Variational Methods & Optimal Control

Matthew Roughan <matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

April 14, 2016

Variational Methods & Optimal Control: lecture 05 - p.1/28

Special case 2

When f has no dependence on x we call this an autonomous problem, and we can replace the E-L equations with

$$H(y, y') = y' \frac{\partial f}{\partial y'} - f(y, y') = const$$

We will see H again later – it often turns out to be a conserved quantity like energy, and so arises naturally in computing the shape of a catenary.

Euler-Lagrange equation

Theorem 2.2.1: Let $F : C^2[x_0, x_1] \to \mathbb{R}$ be a functional of the form

$$F\{y\} = \int_{x_0}^{x_1} f(x, y, y') \, dx$$

where *f* has continuous partial derivatives of second order with respect to *x*, *y*, and y', and $x_0 < x_1$. Let

$$S = \left\{ y \in C^2[x_0, x_1] \mid y(x_0) = y_0 \text{ and } y(x_1) = y_1 \right\}$$

where y_0 and y_1 are real numbers. If $y \in S$ is an extremal for F, then for all $x \in [x_0, x_1]$

$$\frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) - \frac{\partial f}{\partial y} = 0$$

Variational Methods & Optimal Control: lecture 05 - p.3/28

Autonomous case

The autonomous case is where *f* has no explicit dependence on *x*, so $\partial f / \partial x = 0$.

Theorem 2.3.1: Let *J* be a functional of the form

$$J\{y\} = \int_{x_1}^{x_2} f(y, y') dx$$

and define the function H by

$$H(y,y') = y' \frac{\partial f}{\partial y'} - f(y,y')$$

Then *H* is constant along any extremal of *y*.

Proof of Theorem 2.3.1

$$\frac{d}{dx}H(y,y') = \frac{d}{dx}\left(y'\frac{\partial f}{\partial y'} - f(y,y')\right),$$

$$= y''\frac{\partial f}{\partial y'} + y'\frac{d}{dx}\frac{\partial f}{\partial y'} - y'\frac{\partial f}{\partial y} - y''\frac{\partial f}{\partial y'}$$

$$= y'\left(\frac{d}{dx}\frac{\partial f}{\partial y'} - \frac{\partial f}{\partial y}\right)$$

$$= 0$$

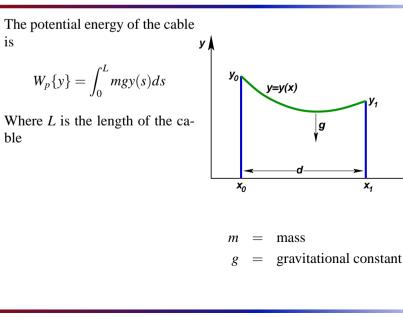
So

$$H(y, y') = const$$

NB: this is a first order differential equation for the extremal y.

Variational Methods & Optimal Control: lecture 05 - p.5/28

The Catenary



The Catenary

Catenary is derived from the Latin word catena, which means "chain"
Examples: power-lines, hanging chains, spider web
The catenary is also called
chainette (French)
alysoid (the catenary is a special case of an alysoid) http://www.2dcurves.com/exponential/exponentiala.html
funicular curve (a funicular polygon is formed by having a cord

fastened at its ends, with weights at different points). http://dictionary.die.net/funicular%20curve A funicular rail (for instance) uses a chain to pull its cars up a steep slope.

Variational Methods & Optimal Control: lecture 05 - p.7/28

The Catenary, reformulation

As with geodesic in the plan

$$ds = \sqrt{1 + y'^2} dx$$

So the functional of interest (the potential energy) is

$$W_p\{y\} = mg \int_{x_0}^{x_1} y \sqrt{1 + {y'}^2} dx$$

which does not contain *x* explicitly.

$$H(y,y') = y' \frac{\partial f}{\partial y'} - f = const.$$

where $f(y, y') = y\sqrt{1 + y'^2}$.

Variational Methods & Optimal Control: lecture 05 - p.6/28

The Catenary (iii)

$$c_{1} = H(y, y')$$

$$= y' \frac{\partial f}{\partial y'} - f \quad \text{where } f(y, y') = y\sqrt{1 + y'^{2}}$$

$$= y' \frac{yy'}{\sqrt{1 + y'^{2}}} - y\sqrt{1 + y'^{2}}$$

$$c_{1}\sqrt{1 + y'^{2}} = yy'^{2} - y(1 + y'^{2})$$

$$c_{1}\sqrt{1 + y'^{2}} = -y$$

$$c_{1}^{2}(1 + y'^{2}) = y^{2}$$

$$\frac{y^{2}}{1 + y'^{2}} = c_{1}^{2}$$

Variational Methods & Optimal Control: lecture 05 - p.9/28

The Catenary (iv)

If $c_1 = 0$ the only solution is y = 0. If $c_1 \neq 0$ then, rearrange to get

$$\frac{dy}{dx} = \sqrt{\frac{y^2}{c_1^2} - 1}$$
$$dx = \frac{1}{\sqrt{\frac{y^2}{c_1^2} - 1}} dy$$
$$\int dx = \int \frac{1}{\sqrt{\frac{y^2}{c_1^2} - 1}} dy$$
$$x - c_2 = \int \frac{1}{\sqrt{\frac{y^2}{c_1^2} - 1}} dy$$

The Catenary (v)

Now

$$\frac{d}{dx}\left(\cosh^{-1}u\right) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx},$$

So taking $u = y/c_1$ we get

$$\frac{d}{dx}\cosh^{-1}(y/c_1) = \frac{1}{\sqrt{y^2/c_1^2 - 1}}\frac{1}{c_1},$$

So, the integral above results in

$$x - c_2 = c_1 \cosh^{-1}(y/c_1).$$

Variational Methods & Optimal Control: lecture 05 - p.11/28

The Catenary (vi)

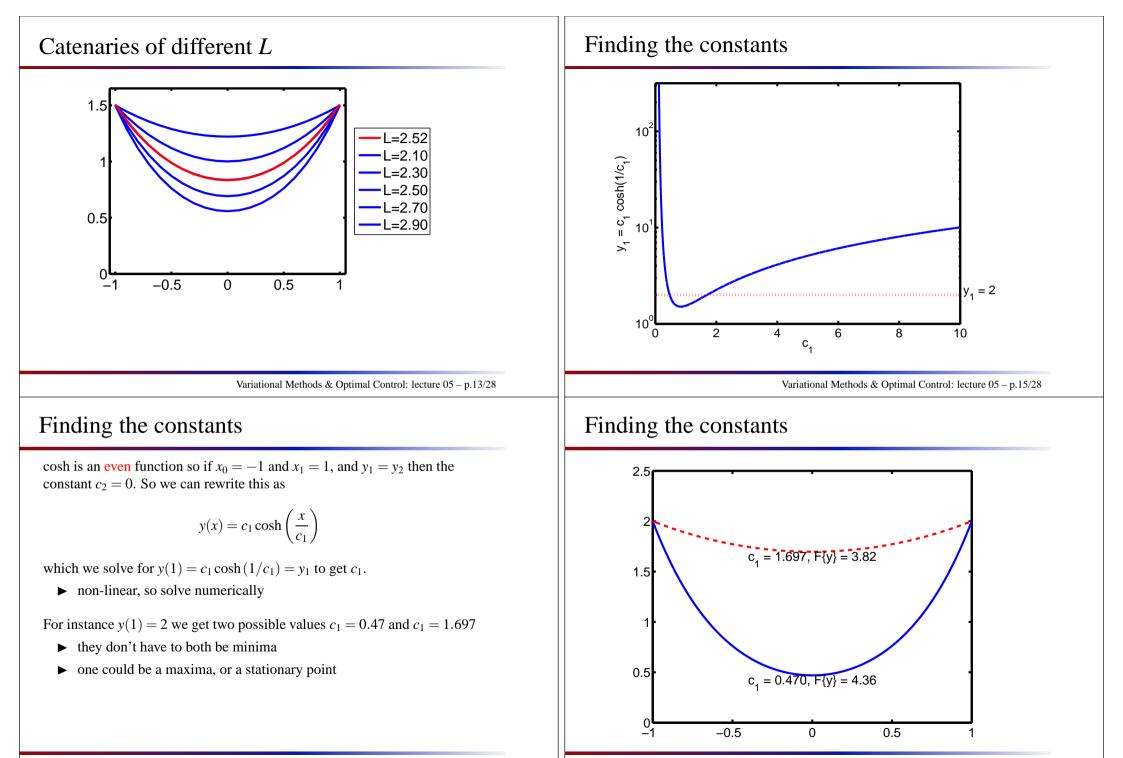
The extremals are thus given by

$$y = c_1 \cosh\left(\frac{x - c_2}{c_1}\right)$$

In particular, the minimal potential energy occurs when *y* takes this form, a **catenary**.

The constants c_1 and c_2 are determined by the end conditions, the heights of the poles, e.g. $y(x_0) = x_0$ and $y(x_1) = x_1$.

Notice I didn't specify L anywhere here.



Variational Methods & Optimal Control: lecture 05 - p.14/28

Variational Methods & Optimal Control: lecture 05 - p.16/28

Existence of a solution

In the above solution, note that for some values of y_0 and y_1 , we can get multiple solution, but in some cases there may be a unique solution, or no solutions!!!

Variational Methods & Optimal Control: lecture 05 - p.17/28

Calculating the functional

Once we know y, it is (in principle) easy to calculate $F\{y\}$, e.g., for the catenary note the following identities

$$\frac{d}{dx}c_1\cosh(x/c_1) = \sinh(x/c_1)$$

1+sinh²(x/c_1) = cosh²(x/c_1)

and so

$$F\{y\} = \int_{-1}^{1} y\sqrt{1+y^2} \, dx$$

= $\int_{-1}^{1} c_1 \cosh(x/c_1) \sqrt{1+\sinh^2(x/c_1)} \, dx$
= $\int_{-1}^{1} c_1 \cosh^2(x/c_1) \, dx$

Calculating the functional

Now note that

$$\cosh^2(x) = (\cosh(2x) + 1)/2$$

so that

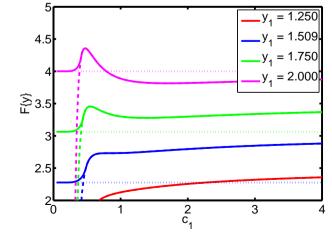
$$F\{y\} = \frac{c_1}{2} \int_{-1}^{1} (\cosh(2x/c_1) + 1) dx$$

= $\frac{c_1}{2} \int_{-1}^{1} dx + \frac{c_1}{2} \int_{-1}^{1} \cosh(2x/c_1) dx$
= $c_1 + \frac{c_1^2}{4} [\sinh(2x/c_1)]_{-1}^1$
= $c_1 + \frac{c_1^2}{2} \sinh(2/c_1)$

Variational Methods & Optimal Control: lecture 05 - p.19/28

Calculating the functional

You can think of the length as changing slowly, so at each point in time, the shape is a catenary with constant c_1 , where this varies over time, i.e., optimise WRT to c_1 .



The length of the Catenary

$$L\{y\} = \int_{-1}^{1} \sqrt{1 + y'^2} dx$$

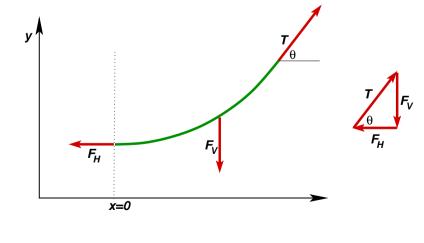
= $\int_{-1}^{1} \cosh(x/c_1) dx$
= $c_1 [\sinh(x/c_1)]_{-1}^{1}$
= $2c_1 \sinh(1/c_1)$

But note that in this version of the problem we can't **set** the length, it is an output. Later on we will constrain the length so it is an input to the problem.

Variational Methods & Optimal Control: lecture 05 - p.21/28

Catenary addendum

The usual explanation for the shape of the catenary is based on a simple physical argument: **forces must be balance in equilibrium.**



Catenary addendum

forces must be balance in equilibrium so tension in the cable (which must be in the direction of the cable) must balance the horizontal force F_H at the lowest point, and the downwards force F_V . The results is

$$\tan \theta = \frac{F_V}{F_H}$$
$$\frac{dy}{dx} = \frac{gms}{F_H}$$

where *ms* is the mass of the cable integrated from [0, s] along the cable, and F_H is constant.

Variational Methods & Optimal Control: lecture 05 - p.23/28

Catenary addendum

Taking derivatives with respect to *x* we get

$$\frac{d}{dx}\frac{dy}{dx} = \frac{d}{dx}\frac{m(x)g}{F_H}$$
$$y'' = \frac{mg}{F_H}\frac{ds}{dx}$$

where we know that $\frac{ds}{dx} = \sqrt{1 + y'^2}$ so

$$\frac{y''}{\sqrt{1+y'^2}} = \frac{mg}{F_H}$$

which has the same solution, but now c_1 has a meaning

$$y(x) = \frac{F_H}{mg} \cosh\left(\frac{mg}{F_H}x\right).$$

Variational Methods & Optimal Control: lecture 05 - p.22/28

