Variational Methods and Optimal Control Class Exercise 6: do not hand in

Matthew Roughan
$<$ matthew.roughan@adelaide.edu.au $>$

1: Conservation laws: use Neother's theorem to relate the symmetries of the pendulum to the conservation laws that apply to the system. More specifically, consider the system as follows:
Kinetic energy

$$
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m l^{2} \dot{\phi}^{2}
$$

Potential energy

$$
V=m g(l-y)=m g l(1-\cos \phi)
$$

The Lagrangian is

$$
L(\phi, \dot{\phi})=\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l(1-\cos \phi),
$$

and the action integral is

$$
F\{\phi\}=\int_{t_{0}}^{t_{1}}\left(\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l(1-\cos \phi)\right) d t .
$$

Determine whether the Lagrangian has translation (in space or time) or rotation invariance, and thence determine the conservation laws that apply.
2. Broken extremals: Minimize the functional

$$
F\{x\}=\int_{0}^{2}(\dot{x}+1)^{2} \dot{x}^{2} d t
$$

subject to the end-point conditions that $x(0)=1$ and $x(2)=0$. [Hint: consider the possibility of broken extremals.]
3. Optimal control: Express the following in a form of an optimal control problem to which the Pontryagin Maximum Principle can be applied:
(a) Minimize

$$
F\{x\}=\int_{0}^{10} x^{2} d t
$$

subject to

$$
|\ddot{x}| \leq 1, \text { and } x(0)=1
$$

(b) Minimize T subject to

$$
\int_{0}^{T} \ddot{x}^{2} d t=4
$$

and

$$
x(0)=1, \text { and } \dot{x}(0)=1, \text { and } \dot{x}(T)=-2
$$

4. Optimal control: A person is considering a lifetime plan of investment and expenditure. With initial savings S and no other income other than from an investment with a fixed interest rate $\alpha>0$, this investor's capital weath at time t is $x(t)$ and is governed by

$$
\dot{x}=\alpha x-r
$$

where $r=r(t)$ is the investors rate of expenditure. The immediate enjoyment due to expenditure at rate $r(t)$ results in utility $U(r)$, which we will take to be $U(r)=\sqrt{r}$. Future enjoyment at time t is discounted by $e^{-\beta t}$. Thus our investor wishes to maximize

$$
J\{r\}=\int_{0}^{T} e^{-\beta t} U(r) d t
$$

subject to $\dot{x}=\alpha x-r$, and the initial condition $x(0)=1$. Also, at the final time, any remaining capital is wasted, so let $x(T)=0$. There are additional implicit constraints: we cannot borrow, so capital cannot become negative, and we cannot expend a negative amount, so $r(t) \geq 0$ for all t.

Use the Pontryagin Maximum Principle to find the optimal expenditure strategy $r(t)$.

