Variational Methods and Optimal Control
 Class Exercise 2: due before lecture, on Thursday 23rd August, 2012

Matthew Roughan
matthew.roughan@adelaide.edu.au

1. For the fixed end point problem to find the extremals of a functional

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

where f has continuous partial derivatives of up to second order wrt x, y and y^{\prime}, state the Euler-Lagrange equation that the extremal curve must statisfy.
2. Find the extremals of the functionals
(a) $F\{y\}=\int_{a}^{b} \frac{\sqrt{1+y^{\prime 2}}}{y} d x$
(b) $F\{y\}=\int_{0}^{1}\left[x y^{2}+\left(y+x^{2} y\right) y^{\prime}\right] d x$, subject to $y(0)=0$, and $y(1)=2$.
(c) $F\{y\}=\int_{0}^{1}\left[x y^{2}+\left(y+x y^{2}\right) y^{\prime}\right] d x$, subject to $y(0)=0$, and $y(1)=2$.
or give reasons why no extremal exists.
3. A functional F is given by

$$
F[y]=\int_{0}^{1} x(1-x) y y^{\prime \prime} d x
$$

Use an appropriate integration by parts to show that F can be expressed in the standard form

$$
F[y]=\int_{0}^{1} f\left(x, y, y^{\prime}\right) d x
$$

and derive an ordinary differential equation that must be satisfied by any extremal to F.
4. State if the following functionals are or are not autonomous, degenerate, and/or have dependence on y.
(a) $F\{y\}=\int_{a}^{b} \frac{\sqrt{1+y^{\prime 2}}}{y} d x$
(b) $F\{y\}=\int_{a}^{b} y^{2} y^{\prime}+x y^{\prime} d x$
(c) $F\{y\}=\int_{a}^{b} \cos \left(x y^{\prime}\right)+\sin \left(x y^{\prime}\right) d x$
(d) $F\{y\}=\int_{a}^{b} \cos ^{2}\left(y^{\prime}\right)+\sin ^{2}(x y) d x$

Please provide your answer in the form of a table whose rows correspond to each integral, and which has a column for each case. Fill in all parts of the table.
5. Find the shape of a geodesic on the (curved part) of the surface of a cylinder.

Can you explain the geodesic by "unrolling" the cylinder?

