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Wavelets

In previous lectures we saw that the STFT had
problems. The Wavelet transform is the way to
overcome these problems. One of the nicest aspects of
wavelets is that they are so natural: they have been

invented several times, each time from a different
viewpoint, so we will consider several approaches that

naturally result in a Wavelet transform, starting by
extending our understanding of the uncertainty principle
and Windowed Fourier Transforms.
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Limitations of the STFT

m computational cost O(nmlogm)

m tfime/frequency resolution tradeoff
m small mbetter time, worse frequency resolution

m tfime/frequency resolution tradeoff is fixed
m higher freq. can change faster than low freq.
m appropriate resolution for each frequency?

m how can we do better?

m some improvement might be gained through
using better window functions (I have just used
rectangular windows above)

m lets try to get a more theoretical understanding
of windows, and uncertainty bounds
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Cutting up the time-frequency space

STFT partition of time-frequency

T
y

frequency
frequency

, — ,
time time

Areas of boxes don't get smaller!
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Scaling property of FT

If we scale a function in time, then

Fita) = F(3)

a

m Reciprocal scaling in each domain
m Tighter in Time, makes it looser in Fourier domain

m This contributes to uncertaintyllll

m in the STFT we use a window function to
restrict the support of basis functions

m tighter support on window function (less
uncertainty in the time domain) results in a
wider function in the frequency domain (and so
more uncertainty there).
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Heisenberg's Uncertainty Principle
Heisenberg's inequality is

h

AXAp > o
where Ax and Ap are the unknown errors in position and momentum,
respectively. It arises because, when one measures, say the location
of a particle, one must bounce a photon on the particle. The impact of
the photon changes the momentum of the particle by an unknown
amount. One can reduce the energy of the photon to reduce the range
of uncertainty in this change in momentum, but only by reducing the
photon's frequency, thereby reducing the accuracy of the localization
gained through the measurement.
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Uncertainty Principle

Given a transient signal f(t), we want to localize this
signal in time and frequency. We measure mean location
of transient time and frequency by

u = ﬁ/ tf (1) ck

_ Lt 2
E T HfHZ/ooS“:(S)‘ dS

Measure uncertainties in time and frequency by variance

about the mean, e.g.

1 00
2 _ = 2 2
O-t Bl HfHZ /_oo(t U) ’f(t)’ d

1 00
o =y S EFEPE
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Uncertainty Principle

Theorem: For a function f € L?, the temporal and
frequency variance satisfy

O O > 1
P55 = Anm

And this is an equality only if there exist
(u,&,a,b) € R? x C? such that

f(t) = ag PI-W g2t

for which
02 = L
U A2
L
> AT
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Uncertainty Principle

Proof: It is sufficient to prove the theorem for f such
that u=¢& = 0 as we can always perform shifts in time
and frequency, e.g. by taking exp(i2rt) f (t —u), to get
the general case. In the case u=¢ =0 we get

1
ofog—W/ 2 (t \Zd/ 2|F(s)2ds

Remember T{%} = (i2rms)F (s), so Rayleigh's theorem
implies

/_0:0yiznsF(s)\st:4#/_0;\1"@)\%&
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Uncertainty Principle

Proof: Hence we can write

1
2.2 _ 21§ (t)[2 £ (t)[2
Of 05 = 4n2|]f|]4/ te| f(t)] ct/ (1)< ck

Schwarz's inequality (for real functions)

/m m/w W>Uw1w ]

with equality only if Wx(X) = aw;(x) for some constant a.

07 02 > T[Z?]-fH‘l [/ tf/(t)f(t )dr
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Uncertainty Principle

Proof: When W;(x) and Y1(x) are complex, a more
appropriate form of Schwarz's inequality is (from
Bracewell, p.176) gives

o [ s e [ a0 [ [ w000 + 4a00us00) ]

So

S 2
07 02 16“21“”’4 _/wt(f’(t)f*(t)Jr (1) f(t)) dt]

|V

1 [/, d ’
> L *
= e f)r )t O (t))d]

- " 2
> e |RITOF+ [ It0a)
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Uncertainty Principle

Proof: The Theorem holds for all f € L4(R), but we are
mainly interested in transient signals

m transient signals go to zero at some point
m |ets have a fairly weak definition lim;_.+/tf(t) =0

m in this case, the first ferm in the integration by
parts is zero, so

1 [ e 2
252 > f(t)]?
- HE _/m‘ Wl dt]
1 i 2
> f|2
1
16T%
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Uncertainty Principle

Proof: To obtain an equality, note that Schwarz's
inequality requires W»(x) = ay;(x) for some constant a,
which in this case implies that

£/(t) = —2bt f(t)
which is frue only for
f(t) =ae ™

This is the result for (u,§) = (0,0). We perform a
frequency and time translation to freq. & and time u to
get

f(t) = ag P(I-W*g2met

[
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Gabor function

Definition: A Gabor function

fa,b,u,E (t) _ ae—bT[(t—u)ZeiZT[Et

It has FT
Fabuz(S) = & gs8)?/bgiznsy

Vb

Mean position and frequency are u and &, and the
uncertainty in location is

1 S
2 _ W22 — / 2brt

" HfHZ/ t-u?fOfa== [ e a=__

2

Oy = i2/ (s—&)*|F(s)|°ds= / (2e 2 g — 2

H b art
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Gabor function

Gabor function FFT of Gabor function
- - - - - - — reail
il 1 — imaginary ||
envelope
0 0] ; vA
— real
1} — imaginary || -1}
envelope . ) ) )
0 0.2 0.4 0.6 0.8 1 0O 10 20 30 40 50

Gabor function
= Gaussian window applied to a complex sinusoid
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Gabor function

Gabor function FFT of Gabor function
- - - - - - — rea{I
il 1 — imaginary ||
envelope
0 4] ] ~
— real
1} — imaginary || -1}
envelope . ) ) )
0 0.2 0.4 0.6 0.8 1 0O 10 20 30 40 50

If we make the time-domain function narrower
the frequency domain function gets wider
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Cutting up the time-frequency space

Basis-like functions for a STFT with a window function




An alternative

Remember that we can scale window functions to change
the resolution in tfime and frequency.

m higher frequencies can change more quickly

m why not change frequency resolution to match the
frequency?

m just have o make the window width a function of
frequency

m e.g. for the Gabor functions f(t) = g bt —u)? g 2met
make the window frequency dependent by making b
a function of &

m higher frequencies make the window narrower
m so for larger & we want smaller b.
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Wavelets

Wavelet are the natural result of this idea.

m start with a function we call the Mother Wavelet
m e.g. a rectangular pulse, or a Gabor function
m denote by Y(t)

m require € L?, |[Q]=1and [Z W)k =0

m construct a set of atomic functions Y, s (atoms)
from this function by
m dilation (stretching and shrinking by s)
® franslation (shifting in tfime by u)

Wus(t) = %w (t%“)

m e.g. could generate any Gabor function this way
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Definition: Atoms
Time-frequency atoms {@,}, underly many transforms

mQclL?
o) =1
m Transform F(y) = (f(t),@,(t))

For example the STFT

Qy(t) = ge u(t) = e gt —u)

where g(t) is the (suitably normalized) window function.
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Continuous wavelet transform

Wavelet Transform (analysis)

WO} =W = (fwd = [ 0w () d

Wavelet Reconstruction (synthesis), choose a complete,
orthogonal set of wavelets {{j}, then

= Z;<fawn,j>wn,1

Similar to the generalized Fourier transform.
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Wavelets

There are many possible Mother Wavelets

m Haar
m Daubechies
m Mexican hat

m Gabor
_ I

Each has slightly different properties - much the same
as when we considered window functions.
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Wavelet Example

Mexican Hat wavelets are given by the second
derivative of a Gaussian function, e.g.

t) = 2 r 1) ex —t
0= iz (0 2) (202

Its FTis

(o) = VBT (—02w2>

W ex
Ve Pl

where w= 215 is frequency in radians per time unit.
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Wavelet Example

Mexican Hat wavelets

wavelet FT of the wavelet
0.4 r 0
0.2 -0.2
0 -0.4f
-0.6
-0.2
> 3 -0.8
-0.4f
_1-
-0.6
-1.2
-0.8 ~1.4}
B 0 5 % 0 5
time frequency
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Example wavelet transform

100 200 300 400 500 600 700 800 900 1000

log2(s)
(o]

0 100 200 300 400 500 600 700 800 900 1000
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Wavelet Basis

We don't need to consider all possible wavelet
translations and dilations:

m We can think of the wavelet transform as a
generalized FT

m So we want to find an orthogonal basis

m Also want time resolution tuned to frequency
m Choose a set of wavelets such that we get this
m Choose points on the dyadic grid
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Dyadic grid

Higher frequencies change more rapidly than low
frequencies and so need to be sampled at a higher rate.

A soseseseesensegeseeseeresee
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Wavelet Partition

A

frequency

>

time
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Cutting up the time-frequency space

Basis functions for a wavelet(-like) transform

frequency

time
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Wavelet transforms

m Continuous Wavelet Transform (CWT) is the
transform onto the whole space (u,s).

m Discrete Wavelet Transform (DWT) is the
continuous transform, onto the discrete space given

by the dyadic grid.
m wavelet basis on dyadic grid defined by

— 2
u = 2n

where nand j are integers. So we get the basis

Wn,j(t) = \/%UJ (% — n)
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Scalogram

Take the power in each wavelet coefficient, e.g.
Wi (u,9)[?
and call this the scalogram

m analogous to periodogram (power of Fourier
transform)

m analogous to spectrogram (power of STFT)
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Time-Frequency Measurement

We can perform transform in either time or frequency
domain

WL} =W (U,s) = /f (W o(t) ok = /F (N)WE (1) dr
where W ((r) = F{Ws(t)}

Note that |
Wys(r) =™ /sW(sr)

using the scaling and time-translation properties.
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Time-Frequency resolution

Time-frequency resolution of a wavelet

WO} =W = (fwd = [ 0w () d

Suppose WLOG that U is centered at O, which implies
Wys is centered at u, then

[t wrwda = [ Clupa=¢ [ Clu o=

So the energy spread of a wavelet atom Y, is a "box"
so; wide in time.

m 0; depends on the particular mother wavelet
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Time-Frequency resolution

The FT of a wavelet is
Wys(r) = e "™ y/sW(sr)
The center frequency is therefore ny/s, where ny is the

center frequency of the mother wavelet.

m hence we call sthe scale, and note that is it
proportional to one over the frequency.

m the center frequency of the mother wavelet is given
by

ﬂw—/ w|¥(w)]*dow
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Time-Frequency resolution

The energy spread of the wavelet about the central
frequency ny/sis

1/ n\? _ 0%
Ex/o (0-1) " |Wus(w) o= 22

where
1 00
o | (@=n)1W(w)|dos

So the energy spread of a wavelet atom Y, is a "box"

02, =

m so; wide in time (wider for lower frequencies)

m 0,/s in frequency (finer for lower freq.)
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MultiResolution

Approximation
and Wavelets

Wavelets were independently invented from several
different viewpoints. In this section we start by
considering how we can approximate functions at
different levels of detail, and by doing so come up again
with the notion of wavelefts.
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MultiResolution Analysis

m g hoted, we call s scale
m time-resolution at a particular scale sis fixed

m at different scales, the time resolution is
proportional o the scale

m |ike observing the data at multiple scales

m hence the name multiresolution analysis

m we can take this concept further by considering
multiresolution approximation
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Approximation

Definition: An approximation of a function f € L2 in
subspace V is defined as the orthogonal projection of f

onto V (e.g. the projection f € V that minimizes || f — f|).

If an orthonormal basis {@,} for V exists, then the
projection intfo the space is given by

fA=§<f><Py><Py
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Projection

Simple example of projection: )
m projecting an (X,Y,2)
vector into the x—y plane.

m vector ve R? is projected
to Ve R?

m take (1,0,0) and (0,1,0) as
the basis vectors of the
X—Y plane.

m inner product is just
vector dot product

v = [v.(1,0,0)](1,0,0)+[v.(0,1,0)](0,1,0)
= (vq,V2,0)
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Approximation

A

fx)

D1

OF)
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Approximation

A

fx)

D1

OF)
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MultiResolution Approximation (MRA

A sequence {V|}jcz of closed subspaces of L%(R) is
called a MultiResolution Approximation (MRA) if

1. VizacVforall jeZ

2. f(t)eVje f(t—2k)e V| foradll jkeZ

3. ft)eVj< f(t/2) eVjq forall j,keZ

4. limj_.V;={0}

B. limj__oVj=L%R)

6. 30 such that {6(t —n)}.cz is a Riesz basis of V,.

We can think of Vi grouping together the
approximations at scale 2/. Sometimes call j the octave
(through analogy to music).
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MRA example

A VO fix)

®o,0
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MRA example

A Vl fix)

©o,1
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MRA example

A
V- 1 fix)

©o,-1
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MRA examples

Examples:
m piecewise constant: see above.

m Shannon approximation: using frequency
band-limited functions (which hence must have
infinite support in the time domain). Orthonormal
basis singt —n).

1

0.5F

0

_05 'l 'l 'l 'l 'l 'l 'l
-4 -3 -2 -1 0 1 2 3 4

m Spline approximation:
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MRA and scaling functions

From the Riesz basis 30 for the MRA, we can derive an
orthonormal basis {@,;(t) }nez for V. The functions @ are
called scaling functions, and can be derived from a
mother scaling function as with wavelets, e.g.

Gnj(t) = \%m(% - n)

The approximation of a function f € L*(R) is given by

fit) =5 (F,00)) @nj(t)

nez

where

()= [ 10@0d= [ 1)—=0(5—n) d=[f+q]m)
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The Approximation

The approximation of a function f € LZ(IR{) is given by

ﬂ(t) Z<f(phjcpﬂj Zaj

nez nez

where a;(n) = (f,@ ;) = [f*CPJ( )

m frequency response of the approximation
coefficients a;(n) depends on the frequency
response of the scaling function

m scaling function typically a low-pass, so this
becomes a low-frequency approximation.

m larger scale gives a coarse approx, so lower-freq.

m consistent with scaling law (as we dilate scaling
function, the filter pass-band is reduced)
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Relationship to wavelets

The approximation of a function fj €V, into V,, is

fira(t) = () enj(t)

nezZ

m when we approximate a function f €V; with a
coarser approximation f €V, we lose detail

m prefer a decomposition of V; into an orthogonal sum
of Vi 1 and W4

® W1 are the bits we lost in the approximation

m should be able to recombine Vj,1 and W1 to get

m natural to associate W1 somehow with the wavelet
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Relationship to wavelets

fine '
Vj approximation

projection

Wij+1 o Vij+1

coarser .
approximation
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Relationship to wavelets

Properties imposed by the relationship

1. W1 CVj, so the basis vectors of W1 must be €V;.
m we want the basis of W ; to be wavelets, so

Pj+1 € W1 CV,

m hence we can represent ;.1 in terms of Y;, i.e.,
Wo,j+1(t) =D aj(n)en;(t)
n

2. V;j is an orthogonal sum of V.1 and W, 1, so

(@oj+1(t), Pnj41(t)) =0
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Relationship to wavelets

Take the properties above (for j =0), and work out
relationships between mother wavelet, and mother
scaling function. First take the property that

Wo,j+1(t) =D aj(n)en;(t)

for j=0
bos(t) = 3 ax(eno(t (1)
W(t/2)/vV2 = Y a(molt—n) (2)
wt) = Y ame—n) (3)

n
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Relationship to wavelets

Combining the first and second properties (from p.51)

= > a(n)e(2t —

@t —n)) / W)t —n)d
we get

[, ¥ ako@—Kat-na=yak [ o@-Kgt-nd-=0

which defines possible values for a(k)
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Example: Haar wavelets

Piecewise constant approximation: so take

o_f1 ifost<i
M=9 o otherwise

Basis functions for approximations are rectangular
pulses.

;a(k)/ch@t—k)cp(t—n)ot = 0

Za(k)/n G2t —Kd = O
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Example: Haar wavelets

Now, @(2t — k) is only positive in the interval [n,n+1] for
K=2nor2n+1

n+1
Za(k)/ p2t—kd = 0
n
a(2n)+a(2n+1) = 0
because in both cases the integral is 1.

The function with minimal support that satisfies this
relationship has a(0) =1 and a(1) = —1 and all other
a(k) =0, so

P(t) = @(2t) — (2t —1)
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Haar wavelets

Scaling and wavelet functions for the Haar transform
shown below

scaling function mother wavelet

Approximations are piecewise constant curves.
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Haar wavelets: freq. representation

At scale j =0, scale by 2° (Yo j(t) = W (3))

== scaling function
= = wavelet

2

1.5

0.5

0
0 0.1 0.2 0.3 0.4

frequency
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Haar wavelets: freq. representation

At scale j =1, scale by 2* (W (t) = \/%Lp (21))

1 2
== scaling function
= = wavelet
0.5 1.5
|
|
|
|
|
of , 1
|
|
|
|
-0.5¢ " 0.5
_1 O ‘
: 0 0.1 0.2 0.3 0.4
time frequency
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Haar wavelets: freq. representation

At scale j =2, scale by 2% (o i(t) = \/%Lp (21))

1

== scaling function
= = wavelet

0.5

0 0.1 0.2 0.3 0.4
frequency
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Haar wavelets: freq. representation

At scale j =3, scale by 2° (Yo j(t) = W (3))

1 2

== scaling function
= = wavelet

0.5 1.5

: 0 0.1 0.2 0.3 0.4
time frequency
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Haar wavelets: freq. representation

m scaling function is a low-pass
m approximations are low-freq. approximations
m larger scale, low-frequency stop-band

m wavelet function is a band-pass

® together with scaling they break up a block of
the frequency spectrum
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Subband coding

The idea (looking across frequencies or scales) is that
the transform breaks frequency spectrum into bands.

o
=
o
Ol o
L
- N — o
s | I i I
T O [ ©
= [ [3) <
S > >
s | & & 2
o
o
)
y
frequency
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MRA and wavelets

Take mother wavelet W(t), with orthogonal discrete

wavelet basis on the dyadic grid
1t k sesesesegesesesogesesesesegeseses
wn,J(t)—ﬁw(g—n) STLTLTITItitTLT

Form closed subspaces
Wj = Sp{Unj[ne Z} ‘ I

scale

frequency

As noted earlier,
Vj = @iOO:j\M Y

time

is a MRA and the scaling function @ was also given earlier,
and V;_1 =V; &W, so an orthogonal projection into V;_;
can be decomposed into projections into V; and W,.
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Successive decompositions

We can iteratively decompose approximation V; into a
wavelet part (the details) and a coarser scale
approximation V;_1 =V; &W, using the projection
operation

Form fj_l EVj_l by

fine _
approximation

e

fira = Z<ﬂ,(Pn,j+1>(Pn,j+l

nez .
Wi+1 Succesive
— Z an,j+1Ch j+1 approximations
nez Wj+2
fj+1 — z <fj7L|Jn,j+1> Wn,j+1
nez

coarse
approximation

= > Onjr1Wnjsa

nez
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MRA and wavelets

= Tt Ty
= Z An j+1Ph,j+1 T Z dn,j+1L|Jn,j+1
nez nez

m i1 is a coarser scale approximation of f
m it loses some "detail”

m details are captured in the wavelet component f .,

m often call the coefficients
m a,; the approximation

m d,; the details

m As j — —o the approximation f; — f
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The Scaling Function

The above representation requires wavelet coefficients
for s=—,...,c0oand u= —o,..., 0. We can still manage

if we have coefficients (f,,s) for s< s, by using a
scaling function @(t).

m can be thought of as a low frequency (high scale)
approximation of the signal

m form scaling functions @,s(t) by the same dilations
and translation used to form wavelets

m scaling function @(t) brings in info from scales s> 1,
so it is the aggregation of wavelets above this scale

0= [ we)ds— [wiE) g de
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The Scaling Function

m DWT representation

— _Z qun,j>L|Jn,j‘|‘ Z <f7(pﬂ,jo>(pﬂ,jo

N=—00

M s

j=JoN
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Wavelet Properties

Potential wavelet properties

m finite support

m vanishing moments

m orthogonal/ bi-orthogonal
m complex(analytic) or real
m redundant (framelets)
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Applications

m edge (and anomaly) detection

m motion detection
m denoising
m compression (JPEG 2000)

To do these, we will need to

m perform wavelet transforms on discrete data.
m make the algorithms efficient (as with FFT)
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Appendices
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Riesz basis

A family of elements {e,}ncz from a Hilbert space H is
said to be a Riesz basis of H if it is linearly independent
and there exists A > 0and B > 0 such that for any f ¢ H
one can find A, with

which satisfies

1 2 i 2 1 2
1P < S el < ]

N=—00

If A=B the frame is said to be tight.
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