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This leture onerns a number of advaned topis: fratals and wavelets, and non-standardsampling. Note that this material is not examinable this year.
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Self-similarity in the

frequeny domain
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Self-similaritySo, Nat'ralists observe, a �eaHath smaller �eas that on him prey;And these have smaller still to bite 'emAnd so proeed ad in�nitum Jonathon Swift, 1733Great �eas have little �eas upon their baks to bite 'em,And little �eas have lesser �eas, and so ad in�nitum.And the great �eas themselves, in turn, have greater �eas to go on;While these again have greater still, and greater still, and so on.De Morgan: A Budget of Paradoxes, p. 377.

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.3/83

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.3/83

Self-similarity: Koh Snow�ake
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Links
http://mathworld.wolfram.com/KochSnowflake.html
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Self-similarity: IFS Fern

C ode from

http://astronomy.swin.edu.au/~pbourke/fractals/
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Links:

http://www.iemar.tuwien.ac.at/modul23/Fractals/subp ages/33IFS.html
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Mandelbrot set I
http://aleph0.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set II

http://aleph0.clarku.edu/~djoyce/julia/julia.html
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Mandelbrot set III
http://www.softsource.com/softsource/fractal.html
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Statistial Self-similarity

Statistial Self-similarity (SS)

◮ this is not a ourse on fratals

◮ Fratals (suh as above) are deterministi

◮ we are interested in statistial properties of traf�

◮ look for statistial self-similarity
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Statistial Self-similarity

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.10/83

The three urves show suessive zooms of a sample of frational Brownian Motion (fBM).The larger red urve shows a zoom of the red region of the blue urve, and the larger greenurve shows a zoom of the green region on the red urve.
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Ethernet traf�
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The urves show samples of Ethernet traf� (red), in pakets per time interval, omparedwith a simple traditional model for traf�. The time interval use for measurement hangesfrom the top to the bottom, the top has a �ne resolution, or 0.01 seonds, with the lower twobeoming suessively oarser. Going from bottom to top, the region shown in blak on thebottom graph is expanded out to form the next graph and similarly for the onstrution of thetop graph.
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Statistial Self-similarity

SS blok aggregation de�nition(another de�nition exists)We de�ne he aggregated time series {X(m)
k } at level m by

X(m)
k :=

X(k−1)m+1 + · · ·+Xkm

m
.

A stationary time series X = {X1,X2, . . .} is alledself-similar with Hurst parameter H if, for all m, theaggregated proess m1−HX(m) has the same distributionsas X.
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Example fGN: (H = 0.5)
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Example fGN: (H = 0.75)
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Example fGN: (H = 0.99)
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Note that as H hanges, the harater of the urves hanges. It has more orrelation, and sowe see �runs� of similar values, or apparent trends.
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Properties of Self-Similar Proess
◮ Stationary so EXi = 0, VarXi = σ2 (onstant).
◮ Cov(Xi,Xi+k) depends only on the lag k and is given by

γ(k) =
1
2

σ2
(

|k+1|2H −2|k|2H + |k−1|2H
)

.

◮ Cov(X(m)
i ,X(m)

i+k ) is given by
γ(k) =

1
2

m2(H−1)σ2
(

|k+1|2H −2|k|2H + |k−1|2H
)

.

◮ Asymptoti behavior of the autoorrelation

lim
k→∞

ρk

k2(H−1)
= H(2H −1).

◮ The variane varies with the aggregation level asVarX(m) = m2(H−1)σ2,
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Long-range dependeneLong-range dependene (LRD) for stationary proess

◮ LRD = slow (power-law) deay in the autoovariane

γX(k) ∼ cγ|k|−(1−α)as k→ ∞, for some α ∈ (0,1)

◮ implies for all N
∞

∑
k=N

γX(k) → ∞

this is sometimes used as an alternative de�nition

◮ also alled long-memory proess
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LRD and SSNotie that self-similarity implies LRD with
α = 2H −1for 0.5≤ H < 1, and 0≤ α < 1
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The three graphs show the empirial autoorrelation funtion for three different values of

H. The left graph shows the autoorrelation using linear axes, and the right graph shows alog-log graph, i.e., the axes are log-sale. Note that the autoorrelations are approximatelylinear (with some noise due to the empirial nature of the graphs shown) when examined onthe log-log graph. This is a general property of power-laws.The horizontal dashed line shows the 95% signi�ane level. Values under this ould beonsidered too small to be signi�ant. Note that the red urve lies almost entirely below thisline, indiating an unorrelated proess.
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LRD in the frequeny domain

Long-range dependene (LRD) an also be de�ned in thefrequeny domain using the Fourier transform of theautoovariane

fx(s) ∼ cf |s|−α , |s| → 0When α = 1 we get 1/f noise, but the term is oftenapplied to the range of values of α = 2H −1.

◮ frequeny spetrum of white noise is �at

◮ frequeny spetrum of Brownian motion is 1/ f 2

◮ frequeny spetrum of �pink� noise is 1/ f
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Example fGN spetrum (H = 0.5)
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Example fGN spetrum (H = 0.75)
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Example fGN spetrum (H = 0.99)
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1/f noiseLRD and SS are also seen elsewhere

◮ ardia rhythms (in healthy hearts)

◮ hydrologial data (rainfall, and river �ow)

⊲ Hurst's early work was atually in Nile river data

◮ musi seems to have similar harateristis

◮ turbulene

◮ haoti proesses in general

◮ �nanial modelling
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Connetion to FratalsFratals more onerned with saling laws at small salesand high-frequenies

fx(s) ∼ cf |s|−α , |s| → ∞Hölder exponent h = (α−1)/2

◮ If 0 < h < 1 the Hausdorff dimension D = 5−α/2

◮ If h < 0 sample paths are everywhere disontinuous
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frational Gaussian NoisefGN (frational Gaussian Noise) is stationary Gaussianproess Xt with mean µ, variane σ2 and autoorrelationfuntion

ρ(k) =
1
2

(

|k+1|2H −|k|2H + |k−1|2H
)

whih asymptotially goes like

ρ(k) ∼ H(2H −1)|k|2H−2 , k→ ∞so cγ = H(2H −1). In the frequeny domain,

fx(s) ∼ cf |s|1−2H , |s| → 0where now

cf = σ2
Z ·2(2π)1−2HH(2H −1)Γ(2H −1)sin(π(1−H)),where Γ(x) is the gamma funtion.
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frational Gaussian NoiseSynthesis of fGN:

◮ Durbin-Levinson: generate white noise, and thenimpose exat orrelation struture. Slow O(N2)algorithm

◮ Spetral synthesis:

⊲ generate white noise
⊲ take FFT

⊲ multiply by desired spetrum
⊲ inverse FFT, to get bak to time domainNote that disrete version of ontinuous proess is nolonger exatly self-similar.
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frational Brownian MotionThe (non-stationary) Gaussian proess with ovarianefuntion given by

Γ(s, t) =
1
2

σ2
(

s2H − (t −s)2H + t2H
)

,

variane σ2 and expetation 0 is alled frationalBrownian motion (fBM).Note the inrement proessof fBM is fGN, just as theinrements of BM are whitenoise.
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Wavelets: interpretation

◮ Multi-Resolution Approximation (MRA)
⊲ aggregation at different sales is likeapproximating the data at different sales
⊲ data stats have known saling properties
⊲ a more general way of doing multi-saleapproximation is wavelets

◮ sub-band �lters (logarithmially plaed)
⊲ logarithmially plaed, so natural log sale arisesin frequeny domain.
⊲ sub-bands sampled at frequeny appropriate tothe bandwidth
⊲ has the advantage of de-orrelation of waveletoef�ients
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Dyadi grid

Dyadi grid has self-similar saling behavior!
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Wavelet's as sub-band �ltersThe idea (looking aross frequenies or sales) is thatthe transform breaks frequeny spetrum into bands.
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Wavelet's as sub-band �ltersEah band equal size on log(frequeny) graph
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Wavelets and saling

◮ the wavelet transform de-orrelates details, so anthink of eah series of {d j ,k}k∈Z for eah j as a timeseries, with short-range orrelations.
◮ wavelet onditions ensure

E [d j ,k] = 0

◮ we know the distribution of energy in eah sub-band

◮ this translates to energy in eah sale of waveletoef�ients d j ,k, e.g.Var [d j ,k] = E
[

d2
j ,k

]

= µj

◮ we form an estimator of µj by

µ̂j =
1
Nj

Nj

∑
k=1

|d j ,k|2
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Wavelets and saling

fx(s) ∼ cf |s|−α

d j ,k = 〈 f ,ψ j ,k〉 =

Z ∞

−∞
f (t)

1√
2 j

ψ∗
( t

2 j
−k
)

dt

E
[

d2
j ,k

]

= 2 jαcfCwhere

C =
Z ∞

−∞
|s|−α|Ψ∗ (s) |2dsso

log2E
[

d2
j ,k

]

= jα+ log2cfCPerform regression on log2 µ̂j vs the otave j .
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Logsale diagram
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Logsale diagram

In fat, we an approximate

log2 µ̂j ∼ N

(

jα+ log2cfC,
2 j+1

nln22

)

So we an

◮ estimate on�dene intervals for log2 µ̂j on theLogsale diagram

◮ perform a weighted regression

◮ estimate ovariane of estimates of α and cf

◮ atually worth adding a small orretion to get

y j = log2µj −g j (beause log and expetation don'tommute)
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Wavelet estimator properties
◮ asymptotially ef�ient and unbiased

⊲ almost as aurate as Whittle (MLE)
◮ joint estimator of H and cγ

◮ known variane of estimates
◮ robustness

⊲ non-Gaussianity
⊲ trends in the data
⊲ short-range orrelative struture

⊲ muh better than Whittle in these ases

http://www.cubinlab.ee.mu.oz.au/~darryl/secondorder _code.html/
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Non-standard sampling
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Shannon theorem�If a funtion f (t) ontains no frequenies higher than Wps, it is ompletely determined by giving its ordinatesat a series of points spaed (1/2W) s apart.�Claude Shannon, �Communiations in the presene of noise�, Pro.IRE,37, pp.10�21, 1949.

◮ uniform sampling

⊲ samples spaed a uniform distane apart

◮ Nyquist limitH.Nyquist, �Certain topis in telegraph transmission theory�,AIEE Trans., 47, pp.617�644, 1928.
◮ Impliitly, we an reonstrut f (t) from its samples

⊲ if the signal is bandlimited
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Shannon theoremProof sketh: Assume funtion is bandlimited so

F(s) = 0 for |s| > W, then the IFT is

f (t) =

Z ∞

−∞
F(s)ei2πstds=

Z W

−W
F(s)ei2πstds

If instead, we make, F periodi, with period 2W then wean �nd a Fourier series for it, e.g.

F(s) =
∞

∑
i=−∞

Ane
iπns/W

where,

An =
1

2W

Z W

−W
F(s)e−iπns/W ds=

1
2W

f
( n

2W

)
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Shannon theoremProof sketh:We an represent F(s) perfetly with the Fourier seriesoef�ients An, but these are just proportional to thefuntion sampled at uniform intervals, e.g. An ∝ f
(

n
2W

).Hene, the samples ompletely de�ne the FT F , andhene the funtion f . 2

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.40/83

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.40/83



Shannon interpolation

Reonstrution of original signal from IFT

f (t) =

Z W

−W
F(s)e−i2πstds

=

Z W

−W

∞

∑
i=−∞

Ane
iπns/Wei2πst ds

=
∞

∑
i=−∞

An

Z ∞

−∞
r(s/2W)ei2πs(−t+n/2W) ds

=
∞

∑
i=−∞

2WAn

Z ∞

−∞
r(−s)ei2πs(2Wt−n) ds

=
∞

∑
i=−∞

f
( n

2W

)

sinc(2Wt−n)
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The last step follows beause

◮ The IFT of r(s) is sinc(t)

◮ When t = m/2W for man integer, then 2Wt−n is also an integer m−n. Note that

sinc(m−n) = δmn.

◮ Hene at those points we get

f (m/2W) =
∞

∑
i=−∞

2WAnsinc(2Wt−n) =
∞

∑
i=−∞

2WAnδmn = 2WAm
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Shannon interpolation

Assume we sampled at the Nyquist rate, i.e. fs = 2W, or
ts = 1/2W, then the sample points would be

f
( n

2W

)

The summation

f (t) =
∞

∑
i=−∞

f
( n

2W

)

sinc(2Wt−n)

represents a onvolution of the sampled signal with a sincfuntion. Now we know the sinchas a simple retangulartransfer funtion, and so it ats as a perfet low-pass�lter.
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Shannon interpolation

Interpretation

◮ onvolution with sin

◮ equivalent to ideal (retangular) bandpass �lter

reconstructed functionsamples

ideal

lowpass
analogue

◮ this is essentially what a Digital to Analogueonverter tries to do

◮ have to build analogue �lter � hard to make it ideal
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Other sampling shemes

◮ dyadi grid (wavelets)

◮ ordinate and slope sampling

◮ interlaed sampling

◮ impliit sampling

◮ irregular sampling

◮ hexagonal sampling
◮ many others ...
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Ordinate and Slope Sampling

◮ sample the value, and derivative at a point

st

time

uniform samples

◮ Shannon theorem for ordinate/slope samplingWe an reonstrut a funtion from knowledge ofits ordinate and slope at every other sample point.

◮ e.g. half the Nyquist sampling rate
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Interlaed sampling

uniform samples
ts

time

interlaced samples δ t

◮ signal is uniquely determined given a series ofsamples at reurrent sample points
tpm = tp +

mN
2Wfor p = 1,2, . . . ,N and m∈ Z

⊲ interlaed sampling example above has N = 2

◮ limit δt → 0, is equivalent to ordinate/slope sampling
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Impliit sampling

◮ e.g. sampling at zero rossings

implicit samples

time

◮ Appliations:

⊲ speify �lter by zero rossings

⊲ reonstrut an image

⇒
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Impliit sampling theory

◮ "Information in the Zero Crossings of BandpassSignals", B.F. Logan, Bell System Teh. Journal, 56,pp. 487-510, April 1977.

⊲ a signal is uniquely reonstrutible from its zerorossings if

⋆ The signal x(t) and its Hilbert transform XH(t)have no zeros in ommon with eah other.

⋆ The frequeny domain representation of thesignal is at most 1 otave long, in other words,it is bandpass-limited between some B and 2B.

◮ �Reonstrution of Two-Dimensional Signals FromThreshold Crossings�, A. Zakhor and A. V.Oppenheim, Proeedings of the IEEE, January 1990,vol. 78, no. 1, pp. 31-55.
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Irregular sampling

◮ not all sampling is on a regular grid

⊲ Astronomial data depends on when you anmake observations

⋆ louds might get in the way

⊲ Geophysial data

⋆ depends on whih rok strata you an �nd

⊲ Poisson sampling used in Internet performanemeasurements

⊲ even regular samples have jitter

◮ all previous work assumed regular sampling

⊲ how an we deal with irregularity?
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Non-bandlimited signals

◮ we an't always pre-�lter analogue signal with aband-pass before sampling

⊲ Astronomial data an't be obtained betweensamples (e.g. louds)

⊲ Internet performane measurements are madewith probe pakets
⊲ Aousti measurements of position of an objet

⋆ boune ultrasound pulse off an objet everyhalf a seond
⋆ don't see what happens in between

◮ aliasing is a problem without pre-�ltering

⊲ how an we ope without pre-�ltering?
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Astronomial data

◮ apparent magnitude of a variable star
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data ourtesy of Laurent Eyer, <Laurent.Eyer�obs.unige.h>
http://obswww.unige.ch/~eyer/
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Astronomial data

◮ we an see

⊲ data are not uniformly spaed
⋆ there is no way to ��x� this

⊲ no obvious period

◮ no pre-�lter has been applied to the samples
◮ an we still look for periodiities in the data?
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Periodogram

◮ for uniformly sampled data Xn, use the periodogram

PX(k) =
1
N
|FTX(k)|2 =

1
N

∣

∣

∣

∣

∣

N−1

∑
n=0

Xne
−i2πkn/N

∣

∣

∣

∣

∣

2

.

◮ rewrite omplex exponential in terms of trig.fn.s

PX(k) =
1
N





(

N−1

∑
n=0

Xncos(2πkn/N)

)2

+

(

N−1

∑
n=0

Xnsin(2πkn/N)

)2


.

◮ write in terms of frequeny f = k/(Nts) and sampletimes Tn = nts

PX( f ) =
1
N





(

N−1

∑
n=0

Xncos(2π f Tn)

)2

+

(

N−1

∑
n=0

Xnsin(2π f Tn)

)2


.
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Lomb-Sargle Periodogram
◮ for irregularly sampled data we use theLomb-Sargle periodogram

P(LS)
X ( f ) =

1
2

[

(

∑N−1
k=0 (X(Tk)− X̄)cos(2π f (Tk− τ))

)2

∑N−1
k=0 cos2(2π f (Tk− τ))

+

(

∑N−1
k=0 (X(Tk)− X̄)sin(2π f (Tk− τ))

)2

∑N−1
k=0 sin2(2π f (Tk− τ))

]

,

where X̄ is the mean value of Xn and τ satis�es

tan(4π f τ) =
∑N−1

k=0 sin(4π f Tk)

∑N−1
k=0 cos(4π f Tk)

.
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Lomb-Sargle Periodogram explained

◮ think of a periodogram as �tting sine and osinefuntions to the data

⊲ standard periodogram does a least-squares �t

⋆ assuming uniform samples

⊲ Lomb-Sargle Periodogram does the same

⋆ but allowing arbitrary sampling

◮ τ allows a shift in time to make everythingtime-shift invariant

◮ Fast O(N logN) variants exist (similar to FFT)
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Nyquist limits

For uniform sampling, we must obey Nyquist limit
◮ or we get aliasingFor non-uniform sampling, we don't need to follow thestandard (uniform sampling) Nyquist limit
◮ we don't need to bandpass signal before sampling!
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Nyquist limits

Intuition:

◮ for low-frequeny, jitter in sampling time, isequivalent to error, or similar order of magnitude insample value

error

jitter

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.57/83

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.57/83

Nyquist limits

Intuition:

◮ for high-frequeny, jitter in sampling time,introdues errors of similar magnitude to signal

In some sense, there is some �ltering going on here.
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Lomb-Sargle Periodogram examples

◮ variable star data from before
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Average measurement interval = 10.427days.Nyquist frequeny ≃ 1/10-th yle per day.Peak is at 11.7 yles per day.
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Folded PlotsSuperimposes a time series upon itself with respet to aspei�ed period.

◮ if period of fold is orret, then measurementswould line up

folded plot

0 1 phase

periodic signal
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Folded Plot example

◮ variable star data from before

⊲ period 11.7 yles per day
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2D irregular sampling: CGI jittering

◮ CGI anti-aliasing by jittering points
⊲ equivalent to irregular sampling in 1D

⊲ typially sample irregularly at higher resolutionthan needed
⊲ then low-pass (by averaging)

⊲ don't use this for animations (only stills)
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2D possibilities: Hex grids

◮ sample onto hexagonal grid

⊲ pixels have nearly irular shape

⋆ better math to physial systems

ld e.g. printer dots

⊲ different symmetries

⊲ better behaved onnetivity

⋆ only one ase

ld not edge + orners as for squares

⊲ Improved Angular Resolution. With more lateralneighbors, urves and edges an be followedmore easily and aurately
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Hexagonal grids

◮ we an get a hexagonal sampling grid by
⊲ start with a retangular grid
⊲ rotate by 45 degrees

⊲ streth so that adjaent samples areequi-distant

retangular grid rotate streth vertially hexagonal grid
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Hexagonal Fourier Transform

◮ transforms above tell us how to take FT

⊲ rotating an image

⇒ rotate FT

⊲ streth image (in one diretion)

⇒ squeeze the FT in the same diretion

◮ in square grid distane between samples

⊲ horizontal or vertial distane is 1

⊲ diagonal, distane is √
2

⊲ Nyquist frequeny is different for diagonal

◮ in hex grid distane between samples

⊲ is always one

⊲ Nyquist frequeny is same in six diretions
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Sparse signals and

ompressive sensing
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Generalization of L-S periodogram

The L-S periodogram is a speial ase of a more generalset of results.
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Sparse desriptions

◮ we should now be familiar with the idea of a basis
⊲ simple transforms hange basis
⊲ mostly we onsider orthogonal bases
⊲ non-redundant, i.e., ef�ient

⋆ but perhaps we get something if we allowredundany

◮ Why transform: sparse desription of data an beuseful

⊲ this is one reason why the FT an be useful

⊲ transform into a basis where the desription ofthe signal is sparse
⊲ if the desription is sparse, then we anompress the signal
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Sparse desription example 1
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A simple sine wave an be represented by one number in the Fourier domain, i.e. it has asparse representation.
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Sparse desription example 2
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Two sine waves represented by two numbers.
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Sparse desription example 3
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A signal onstruted of 4 sine waves represented by 4 numbers in the Fourier domain.

Transform Methods & Signal Processing (APP MTH 4043): lecture 12 – p.71/83

Sparse desription example 4

The following is a sine, plus a �spike�
◮ To represent this in either Fourier or �delta� basisrequires all basis terms.
◮ but with both, we an represent it as

x(t) = sin(t)+δ(t − t0)
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Remember that the FT of a delta funtion is

F {δ(t − t0)} = e−i2πst0whih means that in the Fourier basis, we need all of the possible basis funtions e−i2πs inorder to represent just one delta fro the time domain. By duality, although the sine an berepresented sparsely in the Fourier domain, it an only be represented by a linear ombinationof (almost) all of the deltas in the time-domain.
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Basis pursuit

◮ There is no standard orthonormal basis that allowsus to represent a spike plus a sine wave.

◮ We are really piking and hoosing the �best bits�of two different bases.

◮ Allows us to �nd a sparse desription of our data

⊲ might allow analysis, ompression, ...

◮ So we go in pursuit of a basis
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Ditionary

◮ A ditionary allows us to desribe words
◮ we want a ditionary for our signals
◮ we want a way to translate into the ditionary
◮ we want ways to provide translation betweendifferent languagesLets stik to linear ombinations, i.e. let us desribe oursignal by a linear ombination

x = ∑
i

αiφi

for some set of atoms φi from our ditionary D .
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Sparse reovery

How an we obtain suh a representation?

◮ we an no longer rely on a simple transform

◮ the Ditionary ould be quite large

⊲ searhes through it for a sparse representationwould take too long

⊲ in fat, NP hard

⊲ orresponds to minimizing the l0 norm

⊲ i.e., we try to solve the optimization problem

minimize ∑
i:αi 6=0

1 such thatx = ∑
i

αiφi
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Norms revisitedThere are a group of norms on R
n alled the l p normsde�ned by

||x||p =

[

n

∑
i=1

|xi|p
]1/p

Simple examples are

◮ l2: de�ned by ||x||2 =
[

∑n
i=1 |xi|2

]1/2

⊲ related to the RMS value
◮ l1: de�ned by ||x||1 = ∑n

i=1 |xi|
⊲ related to the mean absolute value

◮ l0: de�ned by ||x||0 = ∑n
i=1 I(xi 6= 0) = ∑i:xi 6=01

⊲ just ounts the number of non-zero terms of x
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Remember a norm on a vetor spae S is a real-valued funtion(al) whose value at x ∈ S isdenoted ||x||, and has the properties

||x|| ≥ 0 (1)

||x|| = 0 iff x = 0 (2)

||αx|| = α||x|| (3)

||x+y|| ≤ ||x||+ ||y|| (the triangle inequality) (4)A vetor spae equipped with a norm is alled anormed vetor spae.See leture 6 for more information.
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Sparse reovery via l1 norm

The problem above onsists of

minimize ||x||0 such thatx = ∑
i

αiφi

However, various papers have shown that for very manyases, one gets a good approximate solution to the aboveoptimization problem by solving

minimize ||x||1 such thatx = ∑
i

αiφi
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Minimization of the l1 normWe an rewrite

minimize ||x||1 such thatx(k) = ∑
i

αiφi(k)

as

minimize ∑
i

εi

such that
x(k) = ∑

i

αiφi(k)

−εi ≤ αi ≤ εiThis is just a linear program, and an be solved bySimplex, or interior point methods for quite largeproblems.
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Example
Try to represent the following signal using Fourier andspike basis
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Perform the l1 minimization
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Example
Result of the l1 minimization
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% file: sparse_recovery.m, (c) Matthew Roughan, Tue Aug 22 2 006
%
clear;
path(’/home/mroughan/src/matlab/Michael_Saunders_St andford/’, path);
path(’/home/mroughan/src/matlab/NUMERICAL_ROUTINES/ ’, path);

N = 3000;
x = (1:N)/N;
f = 3;
y = sin(2 * pi * f * x);
y(floor(N/2.8)) = y(floor(N/2.8)) + 1;

figure(1)
plot(y,’b’, ’linewidth’, 3);
set(gca, ’linewidth’, 3, ’xtick’, [], ’ytick’, []);
% axis off
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 25 10])
print(’-depsc’, sprintf(’Plots/sparse_recovery.eps’, i));

N = 30;
% N = 5;
x = (0:N-1)/N;
f_0 = 3;
y = sin(2 * pi * f_0 * x);
k_0 = floor(N/1.9);
y(k_0) = y(k_0) + 1;

figure(2)
hold off
plot([x; x], [zeros(size(y)); y],’b’, ’linewidth’, 3);
hold on
plot(x, y, ’bo’, ’linewidth’, 4);
set(gca, ’linewidth’, 3, ’fontsize’, 18);
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperPosition’, [0 0 28 10])
print(’-depsc’, sprintf(’Plots/sparse_recovery_2.eps ’, i));

z = log10(abs(fftshift(fft(y))).ˆ2);
figure(3)
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Appliation

One possible appliation is anomaly detetion in traf�data

◮ traf� data shows periodiities

⊲ daily (diurnal) yles (people sleep)

⊲ weekly yles (people take the weekend off)

◮ anomalies (e.g. problems like DoS attaks) oftenappear as spikes

◮ if we separate the two, we an �nd the problems.
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Why does it work

Assume sparse representation exists

◮ then it exists in one of a set of subspaes that areparallel to axes of R
n

◮ l0 minimization has to searh these
◮ l2 looks for solution losest (using Eulideandistane) to a translated subspae (given byonstraints).

◮ l1 looks for solution losest (using heker distane)to a translated subspae (given by onstraints).
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Relation to L-S periodogram

◮ L-S periodogram is impliitly assuming that thesignal representation is sparse in the Fourier basis

◮ do a �least-squares� �t

⊲ tests eah basis funtion against the signal

◮ perhaps we an do better using l1 normMinimization?
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