 0

◮ 
onstru
t a set of atomi
 fun
tions ψu,s (atoms)from this fun
tion by

⊲ dilation (stret
hing and shrinking by s)

⊲ translation (shifting in time by u)

ψu,s(t) =
1√
s
ψ

(

t −u
s

)

◮ e.g. 
ould generate any Gabor fun
tion this way
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De�nition: AtomsTime-frequen
y atoms {φγ}, underly many transforms
◮ φγ ∈ L2

◮ ||φγ|| = 1

◮ Transform F(γ) =
〈

f (t),φγ(t)
〉

For example the STFT
φγ(t) = gξ,u(t) = e−i2πξtg(t −u)where g(t) is the (suitably normalized) window fun
tion.
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Continuous wavelet transformWavelet Transform (analysis)

W { f (t)} = Wf (u,s) = 〈 f ,ψu,s〉 =

Z ∞

−∞
f (t)

1√
s
ψ∗

(

t −u
s

)

dt

Wavelet Re
onstru
tion (synthesis), 
hoose a 
omplete,orthogonal set of wavelets {ψ j,n}, then

f = ∑
j
∑
n

〈 f ,ψn, j〉ψn, j

Similar to the generalized Fourier transform.
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WaveletsThere are many possible Mother Wavelets
◮ Haar

◮ Daube
hies

◮ Mexi
an hat

◮ Gabor

◮ ...Ea
h has slightly different properties � mu
h the sameas when we 
onsidered window fun
tions.
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Wavelet Example

Mexi
an Hat wavelets are given by the se
ondderivative of a Gaussian fun
tion, e.g.

ψ(t) =
2

π1/4
√

3σ

(

t2

σ2
−1

)

exp

(−t2

2σ2

)

Its FT is

Ψ(ω) =
−
√

8σ5/2π1/4

√
3

ω2exp

(−σ2ω2

2

)

where ω = 2πs is frequen
y in radians per time unit.
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On
e again, we would generate all other wavelets via a translation and dilation of this motherwavelet.
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Wavelet Example

Mexi
an Hat waveletswavelet
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% file: wavelets_mex_hat.m, (c) Matthew Roughan, Wed Aug 3 2 005
% Mexican hat wavelets

t = -5:0.01:5;
w = -5:0.01:5;
sigma = 1;
psi = (2/(sqrt(sqrt(pi) * 3* sigma))) * ...

((t.ˆ2/sigmaˆ2)-1) . * exp(-t.ˆ2/(2 * sigmaˆ2));
Psi = -( sqrt(8) * sigmaˆ(5/2) * piˆ(1/4)/sqrt(3) ) * w.ˆ2 . * ...

exp(-sigmaˆ2 * w.ˆ2/2);

figure(1)
hold off
plot(t, psi, ’linewidth’, 3);
hold on
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’time’);
ylabel(’\psi’);
print(’-depsc’, ’Plots/wavelets_mexican_hat_psi.eps’ );

figure(2)
hold off
plot(t, Psi, ’linewidth’, 3);
hold on
set(gca, ’linewidth’, 3, ’fontsize’, 18);
xlabel(’frequency’);
ylabel(’\Psi’);
print(’-depsc’, ’Plots/wavelets_mexican_hat_Psi.eps’ );
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Example wavelet transform
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The �gure is a reprodu
tion of a �gure from Mallat, p.81, using Wave-Lab http://www-stat.stanford.edu/~wavelab/ , and in parti
ular the tool WT-Browser. The signal is transformed using a large range of possible dilations and translationsof the Mexi
an Hat wavelet.
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Wavelet BasisWe don't need to 
onsider all possible wavelettranslations and dilations:

◮ We 
an think of the wavelet transform as ageneralized FT

◮ So we want to �nd an orthogonal basis
◮ Also want time resolution tuned to frequen
y

◮ Choose a set of wavelets su
h that we get this

◮ Choose points on the dyadi
 grid
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Dyadi
 grid

Higher frequen
ies 
hange more rapidly than lowfrequen
ies and so need to be sampled at a higher rate.

fr
eq

u
en

cy

time
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Blue dots indi
ate sample points within the time-frequen
y spa
e.
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Wavelet Partition
time

fr
eq

u
en

cy
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Note that for high-frequen
ies we have lower frequen
y resolution, but better spa
ial resolu-tion. Even so, the area of the re
tangles is still 
onstant.
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Cutting up the time-frequen
y spa
e

Basis fun
tions for a wavelet(-like) transform
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Note that the 
olors in the plot are only there to help distinguish the different fun
tions.This time, if we 
hoose the mother-wavelet and sample points 
orre
tly, we 
an derive a setof basis fun
tions for the spa
e (though we haven't shown this yet).
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Wavelet transforms

◮ Continuous Wavelet Transform (CWT) is thetransform onto the whole spa
e (u,s).
◮ Dis
rete Wavelet Transform (DWT) is the
ontinuous transform, onto the dis
rete spa
e givenby the dyadi
 grid.

⊲ wavelet basis on dyadi
 grid de�ned by
s = 2j

u = 2jnwhere n and j are integers. So we get the basis

ψn, j(t) =
1√
2j

ψ
( t

2j
−n

)
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Note that the Dis
rete wavelet transform is still a 
ontinuous transform (it involves an integralover R, but it maps to a dis
rete set of basis fun
tions (indexed by ( j,n) on the dyadi
 grid).
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S
alogram

Take the power in ea
h wavelet 
oef�
ient, e.g.

|Wf (u,s)|2and 
all this the s
alogram

◮ analogous to periodogram (power of Fouriertransform)

◮ analogous to spe
trogram (power of STFT)
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Time-Frequen
y Measurement

We 
an perform transform in either time or frequen
ydomain

W { f} = Wf (u,s) =

Z ∞

−∞
f (t)ψ∗

u,s(t)dt =

Z ∞

−∞
F(r)Ψ∗

u,s(r)dr

where Ψ∗
u,s(r) = F

{

ψ∗
u,s(t)

}

Note that

Ψu,s(r) = e−i2πur√sΨ(sr)using the s
aling and time-translation properties.
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Z ∞

−∞
f (t)ψ∗

u,s(t)dt =
Z ∞

−∞
F(r)Ψ∗

u,s(r)drdue to Plan
heral's theorem (see Le
ture 7).
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Time-Frequen
y resolution

Time-frequen
y resolution of a wavelet

W { f (t)} = Wf (u,s) = 〈 f ,ψu,s〉 =

Z ∞

−∞
f (t)

1√
s
ψ∗

(

t −u
s

)

dt

Suppose WLOG that ψ is 
entered at 0, whi
h implies

ψu,s is 
entered at u, then

Z ∞

−∞
(t −u)2|ψu,s|2 dt =

Z ∞

−∞
t2|ψ0,s|2 dt = s2

Z ∞

−∞
t2|ψ(t) |2 dt = s2σ2

t

So the energy spread of a wavelet atom ψu,s is a �box�

sσt wide in time.

◮ σt depends on the parti
ular mother wavelet
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For instan
e we already know σt = 1
2
√

πb

for the Gabor wavelet.
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Time-Frequen
y resolution

The FT of a wavelet is

Ψu,s(r) = e−i2πur√sΨ(sr)The 
enter frequen
y is therefore ηψ/s, where ηψ is the
enter frequen
y of the mother wavelet.
◮ hen
e we 
all s the s
ale, and note that is itproportional to one over the frequen
y.
◮ the 
enter frequen
y of the mother wavelet is givenby

ηψ =

Z ∞

−∞
ω|Ψ(ω)|2 dω
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Time-Frequen
y resolution

The energy spread of the wavelet about the 
entralfrequen
y ηψ/s is

1
2π

Z ∞

0

(

ω− η
s

)2
|Ψu,s(ω)|dω =

σ2
ω

s2where

σ2
ω =

1
2π

Z ∞

0
(ω−η)2 |Ψ(ω)|dωSo the energy spread of a wavelet atom ψu,s is a �box�

◮ sσt wide in time (wider for lower frequen
ies)

◮ σω/s in frequen
y (�ner for lower freq.)
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MultiResolution

Approximation

and WaveletsWavelets were independently invented from severaldifferent viewpoints. In this se
tion we start by
onsidering how we 
an approximate fun
tions atdifferent levels of detail, and by doing so 
ome up againwith the notion of wavelets.
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The previous se
tion presents wavelets from one point of view: as a better way ofdoing a STFT. Generating a set of atomi
 fun
tions by s
aling and translation is a verygeneral approa
h, and by sampling these atomi
 fun
tion appropriately we 
reate a repre-sentation in the time-frequen
y domain that adapts it resolution to the 
orre
t point in the plane.However, wavelets were independently invented from several different viewpoints, and thereis another one that provide a great deal of insight into wavelets, and in parti
ular the �s
alingfun
tion�. We ta
kle this in this se
tion.
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MultiResolution Analysis

◮ a noted, we 
all s s
ale

◮ time-resolution at a parti
ular s
ale s is �xed

◮ at different s
ales, the time resolution isproportional to the s
ale

◮ like observing the data at multiple s
ales

◮ hen
e the name multiresolution analysis

⊲ we 
an take this 
on
ept further by 
onsideringmultiresolution approximation
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Approximation

De�nition: An approximation of a fun
tion f ∈ L2 insubspa
e V is de�ned as the orthogonal proje
tion of fonto V (e.g. the proje
tion f̂ ∈ V that minimizes || f − f̂ ||).

If an orthonormal basis {φγ} for V exists, then theproje
tion into the spa
e is given by
f̂ = ∑

γ

〈

f ,φγ
〉

φγ
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Proje
tion

Simple example of proje
tion:

◮ proje
ting an (x,y,z)ve
tor into the x− y plane.

◮ ve
tor v ∈ R
3 is proje
tedto v̂ ∈ R

2

◮ take (1,0,0) and (0,1,0) asthe basis ve
tors of the

x− y plane.

◮ inner produ
t is justve
tor dot produ
t

v

z

y

x

v

v̂ = [v.(1,0,0)](1,0,0)+ [v.(0,1,0)](0,1,0)

= (v1,v2,0)
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This example is from �rst year maths, but the idea of proje
tion is mu
h more general, and inour 
ase we want to apply it to fun
tion spa
es.
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Approximation
φ 1

f(x)

φ φ φ2 3 4
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The φi are our basis fun
tions. They are simple re
tangular pulses, translated along the x-axis.

f (x) is the fun
tion we wish to approximate.
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Approximation

φ 1

f(x)

φ φ φ2 3 4
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The approximation in terms of the re
tangular pulses is obvious. The approximation 
an onlybe made of a linear 
ombination of these re
tangular fun
tions. The fun
tions do not overlap,so the resulting approximation will be a pie
ewise 
onstant 
urve. Assume that we use thestandard L2 inner produ
t

〈 f ,g〉 =
Z ∞

−∞
f (x)g(x)dxIf the basis fun
tions are one unit wide, then

〈 f ,φi〉 =
Z ∞

−∞
f (x)φi(x)dx =

Z i+1

i
f (x)dxSo the inner produ
t is the average value of the fun
tion over the interval, [i, i+1], whi
h wewill denote bar fi and the 
orresponding approximation is

f̂ (x) = ∑
i

f̄iφi(x)It should be obvious that this fun
tion is pie
ewise 
onstant, and its value on ea
h interval

[i, i+1], is the mean of the fun
tion on that interval f̄i.
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MultiResolution Approximation (MRA)

A sequen
e {V j} j∈Z of 
losed subspa
es of L2(R) is
alled a MultiResolution Approximation (MRA) if1. V j+1 ⊂ V j for all j ∈ Z2. f (t) ∈ V j ⇔ f (t −2jk) ∈ V j for all j,k ∈ Z3. f (t) ∈ V j ⇔ f (t/2) ∈ V j+1 for all j,k ∈ Z4. lim j→∞ V j = {0}5. lim j→−∞ V j = L2(R)6. ∃θ su
h that {θ(t −n)}n∈Z is a Riesz basis of V0.We 
an think of V j grouping together theapproximations at s
ale 2j. Sometimes 
all j the o
tave(through analogy to musi
).
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1. The approximation at o
tave j has all the information needed for the approximation ato
tave j +1, so anything we 
an represent in Vj+1 will be possible to represent in Vj .2. The approximation at o
tave j 
an be translated by an integer multiple of 2j , and it willstill be a valid approximation at o
tave j3. Dilating a fun
tion in Vj by 2 puts it into a 
oarser resolution Vj+1.4. When o
tave goes to ∞, we lose all details, and the only possible approximation is thezero fun
tion.5. When o
tave goes to −∞, we 
an represent any fun
tion in L2, i.e. we 
an obtain anarbitrarily good level of detail in our approximations.6. See appendi
es for de�nition of Riesz basis. We need a basis to make proje
tionsimple.
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MRA example

φ 0,0

f(x)
V0
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MRA example
φ 0,1

f(x)
V1
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MRA example

φ 0,−1

f(x)
V−1
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MRA examples

Examples:

◮ pie
ewise 
onstant: see above.
◮ Shannon approximation: using frequen
yband-limited fun
tions (whi
h hen
e must havein�nite support in the time domain). Orthonormalbasis sinc(t −n).

−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

◮ Spline approximation:
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MRA and s
aling fun
tions

From the Riesz basis ∃θ for the MRA, we 
an derive anorthonormal basis {φn, j(t)}n∈Z for V j. The fun
tions φ are
alled s
aling fun
tions, and 
an be derived from amother s
aling fun
tion as with wavelets, e.g.

φn, j(t) =
1√
2j

φ
( t

2j
−n

)

The approximation of a fun
tion f ∈ L2(R) is given by

f̂ j(t) = ∑
n∈Z

〈 f ,φn, j〉φn, j(t)where

〈 f ,φn, j〉=
Z ∞

−∞
f (t)φn, j(t)dt =

Z ∞

−∞
f (t)

1√
2j

φ
( t

2j
−n

)

dt =
[

f ∗ φ̄ j

]

(n)
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The form of approximation

f̂ j(t) = ∑
n∈Z

〈

f ,φn, j
〉

φn, j(t)is just the standard proje
tion operation.

φ̄ j is the time reversed version of φ j, i.e.

φ̄ j(t) = φ j(−t)So that

〈

f ,φn, j
〉

=
Z ∞

−∞
f (t)

1√
2j

φ
( t

2j −n
)

dt

=
Z ∞

−∞
f (t)

1√
2j

φ̄
(

n− t
2j

)

dt

whi
h is just a standard 
onvolution of f (t) with the fun
tion φ̄ j = 1√
2 j φ̄

(

t
2 j

), sampled at thepoints n.
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The Approximation

The approximation of a fun
tion f ∈ L2(R) is given by
f̂ j(t) = ∑

n∈Z

〈 f ,φn, j〉φn, j(t) = ∑
n∈Z

a j(n)φn, j(t)where a j(n) = 〈 f ,φn, j〉 =
[

f ∗ φ̄ j
]

(n)

◮ frequen
y response of the approximation
oef�
ients a j(n) depends on the frequen
yresponse of the s
aling fun
tion
◮ s
aling fun
tion typi
ally a low-pass, so thisbe
omes a low-frequen
y approximation.

◮ larger s
ale gives a 
oarse approx, so lower-freq.

◮ 
onsistent with s
aling law (as we dilate s
alingfun
tion, the �lter pass-band is redu
ed)
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We 
an write approximation 
oef�
ients

a j(n) =
〈

f ,φn, j
〉

=
[

f ∗ φ̄ j
]

(n)where ∗ is a generalization of the 
onvolution operation, and φ̄ j is the time reversed versionof φ j.
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Relationship to wavelets

The approximation of a fun
tion f̂ j ∈Vj into Vj+1 is

f̂ j+1(t) = ∑
n∈Z

〈

f̂ j,φn, j
〉

φn, j(t)

◮ when we approximate a fun
tion f ∈Vj with a
oarser approximation f ∈Vj+1 we lose detail

◮ prefer a de
omposition of Vj into an orthogonal sumof Vj+1 and Wj+1

⊲ Wj+1 are the bits we lost in the approximation

⊲ should be able to re
ombine Vj+1 and Wj+1 to getba
k to f ∈Vj+1

◮ natural to asso
iate Wj+1 somehow with the wavelet
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Some rough notes (I am not being very pre
ise here, its just to give you some idea)The dire
t sum of two subspa
es (e.g. Vj+1 and Wj+1) is often denoted Vj+1 ⊕Wj+1, andimplies that Vj+1∩Wj+1 = {0}, i.e., the interse
tion of the two sets is the zero element.Assume that we haveVj =Vj+1⊕Wj+1, and we have an (positive de�nite) inner produ
t de�nedon Vj, then the orthogonal 
ompliment of Vj+1 is

V⊥
j+1 = {v ∈Vj | 〈v,u〉 = 0,∀u ∈Vj+1}Given Vj and its orthogonal 
ompliment Wj+1 = V⊥

j+1 the spa
e Vj = Vj+1⊕Wj+1.
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Relationship to wavelets
projection

Vj

Vj+1

approximation
coarser

fine
approximation

j+1W
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Proje
tions from Vj into Vj+1 and Wj+1 work by

f̂ j+1 = ∑
n∈Z

〈

f̂ j,φn, j+1
〉

φn, j+1

= ∑
n∈Z

an, j+1 φn, j+1.

f j+1 = ∑
n∈Z

〈

f̂ j,ψn, j+1
〉

ψn, j+1

= ∑
n∈Z

dn, j+1 ψn, j+1

where {φn, j+1}n∈Z and {ψn, j+1}n∈Z are the respe
tive bases for Vj+1 and Wj+1, and f̂ j+1 and.

f j+1 are the proje
tions into these spa
es.
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Relationship to wavelets

Properties imposed by the relationship1. Wj+1 ⊂Vj, so the basis ve
tors of Wj+1 must be ∈Vj.

◮ we want the basis of Wj+1 to be wavelets, so

ψ j+1 ∈Wj+1 ⊂Vj

◮ hen
e we 
an represent ψ j+1 in terms of ψ j, i.e.,

ψ0, j+1(t) = ∑
n

a j(n)φn, j(t)

2. Vj is an orthogonal sum of Vj+1 and Wj+1, so

〈φ0, j+1(t),ψn, j+1(t)〉 = 0
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Relationship to wavelets

Take the properties above (for j = 0), and work outrelationships between mother wavelet, and mothers
aling fun
tion. First take the property that
ψ0, j+1(t) = ∑

n

a j(n)φn, j(t)

for j = 0

ψ0,1(t) = ∑
n

a1(n)φn,0(t) (1)

ψ(t/2)/
√

2 = ∑
n

a1(n)φ(t −n) (2)

ψ(t) = ∑
n

a(n)φ(2t −n) (3)
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(2) derives from the s
aling relationships.

ψn, j(t) =
1√
2j

ψ
( t

2j −n
)

φn, j(t) =
1√
2j

φ
( t

2j −n
)

(3) Note that â(n) =
√

2a1(n), and we have substituted t → 2t
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Relationship to wavelets

Combining the �rst and se
ond properties (from p.51)

ψ(t) = ∑
n

a(n)φ(2t −n)

〈ψ(t),φ(t −n)〉 =

Z ∞

−∞
ψ(t)φ(t −n)dt = 0we get

Z ∞

−∞
∑

k

a(k)φ(2t−k)φ(t−n)dt =∑
k

a(k)
Z ∞

−∞
φ(2t−k)φ(t−n)dt = 0

whi
h de�nes possible values for a(k)
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Example: Haar wavelets

Pie
ewise 
onstant approximation: so take
φ(t) =

{

1 if 0≤ t ≤ 1
0 otherwiseBasis fun
tions for approximations are re
tangularpulses.

∑
k

a(k)
Z ∞

−∞
φ(2t − k)φ(t −n)dt = 0

∑
k

a(k)
Z n+1

n
φ(2t − k)dt = 0
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Example: Haar wavelets

Now, φ(2t − k) is only positive in the interval [n,n+1] for

k = 2n or 2n+1

∑
k

a(k)
Z n+1

n
φ(2t − k)dt = 0

a(2n)+a(2n+1) = 0be
ause in both 
ases the integral is 1.

The fun
tion with minimal support that satis�es thisrelationship has a(0) = 1 and a(1) = −1 and all other

a(k) = 0, so

ψ(t) = φ(2t)−φ(2t −1)
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Remember

ψ(t) = ∑
n

a(n)φ(2t−n)
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Haar waveletsS
aling and wavelet fun
tions for the Haar transformshown below

t t

scaling function mother wavelet

Approximations are pie
ewise 
onstant 
urves.
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Haar wavelets: freq. representation

At s
ale j = 0, s
ale by 20 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5

0

0.5

1

time
0 0.1 0.2 0.3 0.4

0

0.5

1

1.5

2

frequency

scaling function
wavelet
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Haar wavelets: freq. representation

At s
ale j = 1, s
ale by 21 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5

0

0.5

1

time
0 0.1 0.2 0.3 0.4

0

0.5

1

1.5
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frequency

scaling function
wavelet
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Haar wavelets: freq. representation

At s
ale j = 2, s
ale by 22 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5

0

0.5

1

time
0 0.1 0.2 0.3 0.4

0
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wavelet
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Haar wavelets: freq. representation

At s
ale j = 3, s
ale by 23 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))

0 0.5 1
−1

−0.5

0
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time
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0

0.5

1

1.5

2

frequency

scaling function
wavelet
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Haar wavelets: freq. representation

◮ s
aling fun
tion is a low-pass

⊲ approximations are low-freq. approximations

⊲ larger s
ale, low-frequen
y stop-band

◮ wavelet fun
tion is a band-pass

⊲ together with s
aling they break up a blo
k ofthe frequen
y spe
trum
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Subband 
oding

The idea (looking a
ross frequen
ies or s
ales) is thatthe transform breaks frequen
y spe
trum into bands.

w
av

el
et

 j=
2

w
av

el
et

 j=
1

w
av

el
et

 j=
0

ap
p

ro
xi

m
at

io
n

, j
=2

frequency

p
o

w
er
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Sudband 
oding is yet another approa
h to derive a wavelet transform. We derive the subband
hara
teristi
s of (Haar) wavelets here, rather than using it to derive wavelets, but we 
ouldhave started with subband 
oding as our goal, and derived a wavelet transform.
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MRA and waveletsTake mother wavelet ψ(t), with orthogonal dis
retewavelet basis on the dyadi
 grid

ψn, j(t) =
1√
2j

ψ
( t

2j
−n

)

Form 
losed subspa
es

Wj = Sp{ψn, j|n ∈ Z}As noted earlier,

Vj = ⊕∞
i= jWi

fr
eq

u
en

cy

time

scale

2j

is a MRA and the s
aling fun
tion φ was also given earlier,and Vj−1 = Vj ⊕Wj so an orthogonal proje
tion into Vj−1
an be de
omposed into proje
tions into Vj and Wj.
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Su

essive de
ompositions

We 
an iteratively de
ompose approximation Vj into awavelet part (the details) and a 
oarser s
aleapproximation Vj−1 = Vj ⊕Wj using the proje
tionoperationForm f j−1 ∈Vj−1 by

f̂ j+1 = ∑
n∈Z

〈

f̂ j,φn, j+1
〉

φn, j+1

= ∑
n∈Z

an, j+1φn, j+1.

f j+1 = ∑
n∈Z

〈

f̂ j,ψn, j+1
〉

ψn, j+1

= ∑
n∈Z

dn, j+1ψn, j+1

Vj

Vj+1

Vj+2

Vj+3

Vj+4

j+1W

j+2W

j+3W

j+4W approximation

Succesive
approximations

fine
approximation

coarse
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MRA and wavelets

f̂ j = f̂ j+1 +

.

f j+1

= ∑
n∈Z

an, j+1φn, j+1 + ∑
n∈Z

dn, j+1ψn, j+1

◮ f̂ j+1 is a 
oarser s
ale approximation of f

◮ it loses some �detail�

◮ details are 
aptured in the wavelet 
omponent .

f j+1

◮ often 
all the 
oef�
ients

⊲ an, j the approximation

⊲ dn, j the details

◮ As j →−∞ the approximation f̂ j → f
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The 
oef�
ients an, j are often 
alled the approximation, but remember the real approximatingfun
tion is a linear 
ombination of the basis fun
tions, i.e.

f̂ j = ∑
n∈Z

an, jφn, j
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The S
aling Fun
tion

The above representation requires wavelet 
oef�
ientsfor s = −∞, . . . ,∞ and u = −∞, . . . ,∞. We 
an still manageif we have 
oef�
ients 〈 f ,ψu,s〉 for s < s0, by using as
aling fun
tion φ(t).

◮ 
an be thought of as a low frequen
y (high s
ale)approximation of the signal
◮ form s
aling fun
tions φu,s(t) by the same dilationsand translation used to form wavelets
◮ s
aling fun
tion φ(t) brings in info from s
ales s > 1,so it is the aggregation of wavelets above this s
ale

|Φ(ω)|2 =

Z ∞

1
|Ψ(sω)|21

s
ds =

Z ∞

ω
|Ψ(ξ)|21

ξ
dξ
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The S
aling Fun
tion

◮ DWT representation

f =
∞

∑
j= j0

∞

∑
n=−∞

〈 f ,ψn, j〉ψn, j +
∞

∑
n=−∞

〈 f ,φn, j0〉φn, j0
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Wavelet Properties

Potential wavelet properties

◮ �nite support

◮ vanishing moments

◮ orthogonal/ bi-orthogonal
◮ 
omplex(analyti
) or real
◮ redundant (framelets)
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Appli
ations

◮ edge (and anomaly) dete
tion

◮ motion dete
tion

◮ denoising

◮ 
ompression (JPEG 2000)To do these, we will need to

◮ perform wavelet transforms on dis
rete data.

◮ make the algorithms ef�
ient (as with FFT)
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Appendi
es
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Riesz basisA family of elements {en}n∈Z from a Hilbert spa
e H issaid to be a Riesz basis of H if it is linearly independentand there exists A > 0 and B > 0 su
h that for any f ∈ Hone 
an �nd λn with

f (t) =
∞

∑
n=−∞

λnen

whi
h satis�es

1
B
|| f ||2 ≤

∞

∑
n=−∞

|λn|2 ≤
1
A
|| f ||2

If A = B the frame is said to be tight.
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