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Special case 2
When f has no dependence onx we call this an autonomous problem, and
we can replace the E-L equations with

H(y,y′) = y′
∂ f
∂y′

− f (y,y′) = const

We will seeH again later – it often turns out to be a conserved quantity
like energy, and so arises naturally in computing the shape of a catenary.
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Euler-Lagrange equation

Theorem 2.2.1: LetF : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f has continuous partial derivatives of second order with respect to
x, y, andy′, andx0 < x1. Let

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0 andy(x1) = y1
}

,

wherey0 andy1 are real numbers. Ify ∈ S is an extremal forF , then for all
x ∈ [x0,x1]

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

= 0
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Autonomous case

The autonomous case is wheref has no explicit dependence onx, so
∂ f/∂x = 0.

Theorem 2.3.1: Let J be a functional of the form

J{y}=
∫ x2

x1

f (y,y′)dx

and define the functionH by

H(y,y′) = y′
∂ f
∂y′

− f (y,y′)

ThenH is constant along any extremal ofy.
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Proof of Theorem 2.3.1

d
dx

H(y,y′) =
d
dx

(

y′
∂ f
∂y′

− f (y,y′)

)

,

= y′′
∂ f
∂y′

+ y′
d
dx

∂ f
∂y′

− y′
∂ f
∂y

− y′′
∂ f
∂y′

= y′
(

d
dx

∂ f
∂y′

− ∂ f
∂y

)

= 0

So
H(y,y′) = const

✷

NB: this is a first order differential equation for the extremal y.
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The Catenary

The potential energy of the cable
is

Wp{y}=
∫ L

0
mgy(s)ds

WhereL is the length of the ca-
ble

x0 x1

y=y(x)

y

d

g

0

1

y

y

m = mass

g = gravitational constant
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The Catenary

Catenary is derived from the Latin word catena, which means ”chain”
Examples: power-lines, hanging chains, spider web
The catenary is also called

◮ chainette (French)

◮ alysoid (the catenary is a special case of an alysoid)
http://www.2dcurves.com/exponential/exponentiala.html

◮ funicular curve (a funicular polygon is formed by having a cord
fastened at its ends, with weights at different points).
http://dictionary.die.net/funicular%20curve

A funicular rail (for instance) uses a chain to pull its cars up a steep
slope.
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The Catenary, reformulation

As with geodesic in the plan

ds =
√

1+ y′2dx

So the functional of interest (the potential energy) is

Wp{y}= mg
∫ x1

x0

y
√

1+ y′2dx

which does not containx explicitly.

H(y,y′) = y′
∂ f
∂y′

− f = const.

where f (y,y′) = y
√

1+ y′2.
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The Catenary (iii)

c1 = H(y,y′)

= y′
∂ f
∂y′

− f where f (y,y′) = y
√

1+ y′2

= y′
yy′

√

1+ y′2
− y

√

1+ y′2

c1

√

1+ y′2 = yy′2− y(1+ y′2)

c1

√

1+ y′2 = −y

c2
1(1+ y′2) = y2

y2

1+ y′2
= c2

1
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The Catenary (iv)

If c1 = 0 the only solution isy = 0.
If c1 6= 0 then, rearrange to get

dy
dx

=

√

y2

c2
1

−1

dx =
1

√

y2

c2
1
−1

dy

∫
dx =

∫
1

√

y2

c2
1
−1

dy

x− c2 =

∫
1

√

y2

c2
1
−1

dy
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The Catenary (v)

Now
d
dx

(

cosh−1 u
)

=
1√

u2−1

du
dx

,

So takingu = y/c1 we get

d
dx

cosh−1 (y/c1) =
1

√

y2/c2
1−1

1
c1
,

So, the integral above results in

x− c2 = c1cosh−1 (y/c1) .
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The Catenary (vi)

The extremals are thus given by

y = c1cosh

(

x− c2

c1

)

In particular, the minimal potential energy occurs wheny takes this form,
a catenary.

The constantsc1 andc2 are determined by the end conditions, the heights
of the poles, e.g.y(x0) = x0 andy(x1) = x1.

Notice I didn’t specifyL anywhere here.
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Catenaries of differentL
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Finding the constants

cosh is anevenfunction so ifx0 =−1 andx1 = 1, andy1 = y2 then the
constantc2 = 0. So we can rewrite this as

y(x) = c1cosh

(

x
c1

)

which we solve fory(1) = c1cosh(1/c1) = y1 to getc1.

◮ non-linear, so solve numerically

For instancey(1) = 2 we get two possible valuesc1 = 0.47 andc1 = 1.697

◮ they don’t have to both be minima

◮ one could be a maxima, or a stationary point
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Finding the constants
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Finding the constants
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Existence of a solution

In the above solution, note that for some values ofy0 andy1, we can get
multiple solution, but in some cases there may be a unique solution, or no
solutions!!!
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Calculating the functional

Once we knowy, it is (in principle) easy to calculateF{y}, e.g., for the
catenary note the following identities

d
dx

c1cosh(x/c1) = sinh(x/c1)

1+sinh2(x/c1) = cosh2(x/c1)

and so

F{y} =

∫ 1

−1
y
√

1+ y′2 dx

=

∫ 1

−1
c1cosh(x/c1)

√

1+sinh2(x/c1)dx

=

∫ 1

−1
c1cosh2(x/c1)dx
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Calculating the functional

Now note that

cosh2(x) = (cosh(2x)+1)/2

so that

F{y} =
c1

2

∫ 1

−1
(cosh(2x/c1)+1)dx

=
c1

2

∫ 1

−1
dx+

c1

2

∫ 1

−1
cosh(2x/c1)dx

= c1+
c2

1

4
[sinh(2x/c1)]

1
−1

= c1+
c2

1

2
sinh(2/c1)
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Calculating the functional

You can think of the length as changing slowly, so at each point in time,
the shape is a catenary with constantc1, where this varies over time, i.e.,
optimise WRT toc1.
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The length of the Catenary

L{y} =
∫ 1

−1

√

1+ y′2 dx

=

∫ 1

−1
cosh(x/c1)dx

= c1 [sinh(x/c1)]
1
−1

= 2c1sinh(1/c1)

But note that in this version of the problem we can’tset the length, it is an
output. Later on we will constrain the length so it is an inputto the
problem.
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Catenary addendum

The usual explanation for the shape of the catenary is based on a simple
physical argument:forces must be balance in equilibrium.

x=0

FH

T

FV
FH

T FV

y

θ

θ
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Catenary addendum

forces must be balance in equilibrium so tension in the cable (which
must be in the direction of the cable) must balance the horizontal forceFH

at the lowest point, and the downwards forceFV . The results is

tanθ =
FV

FH

dy
dx

=
gms
FH

wherems is the mass of the cable integrated from[0,s] along the cable,
andFH is constant.
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Catenary addendum

Taking derivatives with respect tox we get

d
dx

dy
dx

=
d
dx

m(x)g
FH

y′′ =
mg
FH

ds
dx

where we know thatds
dx =

√

1+ y′2 so

y′′
√

1+ y′2
=

mg
FH

which has the same solution, but nowc1 has a meaning

y(x) =
FH

mg
cosh

(

mg
FH

x

)

.

Variational Methods & Optimal Control: lecture 05 – p.24/28



The shape of an arch

Flip a catenary upside down,
and the above argument shows
simply that the strongest form
of an arch is an inverted cate-
nary. This balances the forces
at each point, so that the arch is
under the least possible stress.
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parabola
circular arc
full−height catanery
catenary

Note thatFH must be applied to the edges or the arch

will collapse outwards.
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The shape of an arch

However, this argument assumes that the arch’s own weight isall that
matters. Commonly, an arch supports a wall above, and so the forces are
not so simply described. The shape that is optimal is closer to the shape of
a suspension bridge, which we shall see in tutorials is a parabola.

◮ BTW, the Gateway Arch in St Louis isn’t strictly a catenary asis
sometimes claimed.

http://www.springerlink.com/content/u7734w06700776x0/

◮ the optimal form changes if the “arch” isn’t a pure curve, buthas
shape.
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Other arches

◮ Sheffield Winter Garden
http://en.wikipedia.org/wiki/Sheffield_Winter_Garden
http://algebraproject07.wikispaces.com/Mathematical+Information

◮ Arches under Gaudi’s Cassa Milá
http://en.wikipedia.org/wiki/Casa_Mil%C3%A0

◮ Dome in St Paul’s Catherdal
http://en.wikipedia.org/wiki/St_Paul%27s_Cathedral

There are others but they often aren’t exact catenaries – sometimes they
are parabolas, which is also the shape of a suspension bridge(BTW, the
difference is tiny for such cases)
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Some history

◮ 1638, Galileo, a hanging cord is an approximate parabola, and the

approximation improves as the curvature gets smaller

◮ Joachim Jungius showed it wasn’t a parabola (published posthumously in

1669)

◮ Hooke discovered optimal shape of arch in 1671 published it as a Latin

Anagram

⊲ Published posthumously in 1705 as “Ut pendet continuum flexile, sic

stabit contiguum rigidum inversum”, meaning “as hangs a flexible cable

so, inverted, stand the touching pieces of an arch.”

◮ Derived by Leibniz, Huygens and Johann Bernoulli in 1691

◮ Euler worked on related problems in 18th century
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