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1. For the fixed end point problem to find the extremals of a functional

F{y} =

∫ x1

x0

f(x, y, y′) dx

wheref has continuous partial derivatives of up to second order wrtx, y andy′, state the Euler-Lagrange equation that
the extremal curve must statisfy.

Solution: The Euler-Lagrange equation is
d

dx

(

∂f

∂y′

)

− ∂f

∂y
= 0

2. Find the extremals of the functionals

(a) F{y} =

∫ b

a

√

1 + y′2

y
dx

Solution:

Note thatf = f(y, y′) =

√
1+y′2

y
is independent ofx, and so we can find constant function

H(y, y′) = y′
∂f

∂y′
− f(y, y′) =

y′2

y
√

1 + y′2
−
√

1 + y′2

y
= c1

Multiplying both sides byy
√

1 + y′2 we get

y′2 − (1 + y′2) = 1 = c1y
√

1 + y′2

and squaring we get
1 = c21y

2(1 + y′2)

This can be rearranged to the form

y′2 =
1− c21y

2

c21y
2

or
dx = ± c1y

√

1− c21y
2
dy

Integrating we get

x =

∫

c1y
√

1− c21y
2
dy

= ±
√

1− c21y
2

c1
+ c2

Hence,

(x− c2)
2 + y2 =

1

c21
So the extremals are circles (with center along thex-axis).
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(b) F{y} =

∫ 1

0

[

xy2 + (y + x2y)y′
]

dx, subject toy(0) = 0, andy(1) = 2.

Solution:
The functionf = f(x, y, y′) = A(x, y)y′ +B(x, y), where

A(x, y) = y + x2y

B(x, y) = xy2

and sof is linear iny′, so this is the degenerate case, and so the E-L equations reduce to

∂A

∂x
− ∂B

∂y
= 0

Now

∂A

∂x
= 2xy

∂B

∂y
= 2xy

so the E-L equations reduce to
∂A

∂x
− ∂B

∂y
= 2xy − 2xy = 0

which is an identity (it is always true), and soF{y} does not depend on the path (curve), and so all curves that
join the end-points satisfy the E-L equations.

(c) F{y} =

∫ 1

0

[

xy2 + (y + xy2)y′
]

dx, subject toy(0) = 0, andy(1) = 2.

Solution:
The functionf = f(x, y, y′) = A(x, y)y′ +B(x, y), where

A(x, y) = y + xy2

B(x, y) = xy2

and sof is linear iny′, so this is the degenerate case, and so the E-L equations reduce to

∂A

∂x
− ∂B

∂y
= 0

Now

∂A

∂x
= y2

∂B

∂y
= 2xy

so the E-L equations reduce to

∂A

∂x
− ∂B

∂y
= y2 − 2xy = y(1− 2x) = 0

Thus the only possible extremals arey = 0 andy = 2x. The variation problem has an extremal only if one of
these curves passes through the required end-points. Fortunately,y = 2x passes through the two end points, and
so the straight liney = 2x is the required extremal.
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3. A functionalF is given by

F [y] =

∫ 1

0

x(1− x)yy′′ dx.

Use an appropriate integration by parts to show thatF can be expressed in the standard form

F [y] =

∫ 1

0

f(x, y, y′) dx

and derive an ordinary differential equation that must be satisfied by any extremal toF for fixed values ofy(0) and
y(1).

Solution: Using integration by parts provides

F [y] =

∫ 1

0

x(1 − x)y.y′′

= [x(1 − x)y.y′]
1

0
−
∫ 1

0

[(1− 2x)y + x(1− x)y′] y′ dx

= 0 +

∫ 1

0

[(2x− 1)y + x(x− 1)y′] y′ dx,

which is in the standard form
∫ b

a
f (x, y, y′) dx. The E–L equation

∂f

∂y
=

d

dx

(

∂f

∂y′

)

reads

(2x− 1)y′ =
d

dx
[(2x− 1)y + 2x(x− 1)y′]

or
0 = 2y + (4x− 2)y′ + 2x(x− 1)y′′,

that is,
x(1− x)y′′ + (1− 2x)y′ − y = 0.

4. State if the following functionals are autonomous, degenerate, and/or have dependence ony.

(a) F{y} =

∫ b

a

√

1 + y′2

y
dx

(b) F{y} =

∫ b

a

y2y′ + xy′ dx

(c) F{y} =

∫ b

a

cos(xy′) + sin(xy′) dx

(d) F{y} =

∫ b

a

cos2(y′) + sin2(xy) dx

Solution: Note that the last problem is a trick:sin2 +cos2 = 1 regardless of the arguments to the functions, so this
integral is constant.

problem autonomous degenerate dependent ony

F{y} =

∫ b

a

√

1 + y′2

y
dx yes no yes

F{y} =

∫ b

a

y2y′ + xy′ dx no yes yes

F{y} =

∫ b

a

cos(xy′) + sin(xy′) dx no no no

F{y} =

∫ b

a

cos2(y′) + sin2(xy) dx yes yes no
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5. Find the shape of a geodesic on the (curved part) of the surface of a cylinder.

Can you explain the geodesic by “unrolling” the cylinder?

Solution:

From lectures, the general geodesic formulation

L =

∫

√

P + 2Qv′ +Rv′2 du

=

∫

√

Pu′2 + 2Qu′ +Rdv

whereu′ = du/dv andv′ = dv/du and

P =

(

∂x

∂u

)2

+

(

∂y

∂u

)2

+

(

∂z

∂u

)2

Q =
∂x

∂u

∂x

∂v
+

∂y

∂u

∂y

∂v
+

∂z

∂u

∂z

∂v

R =

(

∂x

∂v

)2

+

(

∂y

∂v

)2

+

(

∂z

∂v

)2

The Euler-Lagrange equations are

∂P
∂v

+ 2v′ ∂Q
∂v

+ v′2 ∂R
∂v

2
√

P + 2Qv′ +Rv′2
− d

du

(

Q+Rv′
√

P + 2Qv′ +Rv′2

)

= 0

Standard co-ordinates on the cylinder (radius 1) are

x = u

y = cos(θ)

z = sin(θ)

xu = 1 xθ = 0
yu = 0 yθ = − sin(θ)
zu = 0 zθ = cos(θ)

P = 1 Q = 0 R = (− sin(θ))2 + cos(θ)2 = 1

E-L equation
θ′√
1 + θ′

= const

which implies that
θ′ = c1

And hence
θ(u) = c1u+ c2

The angle is proportional to the distance around the cylinder.

These describe spirals around the curved part of the cylinder.

We can also note that if we unrolled the cylinder then(u, θ) would be a point on the 2D Euclidean plane so that the
curve

θ(u) = c1u+ c2

is just a straight line.
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