Variational Methods and Optimal Control Class Exercise 1: due before lecture, on Thursday 9th August, 2012

Matthew Roughan <matthew.roughan@adelaide.edu.au>

1. Use the technique of Lagrange multipliers to maximize V = xyz for $x, y, z \ge 0$ subject to the pair of constraints

$$\begin{array}{rcl} xy+yz+zx &=& 1\\ x+y+z &=& 3 \end{array}$$

2. Maximize $V = x^2 + 2y^2 - z^2$ subject to

$$x^2 + y^2 + z^2 \le 1$$

3. Which of the following are functionals of the function y(x) (label yes or no).

(a)
$$y(0) + 4$$

(b) $\frac{dy}{dx}\Big|_{0}$
(c) $\min\{y(x)|0 \le x \le 1\}$
(d) $\int_{0}^{1} y \, dx$
(e) $\int_{0}^{\pi} \left[\frac{d^{n}y}{dx^{n}}\right]^{3} f(x) \, dx$

- 4. Given the L^2 -norm $||f||_2 = \sqrt{\int_0^1 f(x)^2 dx}$ on the vector space $L^2[0, 1]$, describe (in one sentence) the ε -neigbourhood of the function y = x.
- 5. Find an upper bound for the minimum of the functional

$$J\{y\} = \int_0^1 y^2 y'^2 \, dx,$$

subject to y(0) = 0 and y(1) = 1 using the trial functions

$$y_{\varepsilon}(x) = x^{\varepsilon},$$

with $\varepsilon > 1/4$. Justify your argument.