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WaveletsIn previous letures we saw that the STFT hadproblems. The Wavelet transform is the way tooverome these problems. One of the niest aspets ofwavelets is that they are so natural: they have beeninvented several times, eah time from a differentviewpoint, so we will onsider several approahes thatnaturally result in a Wavelet transform, starting byextending our understanding of the unertainty prinipleand Windowed Fourier Transforms.
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Limitations of the STFTomputational ost O(nm logm)time/frequeny resolution tradeoffsmall m better time, worse frequeny resolutiontime/frequeny resolution tradeoff is �xedhigher freq. an hange faster than low freq.appropriate resolution for eah frequeny?how an we do better?some improvement might be gained throughusing better window funtions (I have just usedretangular windows above)lets try to get a more theoretial understandingof windows, and unertainty bounds
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Cutting up the time-frequeny spae

STFT partition of time-frequeny
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Areas of boxes don't get smaller!
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Saling property of FT

If we sale a funtion in time, then
F { f (at)} =

1
a

F
( s

a

)

Reiproal saling in eah domainTighter in Time, makes it looser in Fourier domainThis ontributes to unertainty!!!!in the STFT we use a window funtion torestrit the support of basis funtionstighter support on window funtion (lessunertainty in the time domain) results in awider funtion in the frequeny domain (and somore unertainty there).
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Heisenberg's Unertainty Priniple

Heisenberg's inequality is

∆x∆p ≥ h
2πwhere ∆x and ∆p are the unknown errors in position and momentum,respetively. It arises beause, when one measures, say the loationof a partile, one must boune a photon on the partile. The impat ofthe photon hanges the momentum of the partile by an unknownamount. One an redue the energy of the photon to redue the rangeof unertainty in this hange in momentum, but only by reduing thephoton's frequeny, thereby reduing the auray of the loalizationgained through the measurement.
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Unertainty Priniple

Given a transient signal f (t), we want to loalize thissignal in time and frequeny. We measure mean loationof transient time and frequeny by
u =

1
|| f ||2

Z ∞

−∞
t| f (t)|2dt

ξ =
1

|| f ||2
Z ∞

−∞
s|F(s)|2 ds

Measure unertainties in time and frequeny by varianeabout the mean, e.g.
σ2

t =
1

|| f ||2
Z ∞

−∞
(t −u)2| f (t)|2 dt

σ2
s =

1
|| f ||2

Z ∞

−∞
(s−ξ)2|F(s)|2 ds
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Unertainty Priniple

Theorem: For a funtion f ∈ L2, the temporal andfrequeny variane satisfy

σt σs ≥
1
4πAnd this is an equality only if there exist

(u,ξ,a,b) ∈ R
2×C

2 suh that
f (t) = ae−b(t−u)2

ei2πξtfor whih

σ2
t =

1
4πb2

σ2
s =

b2

4π
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Unertainty Priniple

Proof: It is suf�ient to prove the theorem for f suhthat u = ξ = 0 as we an always perform shifts in timeand frequeny, e.g. by taking exp(i2πξt) f (t −u), to getthe general ase. In the ase u = ξ = 0 we get
σ2

t σ2
s =

1
|| f ||4

Z ∞

−∞
t2| f (t)|2 dt

Z ∞

−∞
s2|F(s)|2 ds

Remember F
{

d f
dt

}

= (i2πs)F(s), so Rayleigh's theoremimplies

Z ∞

−∞
|i2πsF(s)|2 ds = 4π2

Z ∞

−∞
| f ′(t)|2dt
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Unertainty Priniple

Proof: Hene we an write

σ2
t σ2

s =
1

4π2|| f ||4
Z ∞

−∞
t2| f (t)|2 dt

Z ∞

−∞
| f ′(t)|2 dt

Shwarz's inequality (for real funtions)
Z b

a
ψ1(x)

2dx
Z b

a
ψ2(x)

2dx ≥
[

Z b

a
ψ1(x)ψ2(x)dx

]2

with equality only if ψ2(x) = αψ1(x) for some onstant α.

σ2
t σ2

s ≥
1

4π2|| f ||4
[

Z ∞

−∞
t f ′(t) f (t)dt

]2
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Unertainty Priniple

Proof: When ψ1(x) and ψ1(x) are omplex, a moreappropriate form of Shwarz's inequality is (fromBraewell, p.176) gives

4
Z b

a
|ψ1(x)|2dx

Z b

a
|ψ2(x)|2dx≥

[

Z b

a
(ψ∗

1(x)ψ2(x)+ψ1(x)ψ∗
2(x))dx

]2

So

σ2
t σ2

s ≥ 1
16π2|| f ||4

[

Z ∞

−∞
t
(

f ′(t) f ∗(t)+ f ∗′(t) f (t)
)

dt

]2

≥ 1
16π2|| f ||4

[

Z ∞

−∞
t

d
dt

( f (t) f ∗(t)) dt

]2

≥ 1
16π2|| f ||4

[

[

t | f (t)|2
]∞
−∞ +

Z ∞

−∞
| f (t)|2 dt

]2
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Unertainty Priniple

Proof: The Theorem holds for all f ∈ L2(R), but we aremainly interested in transient signalstransient signals go to zero at some pointlets have a fairly weak de�nition lim |t|→∞
√

t f (t) = 0in this ase, the �rst term in the integration byparts is zero, so
σ2

t σ2
s ≥ 1

16π2|| f ||4
[

Z ∞

−∞
| f (t)|2 dt

]2

≥ 1
16π2|| f ||4

[

|| f ||2
]2

≥ 1
16π2
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Unertainty Priniple

Proof: To obtain an equality, note that Shwarz'sinequality requires ψ2(x) = αψ1(x) for some onstant α,whih in this ase implies that
f ′(t) = −2bt f (t)whih is true only for

f (t) = ae−bt2

This is the result for (u,ξ) = (0,0). We perform afrequeny and time translation to freq. ξ and time u toget

f (t) = ae−b(t−u)2
ei2πξt

2
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Gabor funtionDe�nition: A Gabor funtion

fa,b,u,ξ(t) = ae−bπ(t−u)2
ei2πξt

It has FT

Fa,b,u,ξ(s) =
a√
b

e−π(s−ξ)2/be−i2πsu

Mean position and frequeny are u and ξ, and theunertainty in loation is
σ2

t =
1

|| f ||2
Z ∞

−∞
(t −u)2| f (t)|2 dt =

1
b

Z ∞

−∞
t2e−2bπt2

dt =
1

4πb2

σ2
s =

1
|| f ||2

Z ∞

−∞
(s−ξ)2|F(s)|2 ds =

1
b

Z ∞

−∞
t2e−2bπt2

dt =
b2

4π
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Gabor funtionGabor funtion
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Gabor funtion= Gaussian window applied to a omplex sinusoid
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Gabor funtionGabor funtion
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If we make the time-domain funtion narrowerthe frequeny domain funtion gets wider
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Cutting up the time-frequeny spae

Basis-like funtions for a STFT with a window funtion
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An alternativeRemember that we an sale window funtions to hangethe resolution in time and frequeny.higher frequenies an hange more quiklywhy not hange frequeny resolution to math thefrequeny?just have to make the window width a funtion offrequenye.g. for the Gabor funtions f (t) = ae−bπ(t−u)2
ei2πξtmake the window frequeny dependent by making ba funtion of ξhigher frequenies make the window narrowerso for larger ξ we want smaller b.

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.18/71



WaveletsWavelet are the natural result of this idea.start with a funtion we all the Mother Wavelete.g. a retangular pulse, or a Gabor funtiondenote by ψ(t)require ψ ∈ L2, ||ψ|| = 1 and R ∞
−∞ ψ(t)dt = 0onstrut a set of atomi funtions ψu,s (atoms)from this funtion bydilation (strething and shrinking by s)translation (shifting in time by u)

ψu,s(t) =
1√
s
ψ

(

t −u
s

)

e.g. ould generate any Gabor funtion this way
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De�nition: AtomsTime-frequeny atoms {φγ}, underly many transforms
φγ ∈ L2

||φγ|| = 1Transform F(γ) =
〈

f (t),φγ(t)
〉

For example the STFT
φγ(t) = gξ,u(t) = e−i2πξtg(t −u)where g(t) is the (suitably normalized) window funtion.
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Continuous wavelet transformWavelet Transform (analysis)

W { f (t)} = Wf (u,s) = 〈 f ,ψu,s〉 =

Z ∞

−∞
f (t)

1√
s
ψ∗

(

t −u
s

)

dt

Wavelet Reonstrution (synthesis), hoose a omplete,orthogonal set of wavelets {ψ j,n}, then
f = ∑

j
∑
n

〈 f ,ψn, j〉ψn, j

Similar to the generalized Fourier transform.
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WaveletsThere are many possible Mother WaveletsHaarDaubehiesMexian hatGabor...Eah has slightly different properties � muh the sameas when we onsidered window funtions.
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Wavelet Example

Mexian Hat wavelets are given by the seondderivative of a Gaussian funtion, e.g.
ψ(t) =

2

π1/4
√

3σ

(

t2

σ2
−1

)

exp

(−t2

2σ2

)

Its FT is

Ψ(ω) =
−
√

8σ5/2π1/4

√
3

ω2exp

(−σ2ω2

2

)

where ω = 2πs is frequeny in radians per time unit.
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Wavelet Example

Mexian Hat waveletswavelet
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Example wavelet transform
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Wavelet BasisWe don't need to onsider all possible wavelettranslations and dilations:We an think of the wavelet transform as ageneralized FTSo we want to �nd an orthogonal basisAlso want time resolution tuned to frequenyChoose a set of wavelets suh that we get thisChoose points on the dyadi grid
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Dyadi grid

Higher frequenies hange more rapidly than lowfrequenies and so need to be sampled at a higher rate.
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Wavelet Partition
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Cutting up the time-frequeny spae

Basis funtions for a wavelet(-like) transform
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Wavelet transformsContinuous Wavelet Transform (CWT) is thetransform onto the whole spae (u,s).Disrete Wavelet Transform (DWT) is theontinuous transform, onto the disrete spae givenby the dyadi grid.wavelet basis on dyadi grid de�ned by

s = 2j

u = 2jnwhere n and j are integers. So we get the basis

ψn, j(t) =
1√
2j

ψ
( t

2j
−n

)
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Salogram

Take the power in eah wavelet oef�ient, e.g.
|Wf (u,s)|2and all this the salogramanalogous to periodogram (power of Fouriertransform)analogous to spetrogram (power of STFT)
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Time-Frequeny Measurement

We an perform transform in either time or frequenydomain

W { f} = Wf (u,s) =

Z ∞

−∞
f (t)ψ∗

u,s(t)dt =

Z ∞

−∞
F(r)Ψ∗

u,s(r)dr

where Ψ∗
u,s(r) = F

{

ψ∗
u,s(t)

}

Note that

Ψu,s(r) = e−i2πur√sΨ(sr)using the saling and time-translation properties.
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Time-Frequeny resolution

Time-frequeny resolution of a wavelet
W { f (t)} = Wf (u,s) = 〈 f ,ψu,s〉 =

Z ∞

−∞
f (t)

1√
s
ψ∗

(

t −u
s

)

dt

Suppose WLOG that ψ is entered at 0, whih implies

ψu,s is entered at u, then
Z ∞

−∞
(t −u)2|ψu,s|2 dt =

Z ∞

−∞
t2|ψ0,s|2 dt = s2

Z ∞

−∞
t2|ψ(t) |2 dt = s2σ2

t

So the energy spread of a wavelet atom ψu,s is a �box�

sσt wide in time.
σt depends on the partiular mother wavelet
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Time-Frequeny resolution

The FT of a wavelet is

Ψu,s(r) = e−i2πur√sΨ(sr)The enter frequeny is therefore ηψ/s, where ηψ is theenter frequeny of the mother wavelet.hene we all s the sale, and note that is itproportional to one over the frequeny.the enter frequeny of the mother wavelet is givenby

ηψ =

Z ∞

−∞
ω|Ψ(ω)|2 dω
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Time-Frequeny resolution

The energy spread of the wavelet about the entralfrequeny ηψ/s is

1
2π

Z ∞

0

(

ω− η
s

)2
|Ψu,s(ω)|dω =

σ2
ω

s2where

σ2
ω =

1
2π

Z ∞

0
(ω−η)2 |Ψ(ω)|dωSo the energy spread of a wavelet atom ψu,s is a �box�

sσt wide in time (wider for lower frequenies)

σω/s in frequeny (�ner for lower freq.)
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MultiResolution

Approximation

and WaveletsWavelets were independently invented from severaldifferent viewpoints. In this setion we start byonsidering how we an approximate funtions atdifferent levels of detail, and by doing so ome up againwith the notion of wavelets.
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MultiResolution Analysis

a noted, we all s saletime-resolution at a partiular sale s is �xedat different sales, the time resolution isproportional to the salelike observing the data at multiple saleshene the name multiresolution analysiswe an take this onept further by onsideringmultiresolution approximation
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Approximation

De�nition: An approximation of a funtion f ∈ L2 insubspae V is de�ned as the orthogonal projetion of fonto V (e.g. the projetion f̂ ∈ V that minimizes || f − f̂ ||).

If an orthonormal basis {φγ} for V exists, then theprojetion into the spae is given by
f̂ = ∑

γ

〈

f ,φγ
〉

φγ
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Projetion

Simple example of projetion:projeting an (x,y,z)vetor into the x− y plane.vetor v ∈ R
3 is projetedto v̂ ∈ R

2take (1,0,0) and (0,1,0) asthe basis vetors of the
x− y plane.inner produt is justvetor dot produt

v

z

y

x

v

v̂ = [v.(1,0,0)](1,0,0)+ [v.(0,1,0)](0,1,0)

= (v1,v2,0)
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Approximation
φ 1

f(x)

φ φ φ2 3 4
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Approximation
φ 1

f(x)

φ φ φ2 3 4

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.41/71



MultiResolution Approximation (MRA)

A sequene {V j} j∈Z of losed subspaes of L2(R) isalled a MultiResolution Approximation (MRA) if1. V j+1 ⊂ V j for all j ∈ Z2. f (t) ∈ V j ⇔ f (t −2jk) ∈ V j for all j,k ∈ Z3. f (t) ∈ V j ⇔ f (t/2) ∈ V j+1 for all j,k ∈ Z4. lim j→∞ V j = {0}5. lim j→−∞ V j = L2(R)6. ∃θ suh that {θ(t −n)}n∈Z is a Riesz basis of V0.We an think of V j grouping together theapproximations at sale 2j. Sometimes all j the otave(through analogy to musi).
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MRA example
φ 0,0

f(x)
V0
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MRA example
φ 0,1

f(x)
V1
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MRA example
φ 0,−1

f(x)
V−1

Transform Methods & Signal Processing (APP MTH 4043): lecture 09 – p.45/71



MRA examples

Examples:pieewise onstant: see above.Shannon approximation: using frequenyband-limited funtions (whih hene must havein�nite support in the time domain). Orthonormalbasis sinc(t −n).
−4 −3 −2 −1 0 1 2 3 4
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0.5

1

Spline approximation:
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MRA and saling funtions

From the Riesz basis ∃θ for the MRA, we an derive anorthonormal basis {φn, j(t)}n∈Z for V j. The funtions φ arealled saling funtions, and an be derived from amother saling funtion as with wavelets, e.g.
φn, j(t) =

1√
2j

φ
( t

2j
−n

)

The approximation of a funtion f ∈ L2(R) is given by

f̂ j(t) = ∑
n∈Z

〈 f ,φn, j〉φn, j(t)where

〈 f ,φn, j〉=
Z ∞

−∞
f (t)φn, j(t)dt =

Z ∞

−∞
f (t)

1√
2j

φ
( t

2j
−n

)

dt =
[

f ∗ φ̄ j

]

(n)
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The Approximation

The approximation of a funtion f ∈ L2(R) is given by
f̂ j(t) = ∑

n∈Z

〈 f ,φn, j〉φn, j(t) = ∑
n∈Z

a j(n)φn, j(t)where a j(n) = 〈 f ,φn, j〉 =
[

f ∗ φ̄ j
]

(n)frequeny response of the approximationoef�ients a j(n) depends on the frequenyresponse of the saling funtionsaling funtion typially a low-pass, so thisbeomes a low-frequeny approximation.larger sale gives a oarse approx, so lower-freq.onsistent with saling law (as we dilate salingfuntion, the �lter pass-band is redued)
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Relationship to wavelets

The approximation of a funtion f̂ j ∈Vj into Vj+1 is
f̂ j+1(t) = ∑

n∈Z

〈

f̂ j,φn, j
〉

φn, j(t)

when we approximate a funtion f ∈Vj with aoarser approximation f ∈Vj+1 we lose detailprefer a deomposition of Vj into an orthogonal sumof Vj+1 and Wj+1

Wj+1 are the bits we lost in the approximationshould be able to reombine Vj+1 and Wj+1 to getbak to f ∈Vj+1natural to assoiate Wj+1 somehow with the wavelet
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Relationship to wavelets
projection

Vj

Vj+1

approximation
coarser

fine
approximation

j+1W
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Relationship to wavelets

Properties imposed by the relationship1. Wj+1 ⊂Vj, so the basis vetors of Wj+1 must be ∈Vj.we want the basis of Wj+1 to be wavelets, so
ψ j+1 ∈Wj+1 ⊂Vjhene we an represent ψ j+1 in terms of ψ j, i.e.,

ψ0, j+1(t) = ∑
n

a j(n)φn, j(t)

2. Vj is an orthogonal sum of Vj+1 and Wj+1, so

〈φ0, j+1(t),ψn, j+1(t)〉 = 0
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Relationship to wavelets

Take the properties above (for j = 0), and work outrelationships between mother wavelet, and mothersaling funtion. First take the property that
ψ0, j+1(t) = ∑

n

a j(n)φn, j(t)

for j = 0

ψ0,1(t) = ∑
n

a1(n)φn,0(t) (1)

ψ(t/2)/
√

2 = ∑
n

a1(n)φ(t −n) (2)

ψ(t) = ∑
n

a(n)φ(2t −n) (3)
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Relationship to wavelets

Combining the �rst and seond properties (from p.51)
ψ(t) = ∑

n

a(n)φ(2t −n)

〈ψ(t),φ(t −n)〉 =

Z ∞

−∞
ψ(t)φ(t −n)dt = 0we get

Z ∞

−∞
∑

k

a(k)φ(2t−k)φ(t−n)dt =∑
k

a(k)
Z ∞

−∞
φ(2t−k)φ(t−n)dt = 0

whih de�nes possible values for a(k)
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Example: Haar wavelets

Pieewise onstant approximation: so take
φ(t) =

{

1 if 0≤ t ≤ 1
0 otherwiseBasis funtions for approximations are retangularpulses.

∑
k

a(k)
Z ∞

−∞
φ(2t − k)φ(t −n)dt = 0

∑
k

a(k)
Z n+1

n
φ(2t − k)dt = 0
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Example: Haar wavelets

Now, φ(2t − k) is only positive in the interval [n,n+1] for
k = 2n or 2n+1

∑
k

a(k)
Z n+1

n
φ(2t − k)dt = 0

a(2n)+a(2n+1) = 0beause in both ases the integral is 1.

The funtion with minimal support that satis�es thisrelationship has a(0) = 1 and a(1) = −1 and all other

a(k) = 0, so
ψ(t) = φ(2t)−φ(2t −1)
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Haar waveletsSaling and wavelet funtions for the Haar transformshown below

t t

scaling function mother wavelet

Approximations are pieewise onstant urves.
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Haar wavelets: freq. representation

At sale j = 0, sale by 20 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))
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Haar wavelets: freq. representation

At sale j = 1, sale by 21 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))
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Haar wavelets: freq. representation

At sale j = 2, sale by 22 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))
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Haar wavelets: freq. representation

At sale j = 3, sale by 23 (ψ0, j(t) = 1√
2j

ψ
(

t
2j

))
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Haar wavelets: freq. representation

saling funtion is a low-passapproximations are low-freq. approximationslarger sale, low-frequeny stop-bandwavelet funtion is a band-passtogether with saling they break up a blok ofthe frequeny spetrum
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Subband oding

The idea (looking aross frequenies or sales) is thatthe transform breaks frequeny spetrum into bands.
w

av
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w
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MRA and waveletsTake mother wavelet ψ(t), with orthogonal disretewavelet basis on the dyadi grid

ψn, j(t) =
1√
2j

ψ
( t

2j
−n

)

Form losed subspaes

Wj = Sp{ψn, j|n ∈ Z}As noted earlier,
Vj = ⊕∞

i= jWi
fr

eq
u

en
cy

time

scale

2j

is a MRA and the saling funtion φ was also given earlier,and Vj−1 = Vj ⊕Wj so an orthogonal projetion into Vj−1an be deomposed into projetions into Vj and Wj.
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Suessive deompositions

We an iteratively deompose approximation Vj into awavelet part (the details) and a oarser saleapproximation Vj−1 = Vj ⊕Wj using the projetionoperationForm f j−1 ∈Vj−1 by

f̂ j+1 = ∑
n∈Z

〈

f̂ j,φn, j+1
〉

φn, j+1

= ∑
n∈Z

an, j+1φn, j+1.

f j+1 = ∑
n∈Z

〈

f̂ j,ψn, j+1
〉

ψn, j+1

= ∑
n∈Z

dn, j+1ψn, j+1

Vj

Vj+1

Vj+2

Vj+3

Vj+4

j+1W

j+2W

j+3W

j+4W approximation

Succesive
approximations

fine
approximation

coarse
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MRA and wavelets

f̂ j = f̂ j+1 +

.

f j+1

= ∑
n∈Z

an, j+1φn, j+1 + ∑
n∈Z

dn, j+1ψn, j+1

f̂ j+1 is a oarser sale approximation of fit loses some �detail�details are aptured in the wavelet omponent .

f j+1often all the oef�ients
an, j the approximation
dn, j the detailsAs j →−∞ the approximation f̂ j → f
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The Saling Funtion

The above representation requires wavelet oef�ientsfor s = −∞, . . . ,∞ and u = −∞, . . . ,∞. We an still manageif we have oef�ients 〈 f ,ψu,s〉 for s < s0, by using asaling funtion φ(t).an be thought of as a low frequeny (high sale)approximation of the signalform saling funtions φu,s(t) by the same dilationsand translation used to form waveletssaling funtion φ(t) brings in info from sales s > 1,so it is the aggregation of wavelets above this sale

|Φ(ω)|2 =

Z ∞

1
|Ψ(sω)|21

s
ds =

Z ∞

ω
|Ψ(ξ)|21

ξ
dξ
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The Saling Funtion

DWT representation

f =
∞

∑
j= j0

∞

∑
n=−∞

〈 f ,ψn, j〉ψn, j +
∞

∑
n=−∞

〈 f ,φn, j0〉φn, j0
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Wavelet Properties

Potential wavelet properties�nite supportvanishing momentsorthogonal/ bi-orthogonalomplex(analyti) or realredundant (framelets)
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Appliations

edge (and anomaly) detetionmotion detetiondenoisingompression (JPEG 2000)To do these, we will need toperform wavelet transforms on disrete data.make the algorithms ef�ient (as with FFT)
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Appendies
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Riesz basisA family of elements {en}n∈Z from a Hilbert spae H issaid to be a Riesz basis of H if it is linearly independentand there exists A > 0 and B > 0 suh that for any f ∈ Hone an �nd λn with

f (t) =
∞

∑
n=−∞

λnen

whih satis�es

1
B
|| f ||2 ≤

∞

∑
n=−∞

|λn|2 ≤
1
A
|| f ||2

If A = B the frame is said to be tight.
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