
Variational Methods and Optimal Control
Extra Questions

Matthew Roughan
<matthew.roughan@adelaide.edu.au>

This contains some extra questions related to the Calculus of Variations and its use in Optimal Control. The questions are
generally harder than those in class exercises, but show a wider range of applications and ideas than we have time to coverin
lectures or tutorials.

The questions here are not explicitly examinable, but if youunderstand these, you should be very well prepared for the
exam.

1. The Chain Rule: Givenu = x2 + 2y, where

x(r, t) = r sin(t).

y(r, t) = sin2(t),

determine the values of
∂u

∂r
and

∂u

∂t
.

Solution:

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r

= 2x sin(t) + 2× 0,

= 2r sin2(t),

∂u

∂t
=

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t

= 2xr cos(t) + 4 sin(t) cos(t),

= 2(r2 + 2) sin(t) cos(t).
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2. Taylor Series: The “line-picking” problem is the problem of estimating thedistribution of the lengths of randomly
chosen lines within some region. For instance, start with a circlar region of radiusR, and choose two points (indepen-
dently and uniformly at random within the region). Then the probabiliy density function for the length of this line takes
the form [1,2]:

g(t) =
4t

πR2
cos−1

(

t

2R

)

− 2t2

πR3

√

1− t2

4R2

This is a rather complicated function. Use Taylor series (aroundt = 0) to find a simple, 3rd order approximation for
the density.

Solution: It would be quite hard work to calculate all of the derivatives of this function, and then insert them into a
series. A simpler approach is to the Taylor series of the sub-components of the function:

cos−1(x) =
1

2
π − x− 1

6
x3 + · · ·

√

1− x2 = 1− x2

2
− x4

8
+ · · · .

to derive

g(t) =
4t

πR2
cos−1

(

t

2R

)

− 2t2

πR3

√

1− t2

4R2

=
4t

πR2

(

1

2
π − t

2R

)

− 2t2

πR3
+O(t4)

=
2t

R2
− 4t2

πR3
+O(t4) (1)

from which we can immediately see that

g(0)(0) = 0,

g(1)(0) =
2

R2
,

g(2)(0) = − 8

πR3
,

g(3)(0) = 0.

Notice that because the 3rd order term is zero, the approximation is quite good.
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3. Minimizing functions: A chain hanging between two pylons takes the shape commonly called acatenary, which has
mathematical form

y = c1 cosh

(

x− c2
c1

)

− λ,

where the constantsλ, c1 > 0 andc2 are determined by the lengthL of the chain, and the end conditions, i.e., the
heights of the polesy(x0) = x0 andy(x1) = x1.

Assume we have calculatedλ, c1 andc2 for a chain of lengthL, and given pylon heights, derive the minimal height of
the chain. Be careful to consider all possible cases, and to argue that it is a minimum, not just a stationary point.

Solutions:

y = c1 cosh

(

x− c2
c1

)

− λ

y′ = sinh

(

x− c2
c1

)

,

which is a non-decreasing function, with a zero atx = c2. Soy is decreasing to the left ofx = c2, and increasing to
the right. Hence there are three possible locations for the mimimum – the two edges, or the stationary pointsy′ = 0.

xmin =







x0, if c2 ≤ x0,
c2, if x0 ≤ c2 ≤ x1,
x1, if c2 ≥ x1.

(2)

In these cases we get

ymin =







y0, if c2 ≤ x0,
c1 − λ, if x0 ≤ c2 ≤ x1,
y1, if c2 ≥ x1.

(3)

The pointsy0 andy1 can easily be seen to be minima (when appropriate) because ofthe increasing or decreasing nature
of y(x) over the interval(x0, x1) in each case, respectively. The pointymin = c1 − λ can be argued to be a minimum
(when appropriate) physically, or we can calculate the second dereviative:

y′′ =
1

c1
cosh

(

x− c2
c1

)

,

which is positive for allx, meaning that the pointy′ = 0 must be a minimum.
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4. Seashell morphology:[3] Many seashells take the form of a logarithmic spiral, anda natural question arises, why?
The most important consideration is that they must grow incrementally, and as such they need to be able to add to a
shell as they develop, without rebuilding the entire thing.A simple cone would, however, provide this facility, so why
build a “cone wrapped around a logarithmic spiral?”

One answer has been postulated for planispiral shells1 that they are maximizing a kind of structural strength associated
with flat springs (like watch springs). The proposed function to minimize (withx− y written as a function ofφ) is

J{x, y} =
α

2

∫ Φ

0

[

x2 + y2 − (xẏ − ẋy)
]

e−2αφ dφ.

Write and solve the resulting Euler-Lagrange equations.

Solution: There will be two Euler-Lagrange equations, one inx and the other iny, in the form

d

dφ

∂f

∂ẋ
− ∂f

∂x
= 0

d

dφ

∂f

∂ẏ
− ∂f

∂y
= 0

resulting firstly in the equation

d

dφ

[

ye−2αφ
]

− 2xe−2αφ + ẏe−2αφ = 0

−2αye−2αφ + ẏe−2αφ − 2xe−2αφ + ẏe−2αφ = 0

−αy + ẏ − x = 0

ẏ = αy − x.

Combined with the second equation we get

ẏ = αy − x

ẋ = x+ αy.

It is easy to check the equations have solutions

x = Aeαφ cosφ

y = Aeαφ sinφ,

which is just the parametric form of a logarithmic spiral.

1“The Mathematics of Gnomonic Seashells”, Chris Illert, Mathematical Biosciences, 63:21-56, 1983
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5. Free-surface of a rotating fluid: Consider a fluid of densityρ in a cylindrical drum of radiusR, which is rotating at
angular speedω = φ̇, and which has been doing so for long enough that the entire fluid is similarly rotating. Calculate
the shape of the free-surface (the interface between the airand fluid), ignoring friction and surface tension.

Solution: The surface’s shape will be rotationally invariant, due to rotational symmetry, and so we shall represent it in
cylindrical co-ordinates as a function of radius byz(r).

Consider the potential energy of a particle at point(r, s, θ). There are two forces applied to the particle

gravity = mg in the direction -z

centripetal = mrω2 in the direction +r.

Thus, we can deduce the form of the potential of the particle to be

Vgravity (r, s, θ) = mgs

Vcentripetal(r, s, θ) = −mr2ω2.

(noting that potential is defined so that the force in directionxi is−∂V/∂xi). The kinetic energy of the particle is

T =
1

2
mr2ω2.

To calculate the minimal energy free surface, we take

F{z} =

∫ R

0

∫ 2π

0

∫ z

0

[

Vgravity + Vcentripetal+ T
]

r ds dθ dr,

where the extra factor ofr in the integral comes from the Jacobian of the transform fromCartesian to cylindrical
co-ordinates (think of the affect of integrating around a cylinder of radiusr).

Now, first consider integrating with respect to the height ofthe particles, we get
∫ z

0

mgs+
1

2
mr2ω2 ds =

m

2

[

gz2 + ω2r2
]

,

and note that there is no dependence onθ in the integral, so that contributes a simple factor of2π so that

F{z} = mπ

∫ R

0

[

gz2r + ω2r3
]

dr,

We seek the shapez(r) that minimizes this functional. Obviously the constant factor mπ has no affect on the shape
of the solution so we ignore it here. The functional is not dependent onr′ (and thus is trivially linear inr′ and so the
Euler-Lagrange are degenerate reducing to

2gzr+ ω2r3 = 0.

Obviouslyr 6= 0 except at the center, so we can rearrange this equation to get

z =
ω2

2g
r2,

i.e., the shape of the surface is a paraboloid of revolution.

Notes:

• Note that this is only true for the case where the height of thefluid at the center isz(0) = 0. If we seek to
determine the solution to this problem in general we can control the volume of fluid, and this constraint

V {z} = 2π

∫ R

0

zr dr.

when added to the above (as an isoperimetric constraint witha Lagrange multiplier) will provide a vertical shift
in the solution.
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• There is a second (perhaps simpler) approach to solving freesurface problems. There can be no tangential forces
along a free fluid surface, otherwise, particles in the fluid would travel along the surface, changing its shape. So
in equilibrium forces must balance.

The gravitational force (tangential to the surface) on a point of the surface ismg sin θ (towards the center of the
drum), and the centripetal force ismrω2 cos θ (towards the rim), wheretan θ = dz/dr. Balancing the forces
gives

mg sin θ = mrω2 cos θ

tan θ =
r

g
ω2

dz

dr
=

rω2

g

z =
ω2

2g
r2 + c,

as before.

• This is not an academic problem. This solution is actually used to create large parabolic mirrors for use in astron-
omy. The Large Zenith Telescope in Canada is the largest suchtelescope with a pool of mercury of diameter of
6m, and about 8.5 revolutions per minute.http://en.wikipedia.org/wiki/Liquid_mirror . Such
telescopes cost about 1% of the cost of a similar sized conventional mirror, but not surprising can only be pointed
straight up.
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6. Generalization:

Consider the following problem — find the extremal curves of the following functional:

F{y} =

∫ 1

0

g(x) y′
2
dx,

for twice differentiable functiong(·) > 0, andy(0) = 0 andy(1) = 0.

(a) Show the functional is bounded below by zero.

(b) Solve the general problem using the Euler-Lagrange equations.

(c) Solve the specific problem for the following cases:

i. g(x) = 1/xa for a > 0:

y =
c

a+ 1
xa+1 + k.

ii. g(x) = x:
y = c ln(x) + k.

iii. g(x) = xa, for a > 1:

y = −c(a− 1)

xa−1
+ k.

iv. g(x) = eax:

y = − c

a
e−ax + k.

Solution:

(a) Asg(x) > 0, andy′
2, the terms inside the integal are never less than zero, so theintegral has a lower bound at

zero.

(b) The Euler-Lagrange equations are
d

dx

∂f

∂y′
− ∂f

∂y
=

d

dx
2g(x)y′ = 0.

So
g(x)y′ = const,

or

y =

∫

c

g(x)
dx+ k.

(c) Examples:

i. g(x) = 1/xa for a > 0:

y =
c

a+ 1
xa+1 + k.

ii. g(x) = x:
y = c ln(x) + k.

iii. g(x) = xa, for a > 1:

y = −c(a− 1)

xa−1
+ k.

iv. g(x) = eax:

y = − c

a
e−ax + k.
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7. Brachystochrone for a rotating object: Brachystochrone for a rotating object: The classic brachystochrone is
based on a sliding, frictionless bead. Now compute the shapeof a brachystochrone for an object rolling down the curve
(for the sake of argument assume it is a spherical marble though the result should be extendable to any rotationally
symmetric object), which does not slip, but experiences no frictional losses of energy.

Solution: As before we will exploit conservation of ernergy which is made up of kinetic and potential energy. We can
find the potential energy of an object by taking the mass to be located at its center of mass. For the sake of what follows
assume that the object is rotationally symmetric, and so itscenter of mass is also the center of rotation, so the potential
energy term will be the same as for the standard Brachystochrone problem.

A rolling object has two sorts of kinetic energy:

• The translational kinetic energy associated with the movement of the center of mass in the direction it is rolling,
which is just the standard

T1 =
1

2
mv2.

• The kinetic energy associated with rotation, which is just

T2 =
1

2
Iω2,

whereω is the angular velocity (measured in radians per second), and I is the moment of inertia (about the axis
of rotation). Example moments of inertia are given below forobjects of radiusr and massm.

object I
solid sphere 2

5mr2

thin spherical shell 2
3mr2

solid cylinder 1
2mr2

thin cylindrical hoop mr2

For the marble in question, the kinetic energy is therefore

T2 =
1

5
mr2ω2.

When there is no slippage, the rate of angular rotationω, and the velocity of the object are directly linked by

v = rω.

Thus the total kinetic energy of a rolling object is

T = T1 + T2 =
1

2
m
[

v2 + Iω2
]

=
1

2
mv2

[

1 +
2

5

]

=
7

10
mv2.

Note that this is in exactly the same form as the kinetic energy of a sliding bead, but the constant is different. Energy
conservation gives the velocity at a point to be

v =

√

10

7

[

E

m
− gy

]

,

Now remember the functional of interest for the brachystochrone is

T {s} =

∫ L

0

ds

v(s)
=

∫ x1

x0

√

1 + y′2
√

10
7

[

E
m − gy

]

dx =

∫ x1

x0

√

1 + w′2

w
dx,

where we make the substitution

w =
10

7

[

E

m
− gy

]

,

So the form of the solution will still be a cycloid, as for the classical cycloid, though the constants of integration may
differ.
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8. Clothoid or Euler Spiral: In previous consideration of a bent elastic beam or cantilever (lengthd), we assumed that
distortions from horizontal were small, and that we could therefore approximate the elastic energy as

V =
κ

2

∫ d

0

y′′2 dx,

whereκ is the flexural rigidity. In the case where the beam is bent beyond the limits of approximation, what shape will
it take? In particular, what shape would it take if there is a point force ofP on the end, pushing at right angles to the
end of the beam (assume the left end point of the beam is at the origin, and clamped horizontal, but the(x, y) position
of the right end-point is free).

[Hint: parameterize the shape of the beam by the arclengths (from the origin) and the tangent angleθ (with reference
to the horizontal) at each point. NB: this type of parameterization for a particular curve is sometimes called the
Whewell equation of the curve.]

What happens if the force is directly downwards?

Solution: Take the left end point of the beam to be the origin. Parameterize the shape of the beam byθ(s), the tangent
angle at arclengths along the beam, i.e., the position of the beam(x, y) as a function ofs can be written

x =

∫ s

0

cos(θ(t)) dt

y =

∫ s

0

sin(θ(t)) dt.

If the force was downwards, the energy of the beam is potential Py(d) plus the elastic energy, which depends on the
curvature of the beam at each point, given byθ′, so the functional of interest is

E{θ(s)} = Py(d) +
1

2

∫ d

0

κθ′2 ds =

∫ d

0

κ

2
θ′2 + P sin(θ) ds.

However, we take the simpler case here where the force is applied at right angles to the end of the beam, so that the
potential energy isPdθ, so that the functional of interest is

E{θ(s)} =

∫ d

0

κ

2
θ′2 + Pθ ds.

Note that this is a linear approximation to the previous functional for small deflectionsθ. The left end point of the beam
is at the origin, and clamped horizontal, so

θ(0) = 0.

The Euler-Lagrange equation is

d

ds

∂f

∂θ′
− ∂f

∂θ
= 0

κ
d

ds
θ′ − Pθ = 0

κθ′′ − Pθ = 0. (4)

and hence, we get an equation of the form
θ′′ = P/κ,

which has solution

θ =
P

κ
s2 + a1s+ a0,

with curvature

θ′ = 2
P

κ
s+ a1,
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i.e., the curvature varies linearly with distance along thebeam. Note that equations such as this which relate the
curvature to arclength are commonly called Cesàro equations. Taking the initial conditionθ(0) = 0 into account we
geta0 = 0. The value ofθ at the right boundary is free (buts is fixed), and so at the right boundary

∂f

∂θ′

∣

∣

∣

∣

s=d

= κθ′ = 0.

so curvature at the right boundary is zero, i.e.,

a1 = −2
P

κ
d.

The resulting shape is shown in Figure 1 (a). This solution iscalled theClothoid, Spirosor Cornu Spiralor Euler
Spiral. Figure 1 (b) shows the Euler spiral.

0 1 2

−1

−0.5

0

0.5

(a)

0 0.5 1 1.5

0

0.5

1

1.5

(b)

Figure 1: Clothoid of Euler spiral forP = κ = 1. Figure (a) shows a solution to the cantilever problem ford = 2, while
figure (b) shows a more general picture of the Euler-Spiral asit is often shown.

The Euler-Spiral has been used to model non-linear splines2, and the ideal transition curves for railways (see next
question).

Note that if we went back to the Euler-Lagrange equations fora downward force we would get

d

ds

∂f

∂θ′
− ∂f

∂θ
= 0

κθ′′ + P cos(θ) = 0. (5)

The DE given in (5) is harder to solve, but is reminiscent of the non-linear pendulum DE, which is

φ′′ + ω2 sinφ = 0.

In fact we can convert one to the other by a simple change of variablesφ = θ + π/2, andω =
√

P/κ. The non-linear
pendulum has solution3 given by

φ(s) = 2 arcsin

{

sin
φ0

2
sn

[

K

(

sin2
φ0

2

)

− ωt; sin2
φ0

2

]}

.

whereK(m) is the complete elliptical integral of the first kind,sn(u;m) is the Jacobi elliptic function, andφ0 = φ(0)
is the initial value ofφ (assuming the pendulum starts at restφ′(0) = 0). These solutions form part of a more general
set of curves called theelastica.

2“Modeling of Curves and Surfaces with MATLAB”, Springer Undergraduate Texts in Mathematics and Technology, 2010, Volume 7, Part 2, 201-244,
http://www.springerlink.com/content/x7n001g2752p513 6/fulltext.pdf and “Variational Study of Nonlinear Spline Curves”, Lee
and Forsythe, SIAM Review, Vol.15, No.1, Jan, 1973, pp.120-133, http://www.jstor.org/stable/pdfplus/2029293.pdf?acc eptTC=
true .

3“Exact solution for the nonlinear pendulum”, A. Belendez1,C. Pascual, D.I. Mendez, T. Belendez and C. Neipp, Revista Brasileira de Ensino de Fisica,
v. 29, n. 4, p. 645-648, (2007),http://www.sbfisica.org.br/rbef/pdf/070707.pdf
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9. Railway design: there are a number of interesting problems in optimal designof railways, for instance in minimizing
the cost of a trip. However, here we imagine a railway that must change directions by an angle∆θ. Assume the length
of the curved track isd, what is the best shape for the curve?

More precisely, we might aim to minimize curvature in the rail to minimize the centripetal force. Intuitively this would
result in the curved segment being a circular arc. However, this results a sudden change in the force at the join between
straight and curved sections of track4. A better curve will have zero curvature at the end-points, and would minimize
the magnitude of the total change in curvature (or its square, which is easier for us to deal with here).

Solution: The centripetal force on a train at points along the track will beFc(s) = v2θ′. As velocityv is a constant
here we shall WLOG set it to be1. Rather than simply minimize the force, recognize that minimizing the square of the
integrated forces will results in the circular arc, i.e., if

J{θ} =

∫ d

0

θ′2 − λθ′ ds,

where the second term comes from a Lagrange multiplier giventhe isoperimetric constraint that
∫ d

0
θ′ ds = ∆θ, then

we get the Euler-Lagrange equations
θ′′ = 0,

which has solutions
θ = c1s+ c2,

i.e., a circular arc.

However, if we seek to minimize changes in acceleration we need to minimize changes in curvature, and so we get a
functional of the form

J{θ} =

∫ d

0

θ′′2 − λθ′ ds,

with corresponding Euler-Poisson equations
θ′′′′ = 0,

and solution
θ = c3s

3 + c2s
2 + c1s+ c0.

So we see the result is now a clothoid-like curve, with the curvature varying quadratically along the length of the curve.

Now we choose a set of coordinates such that

θ(0) = 0

θ(d) = ∆θ,

and note that we wish curvature to be zero at the boundaries, i.e.,

θ′(0) = 0

θ′(d) = 0.

The boundary conditions at0 ensure thatc1 = c0 = 0. The boundary conditions atd then give

c3d
3 + c2d

2 = ∆θ

3c3d
2 + 2c2d = 0.

The second condition givesc2 = −3dc3/2. Substituting into the 1st equations

c3d
3 [1− 3/2] = ∆θ,

so

c3 = −2∆θ

d3
.
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clothoid
circular arc

Figure 2: Clothoid transition curve compared to a circular arc.

Figure 2 shows a comparison of the clothoid solution, and thecircular arc.

Notice that the maximum curvature of the clothoid is larger than for the circle. Now, if we had a maximum value of
θ′, then this introduces an inequality constraint, which is either satisfied by the solution above, or we need to have a
segment of the curve, whereθ′ is constant at its maximum value, i.e., it sits on a circular arc for some portion of the
transition. In this case, corner conditions (and physical arguments) mean that the Euler-Poisson solution must join the
circular arc at a tangent.

Whewell and Cesàro equations provide useful parameterizations for a range of problems, for example here are some
curves with simple parameterizations for tangent angleϕ, curvatureϕ′ = dϕ/ds and arclengths. Note that the Cesàro
equation can be obtained by differentiating the Whewell equation.

Curve Whewell Cesàro
Straight Line ϕ = c ϕ′ = 0

Circle s = rϕ ϕ′ = 1/r, wherer =radius
Catenary s = a tanϕ ϕ′ = a

s2+a2

Log-Spiral ϕ = c log s ϕ′ = c/s
Cornu Spiral ϕ = cs2/2 + k ϕ′ = cs

4For instance, if the track is banked to match the centripetalforce the banked track and straight track must meet in a smooth curve, and so the transition
in the force must be smooth.
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10. Catenary and corner conditions:

The shape of a hanging chain of lengthL was presented as the solution of the problem of minimizing potential energy

Wp{y} = mg

∫ x1

x0

y
√

1 + y′2 dx,

under the isoperimetric constraint

G{y} =

∫ x1

x0

√

1 + y′2 dx = L.

assuming the (given) heights of the pylonsyi = y(xi) > 0.

We determined that the solution to this problem took the form

y = c1 cosh

(

x− c2
c1

)

− λ,

where the constantsλ, c1 andc2 are determined by the lengthL of the chain, and the end conditions, i.e., the heights
of the polesy(x0) = x0 andy(x1) = x1.

Earlier we calculated the lengthLmax of a chain that just touched the ground between the two pylons. Now, assume
the chain is longer thanLmax (but less thanx1 − x0 + y0 + y1) and thaty(x) ≥ 0.

Determine the shape of the chain.

Solutions: Nothing has changed about the functional of interest, so given an inequality constraint we know that there
are two possibilities:

• the Euler-Lagrange solutions are satisfied and the chain takes the shape of a catenary; or

• the constraint is tight, i.e.,y(x) = 0, and the chain rests on the ground.

A complete solution for the shape of the chain is made up of segments of these types with “corners” joining them. We
know

y′′ =
1

c1
cosh

(

x− c2
c1

)

> 0,

for all x, soy(x) is convex, therefore there are only three possible shapes:

(a) the standard catenary, which has zero corners;

(b) a catenary that just touches the ground, which potentially has one corner; or

(c) a catenary with three segments:

• the left segment has a catenary shape, and is non-increasing;
• the middle segment is flat (withy(x) = 0); and
• the right segment has catenary shape, and is non-decreasing.

The last case, illustrated in Figure?? is the one of interest here.

PICTURE

At the corners, which we labelx− andx+, the chain must be continuous and satisfy the W-E corner conditions. As the
value ofy is fixed at these corners, the W-E conditions require that theHamiltonian be continuous at the corners.

The functional being minimized (including the isoperimetric constraint) is

F{y} = mg

∫ x1

x0

(y + λ)
√

1 + y′2 dx,

The problem is autonomous, so the corresponding Hamiltonian for the catenary is constant, and given by

H =
(y + λ)
√

1 + y′2
,
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and for the component wherey = 0, we havey′ = 0, and soH = λ. GivenH must be continous at the corners,H = λ
over the entire curve, and as we already defined (in previous solutions) thatH = c1 we getλ = c1 (where we know
thatc1 > 0).

That is the same requirement we had for the curve that had length Lmax, but now we allow a greater length, and have
two additional unknowns, i.e., the locations of the corners. So now we have to solve, for a curve of shape

y(x) =















c1

(

cosh
(

x−c−
2

c1

)

− 1
)

, for x0 ≤ x ≤ x−,

0, for x− ≤ x ≤ x+,

c1

(

cosh
(

x−c+
2

c1

)

− 1
)

, for x+ ≤ x ≤ x1,

where we now have 5 unknownsc1, c−2 , c+2 , x− andx+. In addition to the end-point conditions, and the length
constraint, andH continuity at the corners, which is implicity enforced by the form of solution, we have to enforce
continuity ofy at the corners, i.e.,limx→x− y(x) = 0 andlimx→x+ y(x) = 0. Thecosh function has minimum value 1,
and so, this condition implies thatx− = c− andx+ = c+. Hence we are left with three conditions and three unknowns:

y(x0) = y0

y(x1) = y1

L = (x+ − x−) +

∫ x−

x0

√

1 + y′2 dx+

∫ x1

x+

√

1 + y′2 dx

= (x+ − x−) + c1 sinh((x
− − x0)/c1) + c1 sinh((x1 − x+)/c1)

The above can then be solved numerically.

Its is, perhaps, simpler to note that we can usecosh2(x) − sinh2(x) = 1, to get

c1 sinh((x − c2)/c1)) = sign(x− c2)

√

c21 cosh
2((x− c2)/c1))− c21

= sign(x− c2)
√

(y1 + λ)2 − c21.

Hence, for instance the left segment is

L{y−} = c1 sinh((x
− − x0)/c1)

=
√

(y0 + c1)2 − c21

=
√

y0(y0 + 2c1),

and that at the left end-point

y0 = c1 cosh

(

x0 − x−

c1

)

− c1

y0 + c1
c1

= cosh

(

x0 − x−

c1

)

(

x0 − x−

c1

)

= cosh−1

(

y0 + c1
c1

)

x− = x0 − c1 cosh
−1

(

y0 + c1
c1

)

, (6)

and equivalently for the right-hand segment ,and substituting these into the length constraint, we get a non-linear
equation inc1 only

L = x0 + x1 − c1 cosh
−1

(

y0 + c1
c1

)

− c1 cosh
−1

(

y1 + c1
c1

)

+
√

y0(y0 + 2c1) +
√

y1(y1 + 2c1),

which perhaps simplifies the numerical solution as we can calculatec1 by a one-dimensional search, and then compute
x− andx+ directly from (6).

Matlab code is provided below, as are some example results.
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Figure 3: Example catenaries.
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Matlab code: for performing estimating catenary parameters is includedbelow.

function [x, y, c1, c2_m, c2_p, x_m, x_p, lambda, ...
Lest, Fest, Lest_check, Fest_check, ...
f_val, exitflag, output] = catenary_long(n, y_0, y_1, x_0, x_1, L)

%
% file: catenary_solver_gen.m, (c) 2012 Matthew Roughan
% author: Matthew Roughan
% email: matthew.roughan@adelaide.edu.au
%
%
% CATENARY_SOLVER: solves the shape of a hanging chain, whic h we know will be
% y = c1* cosh((x-c2)/c1) - lambda
% with fixed length
% L = c1. * [ sinh(x_b./c1) - sinh(x_a./c1) ]
% when the chain is long enough to drag on the ground. In this ca se it will
% have three segments (from left to right)
% -- a downwards part (from x_0 to x-)
% -- a flat part, y=0, (from x- to x+)
% -- an upwards part (from x+ to x_1)
%
% INPUTS:
% n = number of points at which to calculate the curve
% y_0 = height of the left pylon
% y_1 = height of the right pylon
% x_0 = left pylon position
% x_1 = right pylon position
% L = length of chain
%
% OUTPUTS:
% [x, y] = n (x,y) points along the shape of the catenary
% c1,c2 = constants of integration
% lambda = Lagrange multiplier
% Lest = estimated length, to be used in debugging
% Fest = an estimate of the functional which gives the potenti al energy of the chain
% Lest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% Fest_check = a check based on estimated (x,y) positions (on ly valid for large n)
% [f_val, exitflag, output] = output from the optimization u sed to find the solution
%

if (y_0 <= 0)
error(sprintf(’y_0=%.3f must be > 0’, y_0));

end

if (y_1 <= 0)
error(sprintf(’y_1=%.3f must be > 0’, y_1));

end

if (x_1 <= x_0)
error(sprintf(’x_1=%.3f should be > x_0=%.3f’, x_1, x_0)) ;

end

[L_max, L_min, c1_max, c2_max, lambda_max] = catenary_max _length(y_0, y_1, x_0, x_1);
if (L <= L_max)

error(sprintf(’You need L=%.3 > L_max=%.3 for it to make sen se to use this routine’, L, L_max));
end
Lm = (x_1-x_0) + y_1 + y_0;
if (L >= Lm)

error(sprintf(’The chain length L=%.3f is too long even for this routine (max %.3f)’, L, Lm));
end

% create a function which we will minimize to find the solutio n
% g1 is the left end-point constraint
% g2 is the right end-point constraint
% g3 is the length constraint
% a = [c1,c2_m,c2_p]

16
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g1 = @(a) ( y_0 - a(1) * (cosh( (x_0 - a(2))/a(1) ) -1) ).ˆ2;
g2 = @(a) ( y_1 - a(1) * (cosh( (x_1 - a(3))/a(1) ) -1) ).ˆ2;
g3 = @(a) (L - (a(3)-a(2)) - sqrt(y_0 * (y_0+2 * a(1))) - sqrt(y_1 * (y_1+2 * a(1)))).ˆ2;
% g3 = @(a) (L - (a(3)-a(2)) - a(1) * sinh((a(2)-x_0)/a(1)) - a(1) * sinh((x_1-a(3))/a(1)) ).ˆ2;
g = @(a) g1(a) + g2(a) + g3(a);
a_est = [c1_max, (x_0+x_1)/2 - 0.01, (x_0+x_1)/2 + 0.01];
options = optimset(’fminsearch’);
options = optimset(options, ’MaxFunEvals’, 10000);
[a, fval, exitflag, output] = fminsearch(g, a_est, options );
c1 = a(1);
lambda = c1;
c2_m = a(2);
c2_p = a(3);
x_m = a(2);
x_p = a(3);

f_val = [g1(a), g2(a), g3(a)];

% check the length is correct
Lest = (x_p-x_m) + sqrt(y_0 * (y_0+2 * c1)) + sqrt(y_1 * (y_1+2 * c1))
Lest2 = x_1 + x_0 - c1 * acosh((y_0+c1)/c1) - c1 * acosh((y_1+c1)/c1) + sqrt(y_0 * (y_0+2 * c1)) + sqrt(y_1 * (y_1+2 * c1))

%
% now calculate points on the curve
%
x = x_0:(x_1 - x_0)/n:x_1;
k1 = find(x <= x_m);
y(k1) = c1 * cosh((x(k1)-c2_m)/c1) - c1;
k2 = find(x > x_m & x < x_p);
y(k2) = 0;
k3 = find(x >= x_p);
y(k3) = c1 * cosh((x(k3)-c2_p)/c1) - c1;

% second check of the length
Lest_check = sum(sqrt(diff(x).ˆ2 + diff(y).ˆ2));

Fest = 0;
Fest_check = 0;
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11. Discontinuous solutions:Find the continuous curvey that gives the minimum value of a simple functional of the form

J{y} =

∫ a

−a

x2y′2 dx,

with y(−a) = 0 andy(a) = 1. Consider continuity of possible solutions carefully.

Solution: The Euler-Lagrange equation is
d

dx
2x2y′ = 0,

so eithery′ = 0 or

y′ =
c1
x2

,

which we can integrate easily to get

y = −c1
x

+ c2.

Taking the second type of solution and inserting the end points we get

0 =
c1
a

+ c2

1 = −c1
a

+ c2,

which have solutions

c1 = −a

2

c2 =
1

2
.

However, note that this curve has a singularity atx = 0, and is therefore inadmissible.

The functional clearly has an upper bound on its minimum value of 0, if y′ = 0. However, if the end pointsy(−a) 6=
y(a), then this solution is not allowed because it cannot be continuous.

However, we can consider a smoothed versions of the curve

y =

{

0 wherex < 0,
1 wherex ≥ 0.

by interpolating between them with a smooth function withindistanceε of the origin. In doing so we can create a curve
for which the functional is arbitrarily close to zero. So in fact, there is no minimal curve, only a series of curve closer
and closer to a minimum.

Part of the problem lies in the fact that although the function f = x2y′2 is continuous, and has two continuous
derivatives, it has

fy′y′ = 0,

atx = 0. At such points we can have problems in Euler-Lagrange solutions.

Razmadzé defined a family of admissible discontinuous curvesD by a set of curves that have a sequenceCn of
admissible curves such that

lim
n→∞

Cn(x) = D(x).

lim
n→∞

J{Cn} = J{D},

limiting the number of discontinuities, but allowing for usto use curves of the above type to find solutions that satisfy
the Euler-Lagrange equations almost everywhere.
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12. Geodesics:

Given two points on a circular-paraboloid, find the shortest
path between them). That is, find the curvey(x) such that

F{y} =

∫ b

a

ds =

∫ x1

x0

√

1 + y′2 + z′2 dx

is minimized, subject to fixed end points(x0, y0, z0) and
(x1, y1, z1) and the curve lying on the surface

z(x, y) = −α(x2 + y2)

Solution: We will solve forα = −1 for convenience. In this case we can write the surface in parametric form as

x(r, θ) = r cos θ,

y(r, θ) = r sin θ,

z(r, θ) = r2.

We will take the case where we write the geodesic angle as a function of radius (i.e.,θ(r)), and then the arclength of a
curve on the surface is

L{θ} =

∫

√

P + 2Qθ′ +Rθ′2 dr,

wheretheta′ = dθ/dr and

P =

(

∂x

∂r

)2

+

(

∂y

∂r

)2

+

(

∂z

∂r

)2

= cos2 θ + sin2 θ + 4r2

= 1 + 4r2

Q =
∂x

∂r

∂x

∂θ
+

∂y

∂r

∂y

∂θ
+

∂z

∂r

∂z

∂θ
= −r cos θ sin θ + r sin θ cos θ

= 0

R =

(

∂x

∂θ

)2

+

(

∂y

∂θ

)2

+

(

∂z

∂θ

)2

= r2 sin2 θ + r2 cos2 θ

= r2.

That is, we need to find minimal curves of the functional

L{θ} =

∫

√

1 + 4r2 + r2θ′2 dr.

There is no dependence onθ in the integral, therefore the Euler-Lagrange equations simplify to

∂f

∂θ′
=

r2θ′√
1 + 4r2 + r2θ′2

= k,
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for some constantk. Rearranging the equations we get

r4θ′2 = k2(1 + 4r2 + r2θ′2)

r2(r2 − k2)θ′2 = k2(1 + 4r2)

θ′2 =
k2(1 + 4r2)

r2(r2 − k2)

θ = β +

∫

k

r

√

1 + 4r2

r2 − k2
dr

Now, this integral is not easy, but we can do it using Maple (orany other symbolic manipulation package) to get

θ = β +

1

8k

{

− ln (2) + 12 k2 ln (2)− 8 k2 ln
(

1− 4 k2 + 8 r2 + 4
√

− (1 + 4 r2) (−r2 + k2)
)

−4
k2√
−k2

ln

(

−2 k2 − r2 + 4 r2k2 − 2
√
−k2

√

− (1 + 4 r2) (−r2 + k2)

r2

)}

.

= β +
{

− 1

8k
ln (2) +

3k

2
ln (2)− k ln

(

1− 4 k2 + 8 r2 + 4
√

− (1 + 4 r2) (−r2 + k2)
)

− i sign(k)
2

ln

(

−2 k2 − r2 + 4 r2k2 − 2
√
−k2

√

− (1 + 4 r2) (−r2 + k2)

r2

)}

.

Given start and end points(r0, θ0) and(r1, θ1), we can use numerical techniques to find integration constantsβ andk,
and thence draw the geodesic, e.g. see
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13. Classification of extrema:Consider minimizing arc length (as in a geodesic problem)

J{y} =

∫

√

1 + y′2 dx.

• Show that Legendre’s necessary condition for a local minimum is satisfied.

• Consider the second variation, and show that a geodesic (an extremal for the above functional) will be a local
minimum.

Solutions: Legendre’s necessary condition requires thatfy′y′ > 0 along the extremal. Now

fy′y′ =
∂

∂y′
y′

√

1 + y′2

=
1

√

1 + y′2
− y′2

(1 + y′2)3/2

=
(1 + y′2)− y′2

(1 + y′2)3/2

=
1

(1 + y′2)3/2

> 0

which is Legendre’s necessary condition.

The second variation is

δ2F (η, y) =

∫ x1

x0

[

η2fyy + 2ηη′fyy′ + η′2fy′y′

]

dx,

where

fyy = 0

fyy′ = 0

fy′y′ =
1

(1 + y′2)3/2
> 0.

Now the first two terms in the second variation vanish, so thatit becomes

δ2F (η, y) =

∫ x1

x0

η′2fy′y′ dx,

whereη′2 ≥ 0 and we have already shown thatfy′y′ > 0, so the second variation must be positive for all perturbations
about the extremal, and therefore any extremal of the above functional must be a local minimum.
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14. Yet Another Cantilever Problem: Going back to the original cantilever problem, we often see the functional written
in the form

F{y} =

∫ d

0

EI

2
y′′2 + ρy dx,

whereE is the Young’s modulus (or the elastic modulus) of the material, andI is thesecond moment of areadefined
about the line on which we are bending. For instance, given our beam lies in the(x, y) plane, we are effectively bending
it around thez axis, so the second moment of area would be defined (at a distancex along the beam) by

I(x) =

∫

A

y2 dA,

whereA is the cross-sectional area of the beam atx, in the(y, z) plane.

Examples:

cross section shapearea I

solid rectangular (heighth, widthw) hw wh3/12

solid circular (radiusr) πr2 πr4/4

ring (inner radiusr1, outer radiusr2) π(r22 − r21)
π(r42 − r41)

4

Given in this form, we can solve problems where the shape of the beam varies over its length, i.e.I is a function ofx.

Solve the following problem: imagine we want to determine how far the wing of a plane will deflect. Consider a jet
plane, with a delta-shaped wings, so that they form triangles with the base fixed horizontally to the side of the plane.
The length of the wing isd, and the width at the base isb. Given this form, takeEI(x) to be in the form

EI(x) = B(d− x),

for some constantB. Similarly, assume the lift generated by the wing is proportional to its width at distancex, and so
the force on the wing (upwards) can be written in the form

ρ(x) = C(d− x),

for some constantC. Determine the shape of the wing.

d

x

b(d−x)

b

(a) Convair Delta Dart (b) Wing dimensions

Figure 4: Delta-winged aircraft..
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Solution: The energy function is in the form

F{y} =

∫ d

0

EI

2
y′′2 + ρy dx =

∫ d

0

B(d− x)

2
y′′2 + C(d− x)y dx,

The Euler-Poisson equation is

d2

dx2

∂f

∂y′′
+

∂f

∂y
=

d2

dx2
[B(d− x)y′′] + C(d− x)

= B
d

dx
[(d− x)y′′′ − y′′] + C(d− x)

= B [(d− x)y′′′′ − 2y′′′] + C(d − x)

= 0.

Dividing byB(d− x) and takingz = y′′′ we get

z′ − 2

d− x
z = −C

B
.

Solve the homogenous form of this DE using an integrating factor

M(x) = exp

[
∫

− 2

d− x
dx

]

= exp [2 ln(d− x)] = (d− x)2.

We get
d

dx
[Mz] = −C

B
M(x) = −C

B
(d− x)2.

Integrating we get

Mz =
C

3B
(d− x)3 + k1,

or

z =
C

3B
(d− x) + k1(d− x)−2.

However, note that a solution with a pole atd is not acceptible (in fact the natural boundary conditiony′′′(d) = z(d) = 0
ensures this), so thatk1 = 0.

Integratingz = y′′′ to gety we get

y′′′ =
C

3B
(d− x)

y′′ = − C

6B
(d− x)2 + k2

Note the natural boundary conditionsy′′(d) = 0, sok2 = 0, and we integrate again

y′′ = − C

6B
(d− x)2

y′ =
C

18B
(d− x)3 + k3

Now, the boundary conditiony′(0) allows us to fixk3 = −Cd3

18B , and we integrate once more to get

y′ =
C

18B
(d− x)3 − Cd3

18B

y = − C

72B
(d− x)4 − Cd3

18B
x+ k4
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and the natural boundary conditiony(0) = 0 allows us to setk4 = Cd4

72B so the final solution is

y(x) = − C

72B
(d− x)4 − Cd3

18B
x+

Cd4

72B
.

The maximum distortion of the wing, at its tip, is

y(d) = −Cd4

18B
+

Cd4

72B
= −3Cd4

72B
.

The solution is interesting, particularly as we can see the curvature of the wing is

y′′ = − C

6B
(d− x)2.

Note though, that the wing breadth is∝ (d − x) so the total stress on the material is proportional to(d − x), i.e., it is
largest near the base of the wing.

0 1 2 3
0

1

2

3

4

d

 

 

0 0.5 1 1.5 2
0
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x

 

 

deflection
curvature

max deflection
max curvature

Figure 5: Results forC = B = 1 andd = 2.
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15. Isoperimetric constraints: Consider the problem of finding the minimal length curve between two points(x0, y0) and
(x1, y1), subject to the constraint that

G{y} =

∫ x1

x0

y
√

1 + y′2 dx = L,

for some constantL. Find the shape of the extremals.

Solution: Including the isoperimetric constraint via a Lagrange multiplier µ we seek extremals of the functional

H{y} =

∫ x1

x0

√

1 + y′2 + µy
√

1 + y′2 dx.

Takeλ = 1/µ and we get

λH{y} =

∫ x1

x0

(λ+ y)
√

1 + y′2 dx.

which is exactly the same as the functional used in finding theshape of a hanging wire of lengthL, and so the result
will be a catenary.

Note: In general there is a reciprocal relationship between optimization objective and isoperimetric constraint. We can
usually exchange their roles (providedλ 6= 0).
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16. Isoperimetric constraints: For the functional

J{y} =

∫ 1

0

(yy′)
2
dx

subject toy(0) = 1, andy(1) = 2, and
∫ 1

0

y2 dx = L

(a) Show forL = 3 that the extremal takes the form

y(x) =
√

4− 3(x− 1)2.

(b) ForL = 7/3 show there exists a linear extremal.

(c) For L = 5/2 show the problem admits a solution with Lagrange multiplierλ = 0, and fund the extremal
corresponding to this value.

Solution: The problem can be written using a Lagrange multiplier as oneof finding the extremals of

F{y} =

∫ 1

0

(yy′)
2
+ λy2 dx.

This is an autonomous problem, so the Hamiltonian will be constant, i.e.,

H = y′
∂f

∂y′
− f = (yy′)

2 − λy2 =
[

y′
2 − λ

]

y2 = c, (7)

for some constantc. There are two classes of solutions to these equations:

(a) If c 6= 0, theny 6= 0, and thereforey > 0 over the interval.

If λ 6= 0, then we can rearrange (7) to get

y′
2

=
c+ λy2

y2

y′ = ±
√

c+ λy2

y

± y
√

c+ λy2
dy = dx

± 1

λ

√

c+ λy2 = x+ k.

Rearranging to gety as a function ofx we get

y =

√

λ2(x+ k)2 − c

λ
,

where we can take the positive square root because we knowy > 0.

The proposed solution:
y(x) =

√

4− 3(x− 1)2.

is in this form, and satisfies the end-point constraintsy(0) = 1, andy(1) = 2, and

∫ 1

0

y2 dx =

∫ 1

0

4− 3(x− 1)2 dx =
[

4x− (x − 1)3
]1

0
= [4− 1]

1
0 = 3,

so this solution satisfies the isoperimetric constraint as well.
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(b) If c = 0, then the solution requires eithery = 0, which does not satisfy the end-point conditions, ory′ = ±
√
λ,

or
y = ±

√
λx+ k,

for constantk. In order to satisfy the end-point conditions, we would require

y(0) = 1 ⇒ k = 1

y(1) = 2 ⇒
√
λ+ k = 2,

so
y = x+ 1,

andλ = 1. In this case, the integral

∫ 1

0

y2 dx =

∫ 1

0

(x+ 1)2 dx =

[

(x+ 1)3

3

]1

0

=
8− 1

3
=

7

3
.

so this solution is only viable ifL = 7/3.

We know for this case thaty′ = 0 and so the integralJ{y} = 0, which is the smallest possible value, so this
solution is a global minimum.

(c) If c 6= 0, and we consider the caseλ = 0, then then we can rearrange (7) to get

yy′ = k

y2

2
= kx+m

y = ±
√
ax+ b,

for constantsa = 2k andb = 2m. Solving for the end points we get

y(0) = 1 ⇒ b = 1

y(1) = 2 ⇒
√
a+ b = 2,

so
y =

√
3x+ 1.

In this case, the integral
∫ 1

0

y2 dx =

∫ 1

0

(3x+ 1) dx =

[

3

2
x2 + x

]1

0

=
5

2
.

so this solution is only viable ifL = 5/2.

We know for this case thatyy′ = k = a/2 = 3/2 and so the integralJ{y} = k/2 = 3/4.
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17. Multiple isoperimetric constraints:

Find the extremals of

J{y} =

∫ 1

0

y′
2
dx,

Subject to

I1{y} =

∫ 1

0

y dx = 2,

I2{y} =

∫ 1

0

xy dx = 1/2,

andy(0) = y(1) = 0.

Solution: We solve for two constraints using two Lagrange multipliers, i.e., find extremals of

F{y} =

∫ 1

0

y′
2
+ λ1y + λ2xy dx,

subject to the end-point conditions. The Euler-Lagrange equations are therefore

2y′′ = λ1 + λ2x,

which has solutions

y =
λ1x

2

4
+

λ2x
3

12
+ c1x+ c2,

for constantsc1 andc2. The boundary conditiony(0) = 0 implies thatc2 = 0, and the boundary conditiony(1) = 0
implies

c1 = −λ1

4
− λ2

12
.

The 1st isoperimetric constraint is

∫ 1

0

y dx =

∫ 1

0

λ1x
2

4
+

λ2x
3

12
+ c1x dx =

[

λ1x
3

12
+

λ2x
4

48
+

c1x
2

2

]1

0

=
λ1

12
+

λ2

48
+

c1
2

= 2,

and the 2nd isoperimetric constraint is

∫ 1

0

xy dx =

∫ 1

0

λ1x
3

4
+

λ2x
4

12
+ c1x

2 dx =

[

λ1x
4

16
+

λ2x
5

60
+

c1x
3

3

]1

0

=
λ1

16
+

λ2

60
+

c1
3

= 1/2.

These give us three linear equations forc1, λ1 andλ2 which have solutionsc1 = 42, λ1 = 408 andλ2 = −720, which
gives the extremal

y = 60x3 − 102x2 + 42x.
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18. Application to statistics: One of the classic methods for estimation in statistics is called the maximum entropy estima-
tor. The maximum entropy principle is an extension of Laplace’s principle of insufficient reason, which in essence says
we should not assume things that are not supported by evidence. For instance, in probability, unless we have reason to
suspect otherwise, we would assume events are equally likely, e.g., the probability of heads coming up on a coin toss
is 1/2.

Maximum entropy extends this by noting that if we maximize the (Shannon) entropy of a probability distribution
constrained by the facts we know about the distribution, we will derive the estimate of that distribution which makes
the least assumptions about the distribution that aren’t supported by the data.

The Shannon entropy of a distribution with one continuous variable is defined to be

H{p} = −
∫

p(x) ln p(x) dx,

wherep(x) is the probability density function (PDF) of the distribution, andp(x) ln p(x) is understood to be zero
wheneverp(x) = 0. PDFs satisfy certain simple properties, most notably:

• Non-negativity: the PDFp(x) ≥ 0. However, Jaynes [4], states that “Mathematically, the maximum-entropy
distribution has the important property that no possibility is ignored; it assigns positive weight to every situation
that is not absolutely excluded by the given information.”,so by this argument we can assume for maximum
entropy thatp(x) > 0 for all allowed values ofx.

• Normalization: the PDF integrates to one, i.e.,
∫

p(x) dx = 1,

Moreover, we often assume we know something about the distribution, for instance, its mean. That is,
∫

xp(x) dx = µ,

for some known constantµ.

Use the above to calculate the continuous, maximum entropy distribution for a non-negative random variable with
known meanµ.

Solution: The problem is one of maximizing a functional with two isoperimetric constraints, for a functionp defined
on [0,∞). We incorporate these into the problem using two Lagrange multipliers λ1 andλ2. Also, a priori we only
know that the random variable is non-negative, so we don’t know the support ofp(x). Assume that it is some interval
[S, T ], then we seek to maximize:

F{p} =

∫ T

0

−p(x) ln p(x) + λ1p(x) + λ2xp(x) dx.

Note that, although by Jaynes, we should take this integral over all allowed values ofx, i.e., the interval[0,∞], we
have not shown in class that such a problem would be a viable fixed-end points problem, so we shall instead condider
the problem with a free right end point.

The Euler-Lagrange equation will be

d

dx

∂f

∂p′
− ∂f

∂p
= 0

−1− ln p(x) + λ1 + λ2x = 0

ln p(x) = λ1 + λ2x− 1

p(x) = exp
(

− 1 + λ1 + λ2x
)

= A exp
(

λ2x
)

. (8)
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The natural boundary conditions will require

∂f

∂p′
= 0,

p′
∂f

∂p′
− f = 0,

at the end-pointx = T . However∂f/∂p′ = 0 so the first condition is trivial, and the second condition becomes

−f
∣

∣

T
= 0

p(T ) ln p(T )− λ1p(T )− λ2Tp(T ) = 0

p(T )
(

ln p(T )− λ1 − λ2T
)

= 0.

There are two ways to satisfy this equation:

• p(T ) = 0, or

• p(T ) = exp
(

λ1 + λ2T
)

,

but we already know the form ofp(x) in (8), using the Euler-Lagrange equations, and from this know that the second
condition cannot be satisfied.

The only way that the first condition can hold given (8) is if were to take the trivial solutionp(x) = 0 everywhere
(which violates the normalization condition), or ifλ2 < 0, in the limitT → ∞. Thus we can justify taking limits from
0 to∞.

From the normaization constraint, andλ2 < 0, we get
∫

∞

0

p(x) dx = 1

−A

λ2
= 1

A = −λ2,

and from the constraint on the mean
∫

∞

0

xp(x) dx = µ

−λ2

∫

∞

0

xeλ2x dx = µ1

−
∫

∞

0

eλ2x dx = µ

−1

λ2
= µ

λ2 = −1/µ,

so the final solution is the Exponential distribution:

p(x) =
1

µ
e−x/µ.

Properly, we have not eliminated a functionp(x) with corners, or regions that are zero (relying on Jaynes principle),
but it should be obvious from the form of the solution to the E-L equation, that these are not possible for a continous
functionp(x).

Remarks: Maximum entropy is a general principle, and can used to derive other cases, for instance:
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• If the random variable has a non-zero probability of taking values in some interval[a, b] then the maximum
entropy distribution is the Uniform distribution on that interval.

• If the random variable support over(−∞,∞) and has known mean and variance then the maximum entropy
distribution is the Gaussian distribution.

• In general, Boltzman showed that if the random variableX had a number of known quanties expressed as expec-
tations

ai = E[fi(X)] =

∫

fi(x)p(x) dx,

and if there is a possiblep(x), which satisfies these conditions with positive support over the interval over which
X is defined, then the PDF has the following shape:

p(x) = A exp

(

∑

i

λifi(x)

)

,

and this theorem should not seem too hard to prove at this point.
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19. Classification of extrema:Show that ify satisfies the Euler-Lagrange equations associated with theintegral

J{y} =

∫ x1

x0

p2y′2 + q2y2 dx,

wherep(x) andq(x) are known functions, thenJ has the value

J{y} =
[

p2yy′
]x1

x0
.

Solution: The Euler-Lagrange equation will be

d

dx

∂f

∂y′
− ∂f

∂y
= 0,

which in this case gives
d

dx

[

p2y′
]

− q2y = 0

In other words

q2y2 = y
d

dx

[

p2y′
]

.

Substitute this into the integral and integrating the second term by parts we get

J{y} =

∫ x1

x0

p2y′2 + q2y2 dx

=

∫ x1

x0

p2y′2 + y
d

dx

[

p2y′
]

dx

=

∫ x1

x0

p2y′2 dx+
[

yp2y′
]x1

x0
−
∫ x1

x0

y′p2y′ dx

=
[

p2yy′
]x1

x0
.

Note: following a similar argument for some arbitrary functionη we get
∫ x1

x0

p2y′η′ + q2yη dx =

∫ x1

x0

p2y′η′ + η
d

dx

[

p2y′
]

dx

=

∫ x1

x0

p2y′η′ dx+
[

ηp2y′
]x1

x0
−
∫ x1

x0

η′p2y′ dx

=
[

p2ηy′
]x1

x0
.

If we insist thatη(x0) = η(x1) = 0, then the above integral is zero, and so

J{y + εη} =

∫ x1

x0

p2(y′ + εη′)2 + q2(y + εη)2 dx

=

∫ x1

x0

p2y′2 + q2y2 dx+ ε

∫ x1

x0

p2y′η′ + q2yη dx + ε2
∫ x1

x0

p2η′2 + q2η2 dx

= J{y}+ ε2
∫ x1

x0

p2η′2 + q2η2 dx

≥ J{y}

and hence the extremals are automatically local minima.
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20. Dynamic Systems:Consider aflyball or centrifugal governoras shown in Figure 6. A governor is used as part of an
engine to control its speed. The governor spins around its axis at a rate determined by the engine, but as it spins faster,
the balls are pushed outwards by centrifugal force, and thisraises them, activiting some control mechanism to slow
down the engine. Thus they control its speed.

q1

q2

L

m m

Figure 6: Flyball governor.

Take two generalized coordinates: the firstq1 representing the angle of the upper arms to the upright, and the second
q2 representing the angle of the plane of the arms to some vertical reference plane. We shall assume that the arms are
light and do not significantly affect the dynamics of the system, and that the masses are point masses. We shall also
ignore the force needed to control the engine.

(a) Use these coordinates to write the Lagrangian for the system.

(b) From this Lagrangian, derive a set of equations of motion.

(c) Determine what simple symmetries apply, and from this derive conservation laws for the system.

Solution:

(a) The Lagrangian isL = T − V for kinetic energyT and potentialV . The potential energy comes from the height
of the balls, which will be

y = L,

above their minimum height. There are two balls so the potential is

V = 2mgy = 2mgL(1− cos q1).

The kinetic energy comes from two components, the rotation around the vertical axis (at ratėq2), and the up-
wards/downwards motion of the balls, which we represent as circular motion around the joint between the arms
and the top, i.e., it has ratėq1. Circular motion at rateω, and at radiusr has kinetic energy12mr2ω2, so the two
components of motion here induce kinetic energy

T = T1 + T2 = mL2
[

q̇22 sin
2 q1 + q̇21

]

.

The combined Lagrangian is therefore:

L = T − V = m
[

L2q̇22 sin
2 q1 + L2q̇21 − 2gL(1− cos q1)

]

.
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(b) Hamilton’s principle of stationary action requires that the paths of motion be stationary (extremals) of the follow-
ing integral

J{q1, q2} =

∫

Ldt.

Ignoring the constant factor ofm, the Euler-Lagrange equations are

d

dt

∂L

∂q̇1
− ∂L

∂q1
=

d

dt

[

2L2q̇1
]

− L2q̇222 sin q1 cos q1 + 2gL sin q1 = 0

or Lq̈1 − Lq̇22 sin q1 cos q1 + g sin q1 = 0

d

dt

∂L

∂q̇2
− ∂L

∂q2
=

d

dt

[

2L2q̇2 sin
2 q1
]

= 0

or L2q̇2 sin
2 q1 = const

(c) The Lagrangian has an explictq1 term, but noq2 or t terms, and is thus symmetric under time translations, or
rotations about the vertical axis (but not the other axes). The resulting conservation laws are

• Conservation of energy (our model does not include a drivingforce, or any dissapation due to friction – if it
did then energy might not be conserved).

• Conservation of angular momemtum (about the vertical axis).

Interestingly, a careful examination of the second Euler-Lagrange equation shows that angular momentum (about
the vertical axis) is conserved.
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21. Electrical Dynamics: There are often electrical analogues to mechanical systems, the simplest of which is a harmonic
oscillator comprised of a capacitor and an inductor as shownin Figure 7.

C L

Figure 7: Harmonic oscillator circuit.

Conventionally, this circuit is analysed using Kirchoff’svoltage law (that the voltages at the capacity and inductor must
be equal), i.e.,

VC = VL,

and Kirchoff’s current law (the current through the two components must balance)

iC + iL = 0.

Theconstitutive relationsrelate current to coltage in the two components by

VL(t) = L
diL
dt

iC(t) = C
dVC

dt
,

whereC is the capacitance (measured inFarads, andL the inductance (measured inHenries) of the circuit. Rearranging
these gives a second order DE

ï+

(

1

LC

)

i = 0, (9)

which has simple harmoically oscillating solutions.

However, we can also consider this system as a variational system. Given an appropriate action integral, Hamilton’s
principle of least action applies here. Treat charge acrossthe capcitor as the dependent variableq, then currenti is the
rate of change of chargei = q̇. The Kirchoff relations allow us to consider only one charge/current.

The analogue of kinetic energy is the energy in the inductor,which for a linear inductor is

EI =
L

2
i2,

and the analogue of potential energy is the energy stored in the capacitor, which for a linear capacitor is

EC =
1

2C
q2.

Write an appropriate Lagrangian and show that the Euler-Lagrange equations result in equation (9).

Solution: Taking a Lagrangian of the form

L = T − V = EI − EC ,

we get

L =
L

2
q̇2 − 1

2C
q2.

The resulting Euler-Lagrange equation is

Lq̈ +
1

C
q = 0,

and we can easily see that this results in (9).

Notes: The constituitive equations are similar to Newton’s equations of motion (F = ma), such as we might use in a
physical system like the pendulum. Here we show that these results would arise naturally from Hamilton’s principle.
Much more complicated electronic circuits can be considered in the same way.
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22. Higher-order derivatives and natural boundary conditions: We have noted that there are two ways of dealing with
higher-order derivatives in a functional, for instance

J{y} =

∫

f(x, y, y′, y′′) dx.

We can tackle it head on using the Euler-Poisson equation

d2

dx2

∂f

∂y′′
− d

dx

∂f

∂y′
+

∂f

∂y
= 0,

or we can use a non-holonomic constraintz = y′ to introduce the new variablez, via a Lagrange multiplier, i.e.,

G{y} =

∫

f(x, y, y′, z′) + λ(x)(z − y′) dx.

and derive the two Euler-Lagrange equations

d

dx

[

∂f

∂y′
− λ

]

− ∂f

∂y
= 0

d

dx

∂f

∂z′
− λ = 0.

We showed in lectures that these produced identical extremal curves. Now show that the two approaches generate
identical natural boundary conditions (wherexi are the fixedx values at the end points, andy, andy′ may vary at the
end points).

Solutions: We have already derived the natural boundary conditions forthe case with functions ofy′′ to be

∂f

∂y′′

∣

∣

∣

∣

xi

= 0

∂f

∂y′
− d

dx

∂f

∂y′′

∣

∣

∣

∣

xi

= 0

Alternatively, we can use the natural boundary conditions for the case with multiple dependent variables, i.e., for
dependent variablesqk, and LagrangianL, we would get

n
∑

k=1

pkδqk −Hδt

∣

∣

∣

∣

∣

xi

= 0 wherepk =
∂L

∂q̇k
andH =

n
∑

k=1

q̇kpk − L

In the context of this problemq1 = y andq2 = z, x = t andL = f +λ(z− y′). The value ofx is fixed at the boundary
soδx = 0 in the above, and we can varyδz andδy independently so the components separate and we get the boundary
conditions

∂L

∂y′

∣

∣

∣

∣

xi

= 0 and
∂L

∂z′

∣

∣

∣

∣

xi

= 0.

Considering the second condition we get

∂L

∂z′

∣

∣

∣

∣

xi

=
∂f

∂z′

∣

∣

∣

∣

xi

=
∂f

∂y′′

∣

∣

∣

∣

xi

= 0

which is just the first of the natural boundary conditions above. The first condition gives

∂L

∂y′

∣

∣

∣

∣

xi

=
∂f

∂y′
− λ

∣

∣

∣

∣

xi

= 0

but remember that the Euler-Lagrange equations require that along the curve we haveλ = d
dx

∂f
∂z′

. Making the substi-
tution we get

∂f

∂y′
− d

dx

∂f

∂z′

∣

∣

∣

∣

xi

=
∂f

∂y′
− d

dx

∂f

∂y′′

∣

∣

∣

∣

xi

= 0

So either approach result in equivalent natural boundary conditions (though it may be that one or the other appears in a
form more immediately convenient for solution).
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23. Zermelo’s navigation problem (1931):imagine we are required to pilot a boat (that travels at a constant speed relative
to the water) from one side of a river to another, and that the speed of the current in the river depends on the distance
from the shore. What is the fastest path across the river? This problem is a specific case of the general Zermelo
navigation problem.

More precisely, consider crossing a river of widthd, which we orient along thex-axis as in Figure 8. The river flows
from left to right, with speedv(y), that depends only on the distance from the shorey. The boat will have constant
speedU with respect to the water (not the shoreline). We have control over the direction in which the boat aims (though
its actual direction of movement will be a combination of theboat’s and water’s velocities). We aim to minimise the
transit time fromA → B. For simplicity, takeA to be at the origin.

Find the minimal time path for

• a river with uniform velocityv(y) = v

• a river where the velocity near the centre is faster, following a parabolic law, i.e.,v(y) = Cy(d− y).

����������������������������������������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������

y

x

v(y)
u(y)

A

B

Figure 8: Zermelo’s river crossing problem.

Compare the time taken by the optimal path, as compared to direct path (where one steers so as to follow a straight line
betweenA andB) and the path where one simply steers towards the goal.

Solution: The velocity of the boat with respect to the water in thex direction, andy direction respectively will beux

anduy respectively. Given the boat will travel with speedU with respect to the water, we know thatu2
x + u2

y = U2.

The boat’s velocities with respect to the shore are

ẋ = ux + v(y)

ẏ = uy.

The goal to minimize is the time fromA toB, so we need to minimize

T {x, y} =

∫ d

0

1

ẏ
dy =

∫ d

0

1

uy
dy,

i.e., the distance divided by the velocity at each point. However, we also have the isoperimetric constraint that we must
end up at the dock atB, and so

∆x =

∫ t

0

ẋ dt =

∫ d

0

ẋ

ẏ
dy =

∫ d

0

ux + v(y)

uy
dy = 0.

where we know thatux = ±
√

U2 − u2
y. we incorporate the constraint using a Lagrange multiplierto obtain the

functional of interest

J{uy} =

∫ d

0

1 + λ
(√

U2 − u2
y + v(y)

)

uy
dy.
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The Euler-Lagrange equations are

d

dy

∂f

∂u̇y
− ∂f

∂uy
= +λ(U2 − u2

y)
−1/2 +

1 + λ
(√

U2 − u2
y + v(y)

)

u2
y

= 0.

Multiplying by u2
y we get

λu2
y

√

U2 − u2
y

+ λ
√

U2 − u2
y = −1− λv(y)

λ
u2
y + U2 − u2

y
√

U2 − u2
y

= −1− λv(y)

1
√

U2 − u2
y

= −1 + λv(y)

U2λ

√

U2 − u2
y = − U2

1/λ+ v(y)
note this meansux = − U2

1/λ+ v(y)

uy =

√

U2 − U4

(1/λ+ v(y))2
,

where we take the positive root because we want to move acrossthe river (in the positive direction). Now that we know
(ux, uy we can compute the path by integrating, for instance (assuming we start at the originA),

x(y) =

∫ y

0

ux + v

uy
dy =

∫ y

0

− U2

1/λ+v(y) + v

U
√

1− U2

(1/λ+v(y))2

dy =

∫ y

0

−U + (1/λ+ v)v/U
√

(1/λ+ v)2 − U2
dy.

Now the boundary constraint is thatx(d) = 0 and this can be used in the above formula to findλ for a given function
v(y), and then we can plot the path across the river.

Constant current: For particular cases the above integral may be analyticallytractable, for instance, takev(y) = c, a
constant. Then from the aboveux = const. Asx(y) involves an integral over a term that we have set to zero, it iseasy
to see that the trajectory of the boat must be a straight line across the river, i.e., the boat is oriented so that its drift with
the current is compensated exactly by the boats direction. We can calculate the actual speeds by looking at the integral
for x(d) = 0 (or indeed anyx(y) as the trajectory is a straight line), i.e.,

x(d) =

∫ y

0

ux + v

uy
dy =

∫ d

0

−U + (1/λ+ v)v/U
√

(1/λ+ v)2 − U2
dy = d

−U + (1/λ+ v)v/U
√

(1/λ+ v)2 − U2
= 0,

which requires that
−U + (1/λ+ c)c/U = 0,

which leads to
1

λ
=

U2

c
− c,

and hence
ux = −c.

i.e., the velocity in thex direction (relative to the water) directly counters the current.

The argument of the square root in the denominator must be positive, which leads to the condition for a solution that

(1/λ+ c)2 − U2 > 0

U4

c2
− U2 > 0

U2(U2 − c2) > 0

U > c
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The condition makes some sense, as the boats speed along in thex direction cannot be compensated if the speed of the
current of the riverc is faster than the boats speedU . If the condition is not satisfied, then no trajectory existsthat takes
the boat across the river to a point directly opposite the start.

Parabolic current: The current in a river is often swifter near the middle, and wemight perhaps model this as a
parabolic current, i.e.,

v(y) = αy(d− y).

Note that

ux = − U2

1/λ+ v(y)
= − U2

1/λ+ αy(d − y)
.

where1/λ is a constant. Integrating we get

x(d) =

∫ y

0

ux + v

uy
dy =

∫ d

0

−U + (1/λ+ αy(d− y))αy(d− y)/U
√

(1/λ+ αy(d− y))2 − U2
dy = 0,

The above isn’t easily solved analytically, but can be easily calculated numerically as a function of1/λ, and hence set
to zero. Once1/λ is known, the velocitiesux are easily calculated. An example is shown in Figure 9.

−0.5 0 0.5

0

0.2

0.4

0.6

0.8

1

v(y)

U=0.50, α=1.00, d=1.00, 1/λ=1.342200

Figure 9: Zermelo’s river crossing solution.

Notes:There are many variants of this problem:

• finding the shortest crossing time regardless of where the boat lands;

• finding the shortest time to get to across a bay, or other waterbody;

• finding shortest times in aeronautical problems (in 3D).
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24. Higher order derivatives via non-holonomic constraints: Take an autonomous problem with second order deriva-
tives, e.g., find the extremals of

J{y} =

∫

F (x, y, y′, y′′) dx.

We noted in lectures that this could be solved using a new variablez = y′, and rewritingF (x, y, y′, y′′) = F (x, y, z, z′).
There is now more than one dependent variable, but no second order derivatives, however, we must also introduce the
constraint thatz − y′ = 0 and so we look for extremals of the functional

G{y, z, λ} =

∫ b

a

f(x, y, z, z′) + λ(x)(z − y′) dx.

The Euler-Lagrange equations fory andz are

d

dx

∂g

∂y′
− ∂g

∂y
= 0

d

dx

∂g

∂z′
− ∂g

∂z
= 0

note thatg(x, y, z, z′) = f(x, y, z, z′) + λ(x)(z − y′) so the E-L equations become

d

dx
[−λ(x)]− ∂f

∂y
= 0

d

dx

∂f

∂z′
− ∂f

∂z
− λ(x) = 0

The first Euler-Lagrange equation can be rewritten

dλ

dx
= −∂f

∂y

Differentiating the second E-L equation WRTx we get

d2

dx2

∂f

∂z′
− d

dx

∂f

∂z
− dλ

dx
= 0

Note from above thatλ′ = −fy and thatz = y′ andz′ = y′′ we get (as before) the Euler-Poisson equation:

d2

dx2

∂f

∂y′′
− d

dx

∂f

∂y′
+

∂f

∂y
= 0

Now show that the same happens if we solve the slightly different problem with functional

G̃{y, z, λ} =

∫ b

a

f(x, y, y′, z′) + λ(x)(z − y′) dx.

Solution: The Euler-Lagrange equations are the same with respect tog̃, wherẽg(x, y, z, z′) = f(x, y, y′, z′)+λ(x)(z−
y′) so the E-L equations become

d

dx

[

∂f

∂y′
− λ(x)

]

− ∂f

∂y
= 0

d

dx

∂f

∂z′
− λ(x) = 0

Differentiating the second E-L equation WRTx we get

d2

dx2

∂f

∂z′
− dλ

dx
= 0
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The first Euler-Lagrange equation can be rewritten

dλ

dx
=

d

dx

∂f

∂y′
− ∂f

∂y

Substitutingdλ/dx, y′ = z andy′′ = z′ we get the Euler-Poisson equation:

d2

dx2

∂f

∂y′′
− d

dx

∂f

∂y′
+

∂f

∂y
= 0,

as before.
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25. Beltrami Identity in higher order problems: Take an autonomous problem with second order derivatives, e.g., find
the extremals of

J{y} =

∫

F (y, y′, y′′) dx,

and find the corresponding Beltrami identity.

Solution: The problem can be directly solved using the Euler-Poisson equation, but here we use an alternative.

First convert the problem into one with only first order derivatives by introducing the variablez = y′, and enforcing
this constraint with a Lagrange multiplier, i.e., the problem becomes: find the extremals of

G{y, z} =

∫

F (y, y′, z′) + λ(z − y′) dx,

The problem is automomous, so the Hamiltonian will be constant, i.e.,

H =
∂f

∂z′
z′ +

∂f

∂y′
y′ − f = const,

wheref = F (y, z, z′) + λ(z − y′). We can expand as follows, replacingz = y′ andz′ = y′′

H =
∂f

∂z′
z′ +

∂f

∂y′
y′ − f

=
∂F

∂z′
z′ +

∂F

∂y′
y′ − λy′ − F (y, y′, z′)− λ(z − y′)

=
∂F

∂y′′
y′′ +

∂F

∂y′
y′ − λy′ − F (y, y′, y′′)

Now we can find the Lagrange multiplierλ using the Euler-Lagrange equation forz, i.e.,

d

dx

∂f

∂z′
− ∂f

∂z
= 0

d

dx

∂F

∂z′
− λ = 0

λ =
d

dx

∂F

∂z′

So the identity becomes

H =
∂F

∂y′′
y′′ +

∂F

∂y′
y′ − λy′ − F (y, y′, y′′)

=
∂F

∂y′′
y′′ +

∂F

∂y′
y′ − y′

d

dx

∂F

∂y′′
− F (y, y′, y′′)

= const

Remarks: In fact, what we are really doing is deriving higher order versions of the Hamiltonian (and generalized
momenta). A fairly general form of this is given in “Noether’s theorem in generalized mechanics”, Dan Anderson, 1973
J. Phys. A: Math. Nucl. Gen. 6 299,http://iopscience.iop.org/0301-0015/6/3/005 . Converting to
our notation, if we take a functional

J{y} =

∫ x1

x0

L(x, y, y′, . . . , y(n)) dx,

then the corresponding Hamiltonian is

H =

n
∑

j=1

Pjy
(j) − L,
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where thePj are generalized momenta terms corresponding to eachy(j), and are given by

Pj =

n−j
∑

i=0

(−1)i
di

dxi

∂L

∂y(i+j)
,

A simple example is the case whenn = 2. In this case,

P1 =
∂L

∂y′
− d

dx

∂L

∂y′′

P2 =
∂L

∂y′′

Note that, as we should expect, these are the terms that appear in the natural boundary conditions for a problem with
a second order derivative.P1 corresponds to freey, andP2 to freey′. The Hamiltonian (which in natural boundary
conditions corresponds to freex at the end point) is then just

H = P1y
′ + P2y

′′ − L = y′
(

∂L

∂y′
− d

dx

∂L

∂y′′

)

+ y′′
∂L

∂y′′
− L.

which we can see is the same as that derived above.

If we extend this to more than one dependent variable, then there will be a series of generalized momenta for each state
variable, e.g., for a functional

J{q} =

∫ x1

x0

L(x,q, q̇, . . . ,q(n)) dx,

the generalized momenta terms are given by

P
(k)
j =

n−j
∑

i=0

(−1)i
di

dxi

∂L

∂q
(i+j)
k

,

and

H =
∑

k

n
∑

j=1

Pjq
(j)
k − L.

The important fact is that these definitions ofPi andH can then be used in variations of Noether’s theorem, corner
conditions, and in natural boundary conditions corresponding to free end points, though obviously some care needs be
taken about the general form of these conditions. For instance, Noether’s theorem see “Noether’s theorem in generalized
mechanics” for the correct version of Noether’s theorem.
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26. Optimal Control: We consider the problem of steering a large ship. We want to change the bearing of the ship from
θ0 to θ1 in the shortest time possible. The equation describing the bearing of the ship is

θ̈ + θ̇ = F,

whereF is the rudder setting, which is subject to the restriction|F | ≤ 1. Essentially, this equation reflects the fact that
the faster the ship is turning,θ̇ the less affect the rudder has on the rate of change of turnθ̈. We can see that when the
rate of turn reacheṡθ = 1, then the rudder will no long increase the rate of turn at all,so this is effectively the maximum
rate of turn.

For simplicity we takeθ0 = 0, and assume that the ship should be travelling in a straight line before and after the
manoeuvre, so thaṫθ = 0 at the start and end times.

The optimization problem is findF that minimizes time

T =

∫ t1

t0

1 dt =

∫ θ1

θ0

dt

dθ
dθ =

∫ θ1

θ0

1

θ̇
dθ.

Solution: We can immediately see that the porblem is likely to be bang-bang type control, but more formally we can
introduce the constraint into the optimization objective through a Lagrange multiplier, i.e., minimize

J{F} =

∫ θ1

θ0

1

θ̇
+ λ

(

θ̈ + θ̇ − F
)

dθ.

The Euler-Poisson equations will be

d2

dx2

∂f

∂θ̈
− d

dx

∂f

∂θ̇
+

∂f

∂θ
= 0

d2λ

dx2
− dλ

dx
+

d

dx

1

θ̇2
= 0

dλ

dx
− λ+

1

θ̇2
= const

and

d2

dx2

∂f

∂F̈
− d

dx

∂f

∂Ḟ
+

∂f

∂F
= 0

−λ = 0

Substituting the second into the first we get
1

θ̇2
= const

or
θ̇ = const.

The only such solution that satisfies the boundary conditions is θ̇ = 0, but this is unstatisfactory because then the ship
never completes the manoeuvre. On the other hand, the time isminimized by takingθ̇ = ∞, which requires infinite
turning force, and so is equally unsatisfactory.

Thus, as there is no Euler-Lagrange solution, we conclude that the solution must lie on the boundary of the admissable
constrols, i.e.,F = ±1.

GivenF , we can solve the state equations. We get

θ̈ + θ̇ = ±1,

which has solution
θ = c1 + c2e

−t ± t.
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Take start pointθ0 = 0 and we getc2 = −c1 so

θ = c1(1− e−t)± t,

and
θ̇ = c1e

−t ± 1,

which also must be zero at the start point, so
c1 = ∓1,

and

θ = ∓(1− e−t)± t

θ̇ = ∓e−t ± 1

If we takeθ1 > 0 for the sake of argument, then it is reasonable to assume thatfor the optimal patḣθ > 0, and so we
must start withF = 1 and

θ = −(1− e−t) + t

θ̇ = −e−t + 1

Assuming a second part of the curve withF = −1 we get the curve

θ = c1 + c2e
−t − t,

whereθ(t1) = θ1, but t1 is unknown. The starting point is the cross-over pointt = t∗, whereθ(t∗) and θ̇(t∗) are
known, so we can write

θ = c1 + c2e
−(t−t∗) − (t− t∗),

where

c2 = −1− θ̇(t∗)

c1 = θ(t∗)− c2

or
θ = θ(t∗)− (1 + θ̇(t∗))

[

e−(t−t∗) − 1
]

− (t− t∗).

Given this form, we can again calculate the derivative

θ̇ = (1 + ˙θ(t∗))e−(t−t∗) − 1

and if we set this to zero at the right hand boundary and take logs we get

0 = (1 + θ̇(t∗))e−(t1−t∗) − 1

1 = (1 + θ̇(t∗))e−(t1−t∗)

ln 1 = ln(1 + θ̇(t∗)) + ln e−(t1−t∗)

0 = ln(1 + θ̇(t∗))− (t1 − t∗)

(t1 − t∗) = ln(1 + θ̇(t∗))

where we know that ˙θ(t∗) = 1− e−t∗ so
t1 = t∗ + ln(2 − e−t∗),
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So we have calculated all constants in terms oft∗, and now just need to know the time of the switch point. We can
substitute1 + θ̇(t∗) = et1−t∗ into

θ(t1) = θ(t∗)− (1 + θ̇(t∗))
[

e−(t1−t∗) − 1
]

− (t1 − t∗)

= θ(t∗)− et1−t∗
[

e−(t1−t∗) − 1
]

− (t1 − t∗)

= θ(t∗)−
[

1− et1−t∗
]

− (t1 − t∗)

and(t1 − t∗) = ln(1 + θ̇(t∗)) so

θ(t1) = θ(t∗)−
[

1− et1−t∗
]

− (t1 − t∗)

= θ(t∗) + θ̇(t∗)− ln(1 + θ̇(t∗))

Now up tot∗ we already know that

θ = −(1− e−t) + t

θ̇ = −e−t + 1

so

θ(t1) = θ(t∗)−
[

1− et1−t∗
]

− (t1 − t∗)

= −(1− e−t∗) + t∗ +−e−t∗ + 1− ln(2− e−t∗)

= t∗ − ln(2− e−t∗)

which we can solve numerically to gett∗. The solution is illustrated in Figure 10. The curve consists of two phases,
the first of positive steering up until timet∗ = 5.691, and the second, of negative steering until timet∗ = 6.383. Note
that a large part of the trajectory is almost straight as the control limits the maximum rate of turn tȯθ ≤ 1, and so for
much of the time, the ship is turning at near its maximum rate.
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Figure 10: Ship manoeuvre curve forθ0 = 0 andθ1 = 5.
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27. Existence:The question of whether a minimal solution exists is sometimes hihgly non-trivial to answer. This is perhaps
best seen in the disarmingly simple soundingKakeya needle setproblem.

The problem is to find the smallest set within which a unit linesegment (a needle) can be rotated continuously through
180 degrees so that it returns to its original position with its orientation reversed.

Solution: The problem sounds like a classical CoV problem similar to Dido’s problem. However, int 1927 Besicovitch
showed that there was no minimum. Regions can be constructedwith arbitrarily small area, but there is no area zero
(technically measure zero) region that’s is satisfactory,so we can’t find a minimum.

If we restrict the region to be simply connected ()
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28. Geodesics and corners:In considering geodesics in the plane, we showed that they necessarily consist of straight-line
segments. However, we did not show that this was sufficient, and in fact didn’t rule out a curve made up of a series of
straight lines with corners.

Use W-E corner conditions to show that the geodesics in the plane must be made up of single line segments without
corners.

Solution:

The solution is interesting, because it illustrates some ofthe difficulties in classifying extrema. Point conditions are not
sufficient because, for instance, if we had a geodesic fromA → B, and fromB → C, then a point condition along the
curve cannot rule out the curveA → B → C being a geodesic betweenA andC.

In the special case above, we are saved by the corner conditions preventing us from linking up two different lines, but in
general we need a condition that somehow considers the entire curve in order to see whether we have a true minimum
(or maximum).
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