Transform Methods \& Signal Processing

lecture 12
Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

July 27, 2009

This lecture concerns a number of advanced topics: fractals and wavelets, and non-standard sampling. Note that this material is not examinable this year.

Self-similarity in the frequency domain

Self-similarity

So, Nat'ralists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller still to bite 'em
And so proceed ad infinitum
Jonathon Swift, 1733
Great fleas have little fleas upon their backs to bite 'em,
And little fleas have lesser fleas, and so ad infinitum.
And the great fleas themselves, in turn, have greater fleas to go on; While these again have greater still, and greater still, and so on.

De Morgan: A Budget of Paradoxes, p. 377.

-	-	- -	-
- - -	- - - -	- - -	- - - -
- .' .. .'' ..
" "" "" ""	"" "" "" ""	"" "" "" ""	"" ""

Transform Methods \& Signal Processing (APP MTH 4043): lecture $12-$ p.3/83

Self-similarity: IFS Fern

Mandelbrot set I

C code from

http://astronomy.swin.edu.au/~pbourke/fractals/

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.5/83

Links:
http://www.iemar.tuwien.ac.at/modul23/Fractals/subpages/33IFS.html

http://aleph0.clarku.edu/~djoyce/julia/julia.html

[^0]
Mandelbrot set II

http://aleph0.clarku.edu/~djoyce/julia/julia.html
Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $7 / 83$

Mandelbrot set III

http://www.softsource.com/softsource/fractal.html
Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.8/83

Statistical Self-similarity

Statistical Self-similarity (SS)

- this is not a course on fractals
- Fractals (such as above) are deterministic
- we are interested in statistical properties of traffic
- look for statistical self-similarity

Statistical Self-similarity

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.10/83

The three curves show successive zooms of a sample of fractional Brownian Motion (fBM) The larger red curve shows a zoom of the red region of the blue curve, and the larger green curve shows a zoom of the green region on the red curve.

Ethernet traffic

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.11/83

The curves show samples of Ethernet traffic (red), in packets per time interval, compared with a simple traditional model for traffic. The time interval use for measurement changes from the top to the bottom, the top has a fine resolution, or 0.01 seconds, with the lower two becoming successively coarser. Going from bottom to top, the region shown in black on the bottom graph is expanded out to form the next graph and similarly for the construction of the top graph.

Statistical Self-similarity

SS block aggregation definition (another definition exists)

We define he aggregated time series $\left\{X_{k}^{(m)}\right\}$ at level m by

$$
X_{k}^{(m)}:=\frac{X_{(k-1) m+1}+\cdots+X_{k m}}{m}
$$

A stationary time series $X=\left\{X_{1}, X_{2}, \ldots\right\}$ is called self-similar with Hurst parameter H if, for all m, the aggregated process $m^{1-H} X^{(m)}$ has the same distributions as X.

Example $\mathrm{f} G \mathrm{~N}:(H=0.5)$

Example $\mathrm{f} G \mathrm{~N}:(H=0.99)$

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. 15/83

Note that as H changes, the character of the curves changes. It has more correlation, and so we see "runs" of similar values, or apparent trends.

Properties of Self-Similar Process

- Stationary so $\mathbb{E} X_{i}=0, \operatorname{Var} X_{i}=\sigma^{2}$ (constant).
- $\operatorname{Cov}\left(X_{i}, X_{i+k}\right)$ depends only on the lag k and is given by

$$
\gamma(k)=\frac{1}{2} \sigma^{2}\left(|k+1|^{2 H}-2|k|^{2 H}+|k-1|^{2 H}\right) .
$$

- $\operatorname{Cov}\left(X_{i}^{(m)}, X_{i+k}^{(m)}\right)$ is given by

$$
\gamma(k)=\frac{1}{2} m^{2(H-1)} \sigma^{2}\left(|k+1|^{2 H}-2|k|^{2 H}+|k-1|^{2 H}\right) .
$$

- Asymptotic behavior of the autocorrelation

$$
\lim _{k \rightarrow \infty} \frac{\rho_{k}}{k^{2(H-1)}}=H(2 H-1) .
$$

- The variance varies with the aggregation level as

$$
\operatorname{Var} X^{(m)}=m^{2(H-1)} \sigma^{2},
$$

[^1]
Long-range dependence

Long-range dependence (LRD) for stationary process

- LRD = slow (power-law) decay in the autocovariance

$$
\gamma_{X}(k) \sim c_{\gamma}|k|^{-(1-\alpha)}
$$

as $k \rightarrow \infty$, for some $\alpha \in(0,1)$

- implies for all N

$$
\sum_{k=N}^{\infty} \gamma_{X}(k) \rightarrow \infty
$$

this is sometimes used as an alternative definition

- also called long-memory process

LRD and SS

Notice that self-similarity implies LRD with

$$
\alpha=2 H-1
$$

for $0.5 \leq H<1$, and $0 \leq \alpha<1$

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.18/83

The three graphs show the empirical autocorrelation function for three different values of H. The left graph shows the autocorrelation using linear axes, and the right graph shows a log-log graph, i.e., the axes are log-scale. Note that the autocorrelations are approximately linear (with some noise due to the empirical nature of the graphs shown) when examined on the log-log graph. This is a general property of power-laws

The horizontal dashed line shows the 95% significance level. Values under this could be considered too small to be significant. Note that the red curve lies almost entirely below this line, indicating an uncorrelated process.

LRD in the frequency domain

Example fGN spectrum $(H=0.5)$

Long-range dependence (LRD) can also be defined in the frequency domain using the Fourier transform of the autocovariance

$$
f_{x}(s) \sim c_{f}|s|^{-\alpha},|s| \rightarrow 0
$$

When $\alpha=1$ we get $1 / \mathrm{f}$ noise, but the term is often applied to the range of values of $\alpha=2 H-1$.

- frequency spectrum of white noise is flat
- frequency spectrum of Brownian motion is $1 / f^{2}$
- frequency spectrum of "pink" noise is $1 / f$

Example $\mathrm{f} G \mathrm{~N}$ spectrum $(H=0.75)$
Example fGN spectrum ($H=0.99$)

1/f noise

LRD and SS are also seen elsewhere

- cardiac rhythms (in healthy hearts)
- hydrological data (rainfall, and river flow)
- Hurst's early work was actually in Nile river data
- music seems to have similar characteristics
- turbulence
- chaotic processes in general
- financial modelling

fractional Gaussian Noise

fGN (fractional Gaussian Noise) is stationary Gaussian process X_{t} with mean μ, variance σ^{2} and autocorrelation function

$$
\rho(k)=\frac{1}{2}\left(|k+1|^{2 H}-|k|^{2 H}+|k-1|^{2 H}\right)
$$

which asymptotically goes like

$$
\rho(k) \sim H(2 H-1)|k|^{2 H-2}, \quad k \rightarrow \infty
$$

so $c_{\gamma}=H(2 H-1)$. In the frequency domain,

$$
f_{x}(s) \sim c_{f}|s|^{1-2 H}, \quad|s| \rightarrow 0
$$

where now

$$
c_{f}=\sigma_{Z}^{2} \cdot 2(2 \pi)^{1-2 H} H(2 H-1) \Gamma(2 H-1) \sin (\pi(1-H)),
$$

where $\Gamma(x)$ is the gamma function.

fractional Brownian Motion

The (non-stationary) Gaussian process with covariance function given by

$$
\Gamma(s, t)=\frac{1}{2} \sigma^{2}\left(s^{2 H}-(t-s)^{2 H}+t^{2 H}\right)
$$

variance σ^{2} and expectation 0 is called fractional
Brownian motion (fBM).
Note the increment process of $f B M$ is $f G N$, just as the increments of $B M$ are white noise.

$$
\text { FBM with } H=0.7 \text { and } \sigma^{2}=1
$$

Wavelets: interpretation

- Multi-Resolution Approximation (MRA)
\triangleright aggregation at different scales is like approximating the data at different scales
\triangleright data stats have known scaling properties
\triangleright a more general way of doing multi-scale approximation is wavelets
- sub-band filters (logarithmically placed)
\triangleright logarithmically placed, so natural log scale arises in frequency domain.
\triangleright sub-bands sampled at frequency appropriate to the bandwidth
\triangleright has the advantage of de-correlation of wavelet coefficients

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.28/83

Dyadic grid

Dyadic grid has self-similar scaling behavior!

Wavelet's as sub-band filters

The idea (looking across frequencies or scales) is that the transform breaks frequency spectrum into bands.

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $30 / 83$

Wavelet's as sub-band filters

Each band equal size on log(frequency) graph

\log (frequency)

Wavelets and scaling

- the wavelet transform de-correlates details, so can think of each series of $\left\{d_{j, k}\right\}_{k \in \mathbb{Z}}$ for each j as a time series, with short-range correlations.
- wavelet conditions ensure

$$
E\left[d_{j, k}\right]=0
$$

- we know the distribution of energy in each sub-band
- this translates to energy in each scale of wavelet coefficients $d_{j, k}$, e.g.

$$
\operatorname{Var}\left[d_{j, k}\right]=E\left[d_{j, k}^{2}\right]=\mu_{j}
$$

- we form an estimator of μ_{j} by

$$
\hat{\mu}_{j}=\frac{1}{N_{j}} \sum_{k=1}^{N_{j}}\left|d_{j, k}\right|^{2}
$$

[^2]
Wavelets and scaling

$$
\begin{gathered}
f_{x}(s) \sim c_{f}|s|^{-\alpha} \\
d_{j, k}=\left\langle f, \Psi_{j, k}\right\rangle=\int_{-\infty}^{\infty} f(t) \frac{1}{\sqrt{2 j}} \psi^{*}\left(\frac{t}{2^{j}}-k\right) d t \\
E\left[d_{j, k}^{2}\right]=2^{j \alpha} c_{f} C
\end{gathered}
$$

where

$$
C=\int_{-\infty}^{\infty}|s|^{-\alpha}\left|\Psi^{*}(s)\right|^{2} d s
$$

so

$$
\log _{2} E\left[d_{j, k}^{2}\right]=j \alpha+\log _{2} c_{f} C
$$

Perform regression on $\log _{2} \hat{\mu}_{j}$ vs the octave j.

Logscale diagram

In fact, we can approximate

$$
\log _{2} \hat{\mu}_{j} \sim N\left(j \alpha+\log _{2} c_{f} C, \frac{2^{j+1}}{n \ln ^{2} 2}\right)
$$

So we can

- estimate confidence intervals for $\log _{2} \hat{\mu}_{j}$ on the Logscale diagram
- perform a weighted regression
- estimate covariance of estimates of α and c_{f}
- actually worth adding a small correction to get $y_{j}=\log _{2} \mu_{j}-g_{j}$ (because log and expectation don' \dagger commute)

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.35/83

Non-standard sampling

Shannon theorem

"If a function $f(t)$ contains no frequencies higher than W cps, it is completely determined by giving its ordinates at a series of points spaced $(1 / 2 W)$ s apart."
Claude Shannon, "Communications in the presence of noise", Proc.IRE, 37, pp.10-21, 1949.

- uniform sampling
\triangleright samples spaced a uniform distance apart
- Nyquist limit
H.Nyquist, "Certain topics in telegraph transmission theory", AIEE Trans., 47, pp.617-644, 1928.
- Implicitly, we can reconstruct $f(t)$ from its samples \triangleright if the signal is bandlimited

Shannon theorem

Proof sketch: Assume function is bandlimited so $F(s)=0$ for $|s|>W$, then the IFT is

$$
f(t)=\int_{-\infty}^{\infty} F(s) e^{i 2 \pi s t} d s=\int_{-W}^{W} F(s) e^{i 2 \pi s t} d s
$$

If instead, we make, F periodic, with period $2 W$ then we can find a Fourier series for it, e.g.

$$
F(s)=\sum_{i=-\infty}^{\infty} A_{n} e^{i \pi n s / W}
$$

where,

$$
A_{n}=\frac{1}{2 W} \int_{-W}^{W} F(s) e^{-i \pi n s / W} d s=\frac{1}{2 W} f\left(\frac{n}{2 W}\right)
$$

Shannon interpolation

Reconstruction of original signal from IFT

$$
\begin{aligned}
f(t) & =\int_{-W}^{W} F(s) e^{-i 2 \pi s t} d s \\
& =\int_{-W}^{W} \sum_{i=-\infty}^{\infty} A_{n} e^{i \pi n s / W} e^{i 2 \pi s t} d s \\
& =\sum_{i=-\infty}^{\infty} A_{n} \int_{-\infty}^{\infty} r(s / 2 W) e^{i 2 \pi s(-t+n / 2 W)} d s \\
& =\sum_{i=-\infty}^{\infty} 2 W A_{n} \int_{-\infty}^{\infty} r(-s) e^{i 2 \pi s(2 W t-n)} d s \\
& =\sum_{i=-\infty}^{\infty} f\left(\frac{n}{2 W}\right) \operatorname{sinc}(2 W t-n)
\end{aligned}
$$

Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. $f_{s}=2 W$, or $t_{s}=1 / 2 W$, then the sample points would be

$$
f\left(\frac{n}{2 W}\right)
$$

The summation

$$
f(t)=\sum_{i=-\infty}^{\infty} f\left(\frac{n}{2 W}\right) \operatorname{sinc}(2 W t-n)
$$

represents a convolution of the sampled signal with a sinc function. Now we know the sinc has a simple rectangular transfer function, and so it acts as a perfect low-pass filter.

The last step follows because

- The IFT of $r(s)$ is $\operatorname{sinc}(t)$
- When $t=m / 2 W$ for m an integer, then $2 W t-n$ is also an integer $m-n$. Note that $\operatorname{sinc}(m-n)=\delta_{m n}$.
- Hence at those points we get

$$
f(m / 2 W)=\sum_{i=-\infty}^{\infty} 2 W A_{n} \operatorname{sinc}(2 W t-n)=\sum_{i=-\infty}^{\infty} 2 W A_{n} \delta_{m n}=2 W A_{m}
$$

Shannon interpolation

Interpretation

- convolution with sinc
- equivalent to ideal (rectangular) bandpass filter

- this is essentially what a Digital to Analogue converter tries to do
- have to build analogue filter - hard to make it ideal

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $43 / 83$

Other sampling schemes

- dyadic grid (wavelets)
- ordinate and slope sampling
- interlaced sampling
- implicit sampling
- irregular sampling
- hexagonal sampling
- many others ...

Ordinate and Slope Sampling

- sample the value, and derivative at a point

- Shannon theorem for ordinate/slope sampling We can reconstruct a function from knowledge of its ordinate and slope at every other sample point.
- e.g. half the Nyquist sampling rate

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.45/83

Implicit sampling

- e.g. sampling at zero crossings

- Applications:
\triangleright specify filter by zero crossings
\triangleright reconstruct an image

Irregular sampling

- not all sampling is on a regular grid
\triangleright Astronomical data depends on when you can make observations
* clouds might get in the way
- Geophysical data
* depends on which rock strata you can find
Δ Poisson sampling used in Internet performance measurements
\triangleright even regular samples have jitter
- all previous work assumed regular sampling
- how can we deal with irregularity?

Non-bandlimited signals

- we can't always pre-filter analogue signal with a band-pass before sampling
\triangleright Astronomical data can't be obtained between samples (e.g. clouds)
\triangleright Internet performance measurements are made with probe packets
\triangleright Acoustic measurements of position of an object
* bounce ultrasound pulse off an object every half a second
* don't see what happens in between
- aliasing is a problem without pre-filtering
\triangleright how can we cope without pre-filtering?

Astronomical data

- apparent magnitude of a variable star

data courtesy of Laurent Eyer, Laurent.Eyer@obs.unige.ch
http://obswww.unige.ch/~eyer/

Periodogram

- for uniformly sampled data X_{n}, use the periodogram

$$
P_{X}(k)=\frac{1}{N}\left|F T_{X}(k)\right|^{2}=\frac{1}{N}\left|\sum_{n=0}^{N-1} X_{n} e^{-i 2 \pi k n / N}\right|^{2} .
$$

- rewrite complex exponential in terms of trig.fn.s
$P_{X}(k)=\frac{1}{N}\left[\left(\sum_{n=0}^{N-1} X_{n} \cos (2 \pi k n / N)\right)^{2}+\left(\sum_{n=0}^{N-1} X_{n} \sin (2 \pi k n / N)\right)^{2}\right]$.
- write in terms of frequency $f=k /\left(N t_{s}\right)$ and sample times $T_{n}=n t_{s}$

$$
P_{X}(f)=\frac{1}{N}\left[\left(\sum_{n=0}^{N-1} X_{n} \cos \left(2 \pi f T_{n}\right)\right)^{2}+\left(\sum_{n=0}^{N-1} X_{n} \sin \left(2 \pi f T_{n}\right)\right)^{2}\right]
$$

Lomb-Scargle Periodogram

- for irregularly sampled data we use the Lomb-Scargle periodogram

$$
\begin{aligned}
P_{X}^{(L S)}(f)=\frac{1}{2}[& \frac{\left(\sum_{k=0}^{N-1}\left(X\left(T_{k}\right)-\bar{X}\right) \cos \left(2 \pi f\left(T_{k}-\tau\right)\right)\right)^{2}}{\sum_{k=0}^{N-1} \cos ^{2}\left(2 \pi f\left(T_{k}-\tau\right)\right)} \\
& \left.+\frac{\left(\sum_{k=0}^{N-1}\left(X\left(T_{k}\right)-\bar{X}\right) \sin \left(2 \pi f\left(T_{k}-\tau\right)\right)\right)^{2}}{\sum_{k=0}^{N-1} \sin ^{2}\left(2 \pi f\left(T_{k}-\tau\right)\right)}\right],
\end{aligned}
$$

where \bar{X} is the mean value of X_{n} and τ satisfies

$$
\tan (4 \pi f \tau)=\frac{\sum_{k=0}^{N-1} \sin \left(4 \pi f T_{k}\right)}{\sum_{k=0}^{N-1} \cos \left(4 \pi f T_{k}\right)} .
$$

Lomb-Scargle Periodogram explained

- think of a periodogram as fitting sine and cosine functions to the data
\triangleright standard periodogram does a least-squares fit * assuming uniform samples
\triangleright Lomb-Scargle Periodogram does the same * but allowing arbitrary sampling
- τ allows a shift in time to make everything time-shift invariant
- Fast $O(N \log N)$ variants exist (similar to FFT)

Nyquist limits

For uniform sampling, we must obey Nyquist limit

- or we get aliasing

For non-uniform sampling, we don't need to follow the standard (uniform sampling) Nyquist limit

- we don't need to bandpass signal before sampling!

Nyquist limits

Intuition:

- for low-frequency, jitter in sampling time, is equivalent to error, or similar order of magnitude in sample value

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $57 / 83$

Lomb-Scargle Periodogram examples

- variable star data from before

Average measurement interval $=10.427$ days.
Nyquist frequency $\simeq 1 / 10$-th cycle per day.
Peak is at 11.7 cycles per day.

Folded Plots

Superimposes a time series upon itself with respect to a specified period.

- if period of fold is correct, then measurements would line up

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.60/83

Folded Plot example

- variable star data from before
\triangleright period 11.7 cycles per day

2D irregular sampling: CGI jittering

- CGI anti-aliasing by jittering points
\triangleright equivalent to irregular sampling in 1D
\triangleright typically sample irregularly at higher resolution than needed
\triangleright then low-pass (by averaging)
\triangleright don't use this for animations (only stills)
Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $62 / 83$

2D possibilities: Hex grids

- sample onto hexagonal grid
\triangleright pixels have nearly circular shape
* better match to physical systems
- e.g. printer dots
\triangleright different symmetries
\triangleright better behaved connectivity
* only one case
- not edge + corners as for squares
\triangleright Improved Angular Resolution. With more lateral neighbors, curves and edges can be followed more easily and accurately

Hexagonal Fourier Transform

- transforms above tell us how to take FT
\triangleright rotating an image
\Rightarrow rotate FT
\triangleright stretch image (in one direction)
\Rightarrow squeeze the FT in the same direction
- in square grid distance between samples
\triangleright horizontal or vertical distance is 1
\triangleright diagonal, distance is $\sqrt{2}$
\triangleright Nyquist frequency is different for diagonal
- in hex grid distance between samples
\triangleright is always one
\triangleright Nyquist frequency is same in six directions

Sparse signals and compressive sensing

Generalization of L-S periodogram

The L-S periodogram is a special case of a more general set of results.

Sparse descriptions

- we should now be familiar with the idea of a basis
\triangleright simple transforms change basis
\triangleright mostly we consider orthogonal bases
\triangleright non-redundant, i.e., efficient
\star but perhaps we get something if we allow redundancy
- Why transform: sparse description of data can be useful
\triangleright this is one reason why the FT can be useful
\triangleright transform into a basis where the description of the signal is sparse
\triangleright if the description is sparse, then we can compress the signal

Sparse description example 1

frequency (Hz)

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.69/83

A simple sine wave can be represented by one number in the Fourier domain, i.e. it has a sparse representation.

Sparse description example 2

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.70/83

Two sine waves represented by two numbers.

Sparse description example 3

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.71/83

A signal constructed of 4 sine waves represented by 4 numbers in the Fourier domain.

Sparse description example 4

The following is a sine, plus a "spike"
(

- To represent this in either Fourier or "delta" basis requires all basis terms.
- but with both, we can represent it as

$$
x(t)=\sin (t)+\delta\left(t-t_{0}\right)
$$

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $72 / 83$

Remember that the FT of a delta function is

$$
\mathcal{F}\left\{\delta\left(t-t_{0}\right)\right\}=e^{-i 2 \pi s t_{0}}
$$

which means that in the Fourier basis, we need all of the possible basis functions $e^{-i 2 \pi s}$ in order to represent just one delta fro the time domain. By duality, although the sine can be represented sparsely in the Fourier domain, it can only be represented by a linear combination of (almost) all of the deltas in the time-domain.

Basis pursuit

- There is no standard orthonormal basis that allows us to represent a spike plus a sine wave.
- We are really picking and choosing the "best bits" of two different bases.
- Allows us to find a sparse description of our data \triangleright might allow analysis, compression, ...
- So we go in pursuit of a basis

Dictionary

- A dictionary allows us to describe words
- we want a dictionary for our signals
- we want a way to translate into the dictionary
- we want ways to provide translation between different languages

Lets stick to linear combinations, i.e. let us describe our signal by a linear combination

$$
x=\sum_{i} \alpha_{i} \phi_{i}
$$

for some set of atoms ϕ_{i} from our dictionary \mathcal{D}.

Sparse recovery

How can we obtain such a representation?

- we can no longer rely on a simple transform
- the Dictionary could be quite large
\triangleright searches through it for a sparse representation would take too long
\triangleright in fact, NP hard
\triangleright corresponds to minimizing the l^{0} norm
\triangleright i.e., we try to solve the optimization problem

$$
\operatorname{minimize} \sum_{i: \alpha_{i} \neq 0} 1 \text { such that } x=\sum_{i} \alpha_{i} \phi_{i}
$$

Norms revisited

There are a group of norms on \mathbb{R}^{n} called the l^{p} norms defined by

$$
\|\mathbf{x}\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}
$$

Simple examples are

- l^{2} : defined by $\|\mathbf{x}\|_{2}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{1 / 2}$
\triangleright related to the RMS value
- l^{1} : defined by $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
\triangleright related to the mean absolute value
- l^{0} : defined by $\|\mathbf{x}\|_{0}=\sum_{i=1}^{n} I\left(x_{i} \neq 0\right)=\sum_{i: x_{i} \neq 0} 1$
\triangleright just counts the number of non-zero terms of \mathbf{x}
Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.76/83

Remember a norm on a vector space S is a real-valued function(al) whose value at $x \in S$ is denoted $\|x\|$, and has the properties

$$
\begin{align*}
& \|x\| \geq 0 \\
& \|x\|=0 \text { iff } x=0 \tag{2}\\
& \|\alpha x\|=\alpha\|x\| \tag{3}\\
& \|x+y\| \leq\|x\|+\|y\| \text { (the triangle inequality) }
\end{align*}
$$

A vector space equipped with a norm is called a
normed vector space.
See lecture 6 for more information.

Sparse recovery via l^{1} norm

The problem above consists of

$$
\text { minimize }\|\mathbf{x}\|_{0} \text { such that } x=\sum_{i} \alpha_{i} \phi_{i}
$$

However, various papers have shown that for very many cases, one gets a good approximate solution to the above optimization problem by solving
minimize $\|\mathbf{x}\|_{1}$ such that $x=\sum_{i} \alpha_{i} \phi_{i}$

Minimization of the l^{1} norm

We can rewrite

$$
\text { minimize }\|\mathbf{x}\|_{1} \text { such that } x(k)=\sum_{i} \alpha_{i} \phi_{i}(k)
$$

as

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} \varepsilon_{i} \\
\text { such that } & \\
& x(k)=\sum_{i} \alpha_{i} \phi_{i}(k) \\
& -\varepsilon_{i} \leq \alpha_{i} \leq \varepsilon_{i}
\end{aligned}
$$

This is just a linear program, and can be solved by Simplex, or interior point methods for quite large problems.

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $78 / 83$

Example

Try to represent the following signal using Fourier and spike basis

Perform the l^{1} minimization

Example

Result of the l^{1} minimization

Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.80/83

```
%file:
Sparse_recovery.m, (c) Matthew Roughan, Tue Aug 22 2006
    clear;
    path('/home/mroughan/src/matlab/Michael_Saunders_Standford/', path);
    path('/home/mroughan/src/matlab/NUMERICAL_ROUTINES/', path)
    N=300;;
    l}\begin{array}{l}{\textrm{x}=(1:\textrm{N})}\\{\textrm{f}=3;}
    l
    figure(1)
    plot(y,'b', 'linewidth', 3);
    set(gca, 'linewidth', 3,',xtick', [], 'ytick', [1);
    & axis off 
    *)
    N=30;
    los;
    l}\begin{array}{l}{\textrm{x}=10:N-1}\\{\textrm{f}=0=3;}
    = = sin (2*pi *f_0**),
    lol
    figure(2)
    plot([x; x], [zeros(size(y)); y],'b', 'linewidth', 3);
    plot(x, y, 'bo', 'linewidth', 4);
```



```
    s,

\section*{Application}

One possible application is anomaly detection in traffic data
- traffic data shows periodicities
\(\triangleright\) daily (diurnal) cycles (people sleep)
\(\triangleright\) weekly cycles (people take the weekend off)
- anomalies (e.g. problems like DoS attacks) often appear as spikes
- if we separate the two, we can find the problems.

\section*{Why does it work}

Assume sparse representation exists
- then it exists in one of a set of subspaces that are parallel to axes of \(\mathbb{R}^{n}\)
- \(l^{0}\) minimization has to search these
- \(l^{2}\) looks for solution closest (using Euclidean distance) to a translated subspace (given by constraints).
- \(l^{1}\) looks for solution closest (using checker distance) to a translated subspace (given by constraints).

\section*{Relation to L-S periodogram}
- L-S periodogram is implicitly assuming that the signal representation is sparse in the Fourier basis
- do a "least-squares" fit
\(\triangleright\) tests each basis function against the signal
- perhaps we can do better using \(l^{1}\) norm Minimization?```


[^0]:    Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.6/83

[^1]:    Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p.16/83

[^2]:    Transform Methods \& Signal Processing (APP MTH 4043): lecture 12 - p. $32 / 83$

