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1. Use the technique of Lagrange multipliers to maximize V = xyz for x, y, z ≥ 0 subject to the pair of constraints

xy + yz + zx = 1

x+ y + z = 3

2. Maximize V = x2 + 2y2 − z2 subject to
x2 + y2 + z2 ≤ 1

3. Which of the following are functionals of the function y(x) (label yes or no).
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4. Given the L2-norm ||f ||2 =
√

∫

1

0
f(x)2 dx on the vector space L2[0, 1], describe (in one sentence) the ε-neigbourhood

of the function y = x.

5. Find an upper bound for the minimum of the functional

J{y} =

∫

1

0

y2y′2 dx,

subject to y(0) = 0 and y(1) = 1 using the trial functions

yε(x) = xε,

with ε > 1/4. Justify your argument.
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