Variational Methods and Optimal Control

 Class Exercise 6 solutionsMatthew Roughan
matthew.roughan@adelaide.edu.au

1: Conservation laws: use Neother's theorem to relate the symmetries of the pendulum to the conservation laws that apply to the system. More specifically, consider the system as follows:
Kinetic energy

$$
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2} m l^{2} \dot{\phi}^{2}
$$

Potential energy

$$
V=m g(l-y)=m g l(1-\cos \phi)
$$

The Lagrangian is

$$
L(\phi, \dot{\phi})=\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l(1-\cos \phi),
$$

and the action integral is

$$
F\{\phi\}=\int_{t_{0}}^{t_{1}}\left(\frac{1}{2} m l^{2} \dot{\phi}^{2}-m g l(1-\cos \phi)\right) d t .
$$

Determine whether the Lagrangian has translation (in space or time) or rotation invariance, and thence determine the conservation laws that apply

Solution

- The system clearly does not possess translational symmetry in the y direction (as there is a y term in the potential energy). There is no explicit x term, but there is an implicit constraint that $x^{2}+y^{2}=l^{2}$, and so the system does ot possess x translation symmetry either, and hence momentum is not conserved.
- The system does possess time invariance, and so energy is conserved.
- The system does not possess rotational invariance (see the $\cos \phi$ term in the functional), and so angular momentum is not conserved.

2. Broken extremals: Minimize the functiona

$$
F\{x\}=\int_{0}^{2}(\dot{x}+1)^{2} \dot{x}^{2} d t
$$

subject to the end-point conditions that $x(0)=1$ and $x(2)=0$. [Hint: consider the possibility of broken extremals.] Solution: The Euler-Lagrange equations are

$$
\begin{array}{r}
\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}-\frac{\partial f}{\partial x}=0 \\
\frac{d}{d t}\left[2(\dot{x}+1) \dot{x}^{2}+2(\dot{x}+1)^{2} \dot{x}\right]=0
\end{array}
$$

$$
\begin{aligned}
2(\dot{x}+1) \dot{x}^{2}+2(\dot{x}+1)^{2} \dot{x} & =\text { const } \\
2 \dot{x}^{3}+2 \dot{x}^{2}+2 \dot{x}^{3}+4 \dot{x}^{2}+2 \dot{x} & =\text { const } \\
4 \dot{x}^{3}+6 \dot{x}^{2}+2 \dot{x} & =\text { cost }
\end{aligned}
$$

So $\dot{x}=$ const, and therefore the solution is $x=a t+b$, i.e., the solutions to the Euler-Lagrange equations are straight lines. Naively, we just choose the straight line from $x(0)$ to $x(2)$ to minimize the functional, i.e.,

$$
x=1-\frac{1}{2} t,
$$

which has $\dot{x}=-1 / 2$, and hence,

$$
F\{x\}=\int_{0}^{2}(\dot{x}+1)^{2} \dot{x}^{2} d t=\int_{0}^{2} \frac{1}{16} d t=\frac{1}{8} .
$$

which may seem small, but is actually only a local minimum
Consider a function with a potential corner at $t=t_{c}$, and assume slopes of the line are $\dot{x}\left(t_{c}^{-}\right)=a_{1}$, and $\dot{x}\left(t_{c}^{-}\right)=a_{2}$ on either side of the corner. The Erdman-Weierstrass corner conditions are

$$
\begin{align*}
\left.\frac{\partial f}{\partial \dot{x}}\right|_{t_{\bar{c}}^{-}} & =\left.\frac{\partial f}{\partial \dot{x}}\right|_{t_{c}^{+}} \\
4 a_{1}^{3}+6 a_{1}^{2}+2 a_{1} & =4 a_{2}^{3}+6 a_{2}^{2}+2 a_{2} \\
a_{1}\left(4 a_{1}^{2}+6 a_{1}+2\right) & =a_{2}\left(4 a_{2}^{2}+6 a_{2}+2\right) \\
2 a_{1}\left(a_{1}+1\right)\left(2 a_{1}+1\right) & =2 a_{2}\left(a_{2}+1\right)\left(2 a_{2}+1\right) \tag{1}
\end{align*}
$$

and

$$
\begin{aligned}
\left.H\right|_{t_{c}^{-}} & =\left.H\right|_{t_{c}^{+}} \\
\dot{x} \frac{\partial f}{\partial \dot{x}}-\left.f\right|_{t_{c}^{-}} & =\dot{x} \frac{\partial f}{\partial \dot{x}}-\left.f\right|_{t_{c}^{+}}
\end{aligned}
$$

$\left(4 a_{1}^{3}+6 a_{1}^{2}+2 a_{1}\right) a_{1}-\left(a_{1}^{4}+2 a_{1}^{3}+a_{1}^{2}\right)=\left(4 a_{2}^{3}+6 a_{2}^{2}+2 a_{2}\right) a_{2}-\left(a_{2}^{4}+2 a_{2}^{3}+a_{2}^{2}\right)$

$$
\begin{equation*}
a_{1}^{2}\left(3 a_{1}^{2}+4 a_{1}+1\right)=a_{2}^{2}\left(3 a_{2}^{2}+4 a_{2}+1\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a_{1}^{2}\left(3 a_{1}+1\right)\left(a_{1}+1\right)=a_{2}^{2}\left(3 a_{2}+1\right)\left(a_{2}+1\right) \tag{3}
\end{equation*}
$$

We can satisfy (3) and (1) by taking $a_{i}=0$ or -1 . If we consider these as possible extremals we immediately note that when $a=0$ we get $\dot{x}=0$, and when $a=-1$ we get $1+\dot{x}=0$, and so

$$
F\{x\}=\int_{0}^{2}(\dot{x}+1)^{2} \dot{x}^{2} d t=0,
$$

and given that the squared terms cannot be negative, this is the minimal of the functional
The extremal is made of straight sections with slope zero, or -1 , there being two equally good solutions matching the end-point with one corner, as shown in the figure. If we allow additional corners, then there are many more possibilities.

3. Optimal control: Express the following in a form of an optimal control problem to which the Pontryagin Maximum Principle can be applied:
(a) Minimize

$$
F\{x\}=\int_{0}^{10} x^{2} d t
$$

subject to
(b) Minimize T subject to
and

$$
|\ddot{x}| \leq 1, \text { and } x(0)=1
$$

$$
\int_{0}^{T} \ddot{x}^{2} d t=4
$$

Solutions

(a) The constraint $|\ddot{x}| \leq 1$ is not in a suitable form. We need to first write it as a 1 st order DE. Start by writing the equivalent constraint

$$
\ddot{x}^{2} \leq 1
$$

and then add a slack variable to create an equation and we get

$$
\ddot{x}^{2}+\alpha^{2}=1
$$

This is a second order DE, and we need to rewrite in terms of first order DEs, so make the substitution

$$
\begin{aligned}
& x_{1}=x \\
& x_{2}=\dot{x}
\end{aligned}
$$

and then we get the equations

$$
\begin{aligned}
& \dot{x_{1}}=x_{2} \\
& \dot{x_{2}}= \pm \sqrt{1-\alpha^{2}}
\end{aligned}
$$

The functional also needs to be rewritten as

$$
F\left\{x_{1}, x_{2}\right\}=\int_{0}^{10} x_{1}^{2} d t
$$

and likewise the end-point constraint.
(b) This is a time minimization problem so we seek to minimize the integral of $\int_{0}^{T} 1 d t$. Including a Lagrange multiplier for the isoperimetric constraint $\int_{0}^{T} \ddot{x}^{2} d t=4$ we need to minimize

$$
F\{x\}=\int_{0}^{T} 1-\lambda \ddot{x}^{2} d t
$$

Again, this involves second order terms so we use the same change of co-ordinates to $\left(x_{1}, x_{2}\right)$ as above to write this as minmize

$$
F\left\{x_{1}, x_{2}\right\}=\int_{0}^{T} 1-\lambda{\dot{x_{2}}}^{2} d t
$$

subject to

$$
x_{1}(0)=1 \text {, and } x_{2}(0)=1, \text { and } x_{2}(T)=-2
$$

4. Optimal control: A person is considering a lifetime plan of investment and expenditure. With initial savings S and no other income other than from an investment with a fixed interest rate $\alpha>0$, this investor's capital weath at time t is $x(t)$ and is governed by

$$
\dot{x}=\alpha x-r
$$

where $r=r(t)$ is the investors rate of expenditure. The immediate enjoyment due to expenditure at rate $r(t)$ results in utility $U(r)$, which we will take to be $U(r)=\sqrt{r}$. Future enjoyment at time t is discounted by $e^{-\beta t}$. Thus our investor wishes to maximize

$$
J\{r\}=\int_{0}^{T} e^{-\beta t} U(r) d t
$$

subject to $\dot{x}=\alpha x-r$, and the initial condition $x(0)=1$. Also, at the final time, any remaining capital is wasted, so let $x(T)=0$. There are additional implicit constraints: we cannot borrow, so capital cannot become negative, and we cannot expend a negative amount, so $r(t) \geq 0$ for all t.
Use the Pontryagin Maximum Principle to find the optimal expenditure strategy $r(t)$.
Solutions: Given a minimization problem in the form: minimize functional

$$
F=\int_{t_{0}}^{t_{1}} f_{0}(t, \mathbf{x}, \mathbf{u}) d t
$$

subject to constraints $\dot{\mathbf{x}}=\mathbf{f}(t, \mathbf{x}, \mathbf{u})$, or more fully

$$
\dot{x}_{i}=f_{i}(t, \mathbf{x}, \mathbf{u}) .
$$

The Pontryagin Maximum Principle (PMP) states that for $\mathbf{u}(t)$, an admissible control vector that transfers $\left(t_{0}, \mathbf{x}_{0}\right)$ to The Pontryagin Maximum Principle (PMP) states that for $\mathbf{u}(t)$, an admissible control vector that transfers $\left(t_{0}, \mathbf{x}_{0}\right)$ to
a target $\left(t_{1}, \mathbf{x}\left(t_{1}\right)\right)$ and trajectory $\mathbf{x}(t)$ corresponding to $\mathbf{u}(t)$, in order that $\mathbf{u}(t)$ be optimal, it is necessary that there exists $\mathbf{p}(t)=\left(p_{1}(t), p_{2}(t), \ldots, p_{n}(t)\right)$ and a constant scalar p_{0} such that

- \mathbf{p} and \mathbf{x} are the solution to the canonical system

$$
\dot{\mathbf{x}}=\frac{\partial H}{\partial \mathbf{p}} \quad \text { and } \quad \dot{\mathbf{p}}=-\frac{\partial H}{\partial \mathbf{x}}
$$

- where the Hamiltonian is $H=\sum_{i=0}^{n} p_{i} f_{i}$ with $p_{0}=-1$
- $H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t) \geq H(\mathbf{x}, \hat{\mathbf{u}}, \mathbf{p}, t)$ for all alternate controls $\hat{\mathbf{u}}$
- all boundary conditions are satisfied

The state variable here is x, and the control variable is r. The functions of interest here (noting that the problem is a maximization problem, and the PMP is written in terms of minimization) are

$$
\begin{aligned}
& f_{0}(x, r)=-e^{-\beta t} r^{1 / 2} \\
& f_{1}(x, r)=\alpha x-r
\end{aligned}
$$

so the Hamiltonian is

$$
H=p(\alpha x-r)+e^{-\beta t} r^{1 / 2} .
$$

The canonical DEs are

$$
\begin{aligned}
\dot{x} & =\frac{\partial H}{\partial p}=\alpha x-r, \quad \text { the state equation } \\
\dot{p} & =-\frac{\partial H}{\partial x}=-\alpha p .
\end{aligned}
$$

The second equation give

$$
p=A e^{-\alpha t}
$$

Maximizing H with respect to r, means we take

$$
\frac{\partial H}{\partial r}=-p+\frac{1}{2} e^{-\beta t} r^{-1 / 2}=0 .
$$

So

$$
\begin{aligned}
r^{1 / 2} & =\frac{e^{-\beta t}}{2 p} \\
& =\frac{e^{(\alpha-\beta) t}}{2 A} \\
r & =\frac{e^{2(\alpha-\beta) t}}{4 A^{2}}
\end{aligned}
$$

We can then substitute this into the state equation to get x, i.e.,
$\dot{x}=\alpha x-r$
$=\alpha x-\frac{e^{2(\alpha-\beta) t}}{4 A^{2}}$

$$
x=B e^{\alpha t}-\frac{e^{2(\alpha-\beta) t}}{4 A^{2}(\alpha-2 \beta)}
$$

However, we want $x(0)=1$ so

$$
\begin{aligned}
B-\frac{1}{4 A^{2}(\alpha-2 \beta)} & =1 \\
B & =\frac{1+4 A^{2}(\alpha-2 \beta)}{4 A^{2}(\alpha-2 \beta)}
\end{aligned}
$$

and we want $x(T)=0$ so (assuming $\alpha-2 \beta \neq 0$)

$$
\begin{aligned}
B e^{\alpha T}-\frac{e^{2(\alpha-\beta) T}}{4 A^{2}(\alpha-2 \beta)} & =0 \\
\left(1+4 A^{2}(\alpha-2 \beta)\right) e^{\alpha T} & =e^{2(\alpha-\beta) T} \\
4 A^{2}(\alpha-2 \beta) & =e^{(\alpha-2 \beta) T}-1 \\
A^{2} & =\frac{e^{(\alpha-2 \beta) T}-1}{4(\alpha-2 \beta)}
\end{aligned}
$$

from which we can derive A, and thence B is

$$
\begin{aligned}
B & =\frac{1+4 A^{2}(\alpha-2 \beta)}{4 A^{2}(\alpha-2 \beta)} \\
& =\frac{e^{(\alpha-2 \beta) T}}{e^{(\alpha-2 \beta) T}-1}
\end{aligned}
$$

The figure shows the derived r and x curves.

Note that the objective function can be calculated to give

$$
\begin{aligned}
J\{r\} & =\int_{0}^{T} e^{-\beta t} r^{1 / 2} d t \\
& =\int_{0}^{T} e^{-\beta t} \frac{e^{(\alpha-\beta) t}}{2 A} d t \\
& =\int_{0}^{T} \frac{1}{2 A} e^{(\alpha-2 \beta) t} d t \\
& =\frac{e^{(\alpha-2 \beta) T}-1}{2(\alpha-2 \beta) A}
\end{aligned}
$$

