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Special case 2: autonomous
problems continued

H(y,y′) = y′
∂ f
∂y′

− f (y,y′) = const

We will seeH again later – it often turns out to be a conserved quantity
like energy, and so arises naturally in computing the shape of the
brachystochrone.

Variational Methods & Optimal Control: lecture 06 – p.2/??



Euler-Lagrange equation

Theorem 2.2.1: LetF : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f has continuous partial derivatives of second order with respect to
x, y, andy′, andx0 < x1. Let

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0 andy(x1) = y1
}

,

wherey0 andy1 are real numbers. Ify ∈ S is an extremal forF , then for all
x ∈ [x0,x1]

d
dx

(

∂ f
∂y′

)

− ∂ f
∂y

= 0
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Autonomous case

The autonomous case is wheref has no explicit dependence onx, so
∂ f/∂x = 0.

Theorem 2.3.1:Let J be a functional of the form

J{y}=
∫ x2

x1

f (y,y′)dx

and define the functionH by

H(y,y′) = y′
∂ f
∂y′

− f (y,y′)

ThenH is constant along any extremal ofy.
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Example: Brachystochrone

The time taken is

T{y}=
∫ L

0

ds
v(s)

The energy of a body is the sum of po-
tential and kinetic energy

E =
1
2

mv(x)2+mgy(x)

and a simple conservation law says this
is constant, so

v(x) =

√

2E
m

−2gy(x)

Kinetic energy = 1/2 m v 2(x , y )00

1(x , y )1

y

v(x)

mg

x

Potential energy = mgy(x)

(x,y(x))
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Example: Brachystochrone (ii)

As for the geodesic in the plane

ds =
√

1+ y′2dx

So the functional of interest (the time taken) is

T{y}=
∫ x1

x0

√

1+ y′2
√

2E
m −2gy(x)

dx

We can perform a substitution

w(x) =
1
2g

(

2E
m

−2gy(x)

)

And note thatw′2 = y′2, so (ignoring the constant factor of−1/2g) we
look for extremals of
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Example: Brachystochrone (iii)

Look for extremals of

T{w}=
∫ x1

x0

√

1+w′2

w
dx

which does not containx explicitly.

H(w,w′) = w′ ∂ f
∂w′ − f =

w′2

w

(

1+w′2

w

)−1/2

−
√

1+w′2

w

=
w′2

√

w(1+w′2)
−
√

1+w′2

w

=
−1

√

w(1+w′2)
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Example: Brachystochrone (iv)

H(w,w′) = const

So we can write

w(1+w′2) = c1

Let w′ = tanφ, then 1+w′2 = sec2 φ and forκ1 = c1/2

w =
c1

sec2 φ
= c1cos2 φ = κ1 [1+cos(2φ)]

dw
dφ

=−2κ1sin(2φ) =−4κ1cos(φ)sin(φ)

Variational Methods & Optimal Control: lecture 06 – p.8/??



Example: Brachystochrone (v)

Also dw/dx = tanφ, which means

dx
dw

=
1

tanφ
= cotφ

Also
dx
dφ

=
dx
dw

dw
dφ

=−4κ1cos2 φ =−2κ1(1+cos(2φ))

Integrating
x = κ2−κ1(2φ+sin(2φ))

Along with
w = κ1 [1+cos(2φ)]

we have a parametric form of the solution.
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Cycloids
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Example: Brachystochrone solution

Takeθ+π = 2φ and we get

x = κ2+κ1(θ−sin(θ))
w = κ1 [1−cos(θ)]

Lets change back toy, rememberingw(x) = 1
2g

(

2E
m −2gy(x)

)

, and that

E = 1
2mv2+mgy = const andv(x0) = 0, so thatE = mgy0, hence

y = y0−w

Note thaty(x) doesn’t depend ong or m!
Now y(x0) = y0 and sow(θ0) = 0, which we get whenθ0 = 0.
Now x(θ0) = x0 and soκ2 = x0, so the solution is
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Example: Brachystochrone solution

Takeθ+π = 2φ and we get

x = x0+κ1(θ−sin(θ))
y = y0−κ1 [1−cos(θ)]

Now, note thaty(x1) = y1. We findθ1 first by solving

y1 = y0−κ1 [1−cos(θ1)]

[1−cos(θ1)] =
y0− y1

κ1

cos(θ1) = 1− y0− y1

κ1

θ1 = arccos

(

1− y0− y1

κ1

)
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Cycloids
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More than one possible solution!!
We need to find the fastest one!
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Meaning ofH

H is aconservedquantity.

In physics often see such, e.g. the energy
H is not energy in Brachystochrone problem

Can derive conservation laws mathematically.
rather than deriving them as physical laws

later on we consider Noether’s theorem
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Newton’s aerodynamic problem

“If in a rare medium, consisting of equal particles freely disposed at equal
distances from each other, a globe and a cylinder described on equal
diameter move with equal velocities in the direction of the axis of the
cylinder, the resistance of the globe will be half as great asthat of the
cylinder ... I reckon that this proposition will be not without application in
the building of ships”.

Isaac Newton, Principia Mathematica
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Newton’s aerodynamical problem

Consider finding the optimal shape of a rocket’s nose cone in order that it
creates the least resistance when passing through air.
Assumptions:

Air is thin, and composed of perfectly elastic particles:
particles will bounce off the nose cone with equal speed, and
equal angle of reflection and incidence.
We ignore tangential friction.
We ignore “non-Newtonian” affects such as those from
compression of the air.

Realistic for high-altitude, supersonic flight
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Newton’s aerodynamical problem

Consider finding the optimal shape of a rocket’s nose cone in order that it
creates the least resistance when passing through air.
Assumptions:

As the rocket may rotate along its length, the nose cone must be
circularly symmetric, and so we reduce the problem to one of
determining the optimal profile of the nose cone.

The rocket’s nose cone must have radiusR at its base, and lengthL,
and its shape should be convex

its profile must be concave and non-increasing
ratio L/2R is called thefineness ratio
bigger is better, though little gain for> 5 : 1
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Newton’s aerodynamical problem

It is irrelevant whether we move
the object, or the medium, so
assume the latter for conve-
nience.

y

R

L

x

v
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Newton’s aerodynamical problem

We can calculate the angle be-
tween the incident particle and
the tangent to the surface by
simple trig

cotθ = tan(π/2−θ) =−y′.

y

R

L

θ

v

x
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Newton’s aerodynamical problem

The angle of incident equals the
angle of reflection.

θ

y

R

L

θ

v

v

x
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Newton’s aerodynamical problem

The angle between the reflected
particle and the vertical is 2θ.

θ

y

R

L

θ

θ

v

v

x
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Newton’s aerodynamical problem

The velocity in the vertical di-
rection after the collision is

s = vcos(2θ) = v
(

1−2sin2 θ
)

.

y

R

L

θ

v

v

x

θ2s
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Newton’s aerodynamical problem

Force = ma

m = mass

a = acceleration = change in velocity

a = v− s = 2vsin2 θ.

Scale constants so that
2vm = 1,

and then

Force = sin2 θ =
1

1+cot2 θ
=

1
1+ y′2

.
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Newton’s aerodynamical problem

Previous calculation gives force per particle= 1/(1+ y′2)

Need to integrate over surface area

Surface area at radiusx is
2πxdx.

Scaling to remove irrelevant constants, the functional describing the
resistance

F{y}=
∫ R

0

x
1+ y′2

dx,

subject toy(0) = L andy(R) = 0 and
y′ ≤ 0 andy′′ ≥ 0
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Newton’s aerodynamical problem

The Euler-Lagrange equations are

d
dx

∂ f
∂y′

− ∂ f
∂y

=
d
dx

2xy′

(1+ y′2)2
= 0

So for a given constantc, we get

2xy′

(1+ y′2)2
= c.

Rearranging we get

2xy′ = c(1+ y′2)2
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Newton’s aerodynamical problem

We’ll solve this when we get to optimal control.
For now here is the parametric solution without explanation

x(u) = c

(

1
u
+2u+u3

)

=
c
u
(1+u2)2

y(u) = L− c

(

− lnu− 7
4
+u2+

3
4

u4

)

But notice that
dy
dx

=
dy
du

du
dx

=
dy
du

/
dx
du

=−u

from which it is relatively clear that this is a solution.
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Newton’s aerodynamical problem

Solution looks almost like a blunted cone

perhaps that seems counter-intuitive?
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Newton’s aerodynamical problem
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Alternatives: cylinder

Cylinder:

y′ = 0

F{y} =

∫ R

0
xdx

=
R2

2

For R = 1
F = 1/2
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Alternatives: cone

Cone:

y′ = −L/R

F{y} =
∫ R

0

x
1+(L/R)2

dx

=
R2

2(1+(L/R)2)

For R = L = 1

F = 1/4

0 0.2 0.4 0.6 0.8 1
0

0.2
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0.8

1

F = 0.250
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Alternatives: sphere

Sphere:R = L = 1

x2+ y2 = 1

y′ = −x/y

= −x/
√

1− x2

F{y} =

∫ 1

0

x
1+ y′2

dx

=
∫ 1

0
x(1− x2)dx

=
1
4
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Alternatives: frustum of cone

Frustum of cone: corner ata

y′ =

{

0 x ≤ a

−L/(R−a) x ≥ a

F{y} =
∫ a

0
xdx+

∫ R

a

x
1+ y′2

dx

=
a2L2+R2(R−a)2

2(L2+(R−a)2)

Optimal value ofa:

a =
(L2+2R2)−L

√
L2+4R2

2R 0 0.2 0.4 0.6 0.8 1
0

0.2
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F = 0.191
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Alternatives: optimal

Optimal profile:
F computed numerically
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F = 0.187
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Alternatives: Haack series

Haack series:

http://en.wikipedia.org/wiki/Nose_cone_design

http://www.info-central.org/?article=125

http://mcfisher.0catch.com/other/mach1/mach1.htm

http://www.if.sc.usp.br/ ˜ projetosulfos/artigos/NoseCone_EQN2.PDF

F computed numerically
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Typical shapes

Note that the frustum of a cone isn’t much worse than the optimal
shape.

other shapes: ogive, Haack, ...

In the context of bullets a flattened end is called ameplat.
typically justified by

making all bullets precise
ld tips are hard to get just right

impact damage
but they wouldn’t do it if it wasn’t working
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Bullets

Variational Methods & Optimal Control: lecture 06 – p.32/??


	
	Euler-Lagrange equation
	Autonomous case
	Example: Brachystochrone
	Example: Brachystochrone (ii)
	Example: Brachystochrone (iii)
	Example: Brachystochrone (iv)
	Example: Brachystochrone (v)
	Cycloids
	Example: Brachystochrone solution
	Example: Brachystochrone solution
	Cycloids
	Meaning of $H$
	Newton's aerodynamic problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Alternatives: cylinder
	Alternatives: cone
	Alternatives: sphere
	Alternatives: frustum of cone
	Alternatives: optimal
	Alternatives: Haack series
	Typical shapes
	Bullets

