Variational Methods and Optimal Control
 Class Exercise 1: due before lecture, on Thursday 9th August, 2012

Matthew Roughan
matthew.roughan@adelaide.edu.au

1. Use the technique of Lagrange multipliers to maximize $V=x y z$ for $x, y, z \geq 0$ subject to the pair of constraints

$$
\begin{aligned}
x y+y z+z x & =1 \\
x+y+z & =3
\end{aligned}
$$

2. Maximize $V=x^{2}+2 y^{2}-z^{2}$ subject to

$$
x^{2}+y^{2}+z^{2} \leq 1
$$

3. Which of the following are functionals of the function $y(x)$ (label yes or no).
(a) $y(0)+4$
(b) $\left.\frac{d y}{d x}\right|_{0}$
(c) $\min \{y(x) \mid 0 \leq x \leq 1\}$
(d) $\int_{0}^{1} y d x$
(e) $\int_{0}^{\pi}\left[\frac{d^{n} y}{d x^{n}}\right]^{3} f(x) d x$
4. Given the L^{2}-norm $\|f\|_{2}=\sqrt{\int_{0}^{1} f(x)^{2} d x}$ on the vector space $L^{2}[0,1]$, describe (in one sentence) the ε-neigbourhood of the function $y=x$.
5. Find an upper bound for the minimum of the functional

$$
J\{y\}=\int_{0}^{1} y^{2} y^{\prime 2} d x
$$

subject to $y(0)=0$ and $y(1)=1$ using the trial functions

$$
y_{\varepsilon}(x)=x^{\varepsilon}
$$

with $\varepsilon>1 / 4$. Justify your argument.

