Variational Methods and Optimal Control

 Class Exercise 1 solutions
Matthew Roughan

 matthew.roughan@adelaide.edu.au1. 0 marks Use the technique of Lagrange multipliers to maximize $V=x y z$ for $x, y, z \geq 0$ subject to the pair of constraints

$$
\begin{array}{r}
x y+y z+z x=1 \\
x+y+z=3
\end{array}
$$

Solution: Introduce slack variables α, β, γ to express the inequalities $x, y, z \geq 0$ as $x-\alpha^{2}=0, y-\beta^{2}=0$, $z-\gamma^{2}=0$. We employ Lagrange multipliers to form the new objective function

$$
\mathcal{L}=x y z+\lambda_{1}(x y+y z+z x-1)+\lambda_{2}(x+y+z-3)+\lambda_{3}\left(x-\alpha^{2}\right)+\lambda_{4}\left(y-\beta^{2}\right)+\lambda_{5}\left(z-\gamma^{2}\right) .
$$

First we deal with the last three terms. The equation $\partial \mathcal{L} / \partial \alpha=0$ yields $\lambda_{3}(-2 \alpha)=0$, so either $\lambda_{3}=0$ or $\alpha=0$. Similarly either $\lambda_{4}=0$ or $\beta=0$, and either $\lambda_{5}=0$ or $\gamma=0$. If any of $\lambda_{3}, \lambda_{4}, \lambda_{5}$ is nonzero, then at least one of α, γ is zero and therefore at least one of x, y, z is zero. Hence $V=0$. Since $x, y, z \geq 0$, this corresponds to α, β, γ is zero and therefore at least one of x, y, z is zero. Hence $V=$
Note that if $x=y=z=v$, say, then the second constraint implies $v=1$ and the first constraint $v^{2}=1 / 3$, a contradiction. Hence we can't have $x=y=z$.
The equation $\partial \mathcal{L} / \partial x=0$ provides

$$
\begin{aligned}
& y z+\lambda_{1}(y+z)+\lambda_{2}=0 . \\
& z x+\lambda_{1}(z+x)+\lambda_{2}=0 .
\end{aligned}
$$

By symmetry we have also
Subtraction yields

$$
z(y-x)+\lambda_{1}(y-x)=0 \quad \text { or } \quad\left(z+\lambda_{1}\right)(y-x)=0 .
$$

Hence either

$$
x=y \quad \text { or } \quad z=-\lambda_{1} .
$$

By symmetry
and

$$
y=z \quad \text { or } \quad x=-\lambda_{1}
$$

$$
z=x \quad \text { or } \quad y=-\lambda_{1} .
$$

We can't have any two of $x=y, y=z, z=x$, for then $x=y=z$. Similarly we can't have all of $z=-\lambda_{1}, x=-\lambda_{1}$, $y=-\lambda_{1}$. Hence we must have

$$
x=y, x=-\lambda_{1}, y=-\lambda_{1}, \quad \text { that is } \quad x=y=-\lambda_{1},
$$

or

$$
y=z=-\lambda_{1},
$$

$$
z=x=-\lambda_{1} .
$$

With the first possibility, the second constraint gives $z=3-2 x$ and the first constraint $x^{2}+2 x z=1$, so

$$
x^{2}+2 x(3-2 x)=1 \quad \text { or } 3 x^{2}-6 x+1=0 .
$$

Hence

$$
x=1 \pm \frac{\sqrt{6}}{3} \text { and therefore } y=1 \pm \frac{\sqrt{6}}{3} \quad \text { and } \quad z=1 \mp \frac{2 \sqrt{6}}{3} .
$$

Now $1-2 \sqrt{6} / 3<0$, so to get $V>0$ we must choose

$$
x=y=1-\frac{\sqrt{6}}{3}, \quad z=1+\frac{2 \sqrt{6}}{3}
$$

which leads to

$$
V=x y z=-1+\frac{4 \sqrt{6}}{9} .
$$

The same value arises from the cyclic permutations
and

$$
\begin{array}{ll}
y=z=1-\frac{\sqrt{6}}{3}, & x=1+\frac{2 \sqrt{6}}{3} \\
z=x=1-\frac{\sqrt{6}}{3}, & y=1+\frac{2 \sqrt{6}}{3} .
\end{array}
$$

2. 0 marks Maximize $V=x^{2}+2 y^{2}-z^{2}$ subject to

$$
x^{2}+y^{2}+z^{2} \leq 1
$$

Solution: Use a slack variable u to express the constraint as an equality

$$
x^{2}+y^{2}+z^{2}+u^{2}=1 .
$$

This leads to a new objective function

$$
\mathcal{L}=V+\lambda\left(x^{2}+y^{2}+z^{2}+u^{2}-1\right) .
$$

The condition $\partial L / \partial x=0$ gives

$$
2 x+\lambda \cdot 2 x=0, \quad \text { so } \quad 2 x(1+\lambda)=0 \quad \text { and } \quad x=0 \quad \text { or } \quad \lambda=-1 .
$$

Partial differential with respect to y, z, u in turn give similarly

$$
\begin{array}{llll}
y=0 & \text { or } & \lambda=-2 ; \\
z=0 & \text { or } & \lambda=1 ; \\
u=0 & \text { or } & \lambda=0 .
\end{array}
$$

By the constraint, we can't have all of x, y, z, u equal to zero. Hence we must have either

$$
\begin{array}{cc}
\lambda=-1, y=z=u=0, & \text { or } \\
\lambda=-2, x=z=u=0, & \text { or } \\
\lambda=1, x=y=u=0, & \text { or } \\
\lambda=0, x=y=z=0 .
\end{array}
$$

In the first case, the constraint gives $x^{2}=1$ and $V=1$. Similarly the other three cases in turn yield $y^{2}=1$ and $V=2$; $z^{2}=1$ and $V=-1 ; u^{2}=1$ and $V=0$. Thus the maximum is $V=2$, and this arises when $x=z=0$ and $y= \pm 1$.
3. 5 marks Which of the following are functionals of the function $y(x)$ (label yes or no).
$\underset{\text { (a) }}{\text { Solution: }} \quad{ }_{(0)}$
(a) $y(0)+$
yes
(b) $\left.\frac{d y}{d x}\right|_{0}$
yes (assuming the derivative exists)
(c) $\min \{y(x) \mid 0 \leq x \leq 1\} \quad$ yes (assuming the minimum exists)
(d) $\int_{0}^{1} y d x$
(e) $\int_{0}^{\pi}\left[\frac{d^{n} y}{d x^{n}}\right]^{3} f(x) d x \quad$ yes (assuming the derivatives exist)
4. 1 mark Given the L^{2}-norm $\|f\|_{2}=\sqrt{\int_{0}^{1} f(x)^{2} d x}$ on the vector space $L^{2}[0,1]$, describe (in one sentence) the ε-neigbourhood of the function $y=x$.
Solution:
The ε-neigbourhood of the function $y=x$ is the set of functions within distance ε of $y=x$, where distance is defined using the L^{2} norm of the difference between two functions.
5. 4 marks Find an upper bound for the minimum of the functional

$$
J\{y\}=\int_{0}^{1} y^{2} y^{\prime 2} d x
$$

subject to $y(0)=0$ and $y(1)=1$ using the trial functions

$$
y_{\varepsilon}(x)=x^{\varepsilon},
$$

with $\varepsilon>1 / 4$. Justify your argument.
Solution:

$$
\begin{aligned}
& y_{\varepsilon}=x^{\varepsilon} \\
& y_{\varepsilon}^{\prime}=\varepsilon x^{\varepsilon-1}
\end{aligned}
$$

and so

$$
\begin{aligned}
J\left\{y_{\varepsilon}\right\} & =\int_{0}^{1} y^{2} y^{\prime 2} d x \\
& =\varepsilon^{2} \int_{0}^{1} x^{4 \varepsilon-2} d x \\
& =\varepsilon^{2}\left[\frac{x^{4 \varepsilon-1}}{4 \varepsilon-1}\right]_{0}^{1} \\
& =\frac{\varepsilon^{2}}{4 \varepsilon-1} \\
\frac{d J\left\{y_{\varepsilon}\right\}}{d \varepsilon} & =\frac{2 \varepsilon(4 \varepsilon-1)-4 \varepsilon^{2}}{(4 \varepsilon-1)^{2}}
\end{aligned}
$$

At a stationary point the derivative is zero and so we require the denumerator of $d J / d \varepsilon$ to be zero, i.e.,

$$
2 \varepsilon^{2}-\varepsilon=2 \varepsilon(2 \varepsilon-1)=0
$$

so $\varepsilon=0$ or $1 / 2$, but only the latter solution is greater than $1 / 4$, and so this is a stationary point.

We can see it is a minimum by taking the second derivative with respect to ε to get

$$
\begin{aligned}
\frac{d^{2} J\left\{y_{\varepsilon}\right\}}{d \varepsilon^{2}} & =\frac{d}{d \varepsilon} \frac{4 \varepsilon^{2}-2 \varepsilon}{(4 \varepsilon-1)^{2}} \\
& =\frac{2}{(4 \varepsilon-1)^{3}}
\end{aligned}
$$

which is positive for $\varepsilon>1 / 4$.
Calculating $J\left\{y_{\varepsilon}\right\}=\frac{\varepsilon^{2}}{4 \varepsilon-1}$ at the minimum we get $J\left\{y^{*}\right\}=1 / 4$, which is an upper bound on the true minimum of the functional, because the functional applies over a wider class of possible functions y, and we know that there may be a better one.

