Variational Methods and Optimal Control
 Class Exercise 5: due before lecture, on Thursday 18th October, 2012

Matthew Roughan
$<$ matthew.roughan@adelaide.edu.au $>$

1. Transversals: Find the coordinates of the point(s) nearest the origin on the surface $x y z=a^{3}$, for $x, y, z \geq 0$.

Show (using the transversal conditions and the Euler-Lagrange equations) that if we were to draw a line between this point and the origin, it would be a transversal of minimum length between the origin and the surface.
2. Optimal Control: Minimize

$$
F\{u\}=\int_{0}^{1} u^{2} d t
$$

subject to

$$
\begin{aligned}
\dot{x_{1}} & =u-x_{2} \\
\dot{x_{2}} & =-u
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{1}(0)=2 \\
& x_{1}(1)=1 \\
& x_{2}(0)=0 \\
& x_{2}(1)=1
\end{aligned}
$$

3. Optimal Control: Find the minimum value of

$$
F\{u\}=x(1)+\int_{0}^{1} \alpha u^{2} d t
$$

where $\alpha>0, x(0)=0, x(1)$ free, and

$$
\dot{x}=u
$$

How does the answer change if we add the condition that $|u(t)| \leq 1$?

